1
|
Martins LF, Wasson DE, Hristov AN. Feeding dairy cows for improved metabolism and health. Anim Front 2022; 12:29-36. [PMID: 36268175 PMCID: PMC9564990 DOI: 10.1093/af/vfac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Leoni F Martins
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Derek E Wasson
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
2
|
Ma Z, Fang L, Ungerfeld E, Li X, Zhou C, Tan Z, Jiang L, Han X. Supplementation of Rumen-Protected Glucose Increased the Risk of Disturbance of Hepatic Metabolism in Early Postpartum Holstein Cows. Antioxidants (Basel) 2022; 11:469. [PMID: 35326119 PMCID: PMC8944473 DOI: 10.3390/antiox11030469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/11/2023] Open
Abstract
The dual stress of reduced feed intake and increased milk yield in dairy cows early postpartum results in a negative energy balance. Rumen-protected glucose (RPG) has been reported to replenish energy, increase milk yield, and improve gut health. However, early postpartum cows often develop an insulin resistance, implying that RPG may not be well utilized and increased milk production may increase the liver's fat oxidization burden. This study aimed to investigate the effects of RPG on the hepatic oxidative/antioxidative status and protein profile. Starting 7 d before expected calving, six pairs of cows were supplemented with rumen-protected glucose (RPG, n = 6) or with an equal amount of rumen-protecting coating fat (CON, n = 6). Liver samples were obtained from 10 cows 14 d after calving (d 14). Concentration of malondialdehyde and activity of glutathione peroxidase were increased and the activities of catalase and superoxide dismutase tended to increase in the livers of the RPG cows compared to the CON cows. The revised quantitative insulin sensitivity check index (RQUICKI) was decreased by RPG, but triacylglycerol concentration in liver was increased by RPG supplementation. The overall profiles of hepatic proteins were similar between CON and RPG. A partial least square regression was conducted to identify the proteins associated with liver lipidosis, oxidative stress, and antioxidative capacity. The top twenty proteins, according to their variable importance value, were selected for metabolic pathway enrichment analysis. Eighteen enriched KEGG pathways were identified, including metabolism, the citrate cycle, propanoate metabolism, the peroxisome, and type II diabetes mellitus. Our study showed that RPG supplementation reduced insulin sensitivity but increased the liver triglyceride concentration and the oxidative stress in early postpartum cows. Liver proteins related to lipidosis, oxidative stress, and antioxidative capacity, were positively associated with the glutamine metabolism, citric acid cycle, peroxisome, and type II diabetes pathways, which may indicate an increased risk of liver metabolic disorders caused by RPG supplementation in early postpartum cows.
Collapse
Affiliation(s)
- ZhiYuan Ma
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.M.); (X.L.); (C.Z.); (Z.T.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - LuoYun Fang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China;
| | - Emilio Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Vilcún 4880000, Chile;
| | - XiaoPeng Li
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.M.); (X.L.); (C.Z.); (Z.T.)
| | - ChuanShe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.M.); (X.L.); (C.Z.); (Z.T.)
| | - ZhiLiang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.M.); (X.L.); (C.Z.); (Z.T.)
| | - LinShu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China;
| | - XueFeng Han
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.M.); (X.L.); (C.Z.); (Z.T.)
| |
Collapse
|
3
|
Häussler S, Sadri H, Ghaffari MH, Sauerwein H. Symposium review: Adipose tissue endocrinology in the periparturient period of dairy cows. J Dairy Sci 2022; 105:3648-3669. [PMID: 35181138 DOI: 10.3168/jds.2021-21220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
The involvement of adipose tissue (AT) in metabolism is not limited to energy storage but turned out to be much more complex. We now know that in addition to lipid metabolism, AT is important in glucose homeostasis and AA metabolism and also has a role in inflammatory processes. With the discovery of leptin in 1994, the concept of AT being able to secrete messenger molecules collectively termed as adipokines, and acting in an endo-, para-, and autocrine manner emerged. Moreover, based on its asset of receptors, many stimuli from other tissues reaching AT via the bloodstream can also elicit distinct responses and thus integrate AT as a control element in the regulatory circuits of the whole body's functions. The protein secretome of human differentiated adipocytes was described to comprise more than 400 different proteins. However, in dairy cows, the characterization of the physiological time course of adipokines in AT during the transition from pregnancy to lactation is largely limited to the mRNA level; for the protein level, the analytical methods are limited and available assays often lack sound validation. In addition to proteinaceous adipokines, small compounds such as steroids can also be secreted from AT. Due to the lipophilic nature of steroids, they are stored in AT, but during the past years, AT became also known as being able to metabolize and even to generate steroid hormones de novo. In high-yielding dairy cows, AT is substantially mobilized due to increased energy requirements related to lactation. As to whether the steroidogenic system in AT is affected and may change during the common loss of body fat is largely unknown. Moreover, most research about AT in transition dairy cows is based on subcutaneous AT, whereas other depots have scarcely been investigated. This contribution aims to review the changes in adipokine mRNA and-where available-protein expression with time relative to calving in high-yielding dairy cows at different conditions, including parity, body condition, diet, specific feed supplements, and health disorders. In addition, the review provides insights into steroidogenic pathways in dairy cows AT, and addresses differences between fat depots where possible.
Collapse
Affiliation(s)
- Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
4
|
Salcedo-Tacuma D, Parales-Giron J, Prom C, Chirivi M, Laguna J, Lock AL, Contreras GA. Transcriptomic profiling of adipose tissue inflammation, remodeling, and lipid metabolism in periparturient dairy cows (Bos taurus). BMC Genomics 2020; 21:824. [PMID: 33228532 PMCID: PMC7686742 DOI: 10.1186/s12864-020-07235-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
Background Periparturient cows release fatty acid reserves from adipose tissue (AT) through lipolysis in response to the negative energy balance induced by physiological changes related to parturition and the onset of lactation. However, lipolysis causes inflammation and structural remodeling in AT that in excess predisposes cows to disease. The objective of this study was to determine the effects of the periparturient period on the transcriptomic profile of AT using NGS RNAseq. Results Subcutaneous AT samples were collected from Holstein cows (n = 12) at 11 ± 3.6 d before calving date (PreP) and at 6 ± 1d (PP1) and 13 ± 1.4d (PP2) after parturition. Differential expression analyses showed 1946 and 1524 DEG at PP1 and PP2, respectively, compared to PreP. Functional Enrichment Analysis revealed functions grouped in categories such as lipid metabolism, molecular transport, energy production, inflammation, and free radical scavenging to be affected by parturition and the onset of lactation (FDR < 0.05). Inflammation related genes such as TLR4 and IL6 were categorized as upstream lipolysis triggers. In contrast, FASN, ELOVL6, ACLS1, and THRSP were identified as upstream inhibitors of lipid synthesis. Complement (C3), CXCL2, and HMOX1 were defined as links between inflammatory pathways and those involved in the generation of reactive oxygen species. Conclusions Results offer a comprehensive characterization of gene expression dynamics in periparturient AT, identify upstream regulators of AT function, and demonstrate complex interactions between lipid mobilization, inflammation, extracellular matrix remodeling, and redox signaling in the adipose organ. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12864-020-07235-0.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Jair Parales-Giron
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Crystal Prom
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Juliana Laguna
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA.,Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Adam L Lock
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Tsuchiya Y, Ozai R, Sugino T, Kawashima K, Kushibiki S, Kim YH, Sato S. Changes in peripheral blood oxidative stress markers and hepatic gene expression related to oxidative stress in Holstein cows with and without subacute ruminal acidosis during the periparturient period. J Vet Med Sci 2020; 82:1529-1536. [PMID: 32893200 PMCID: PMC7653322 DOI: 10.1292/jvms.20-0426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We investigated changes in peripheral blood metabolites, oxidative stress markers
(malondialdehyde, potential antioxidant capacity, and glutathione peroxidase [GPX]), and
hepatic gene expression related to oxidative stress in Holstein cows with and without
subacute ruminal acidosis (SARA) during the periparturient period. Eighteen multiparous
Holstein cows were categorized into SARA (n=9) or non-SARA (n=9) groups depending on
whether they developed SARA; reticulo-ruminal pH was <5.6 for more than 3 hr per day,
during the 2 weeks after parturition. Blood and liver tissue samples were collected 3
weeks prepartum and 2 and 6 weeks postpartum, with an additional blood sample collected 0
and 4 weeks postpartum. Blood aspartate transaminase (AST) and nonesterified fatty acid
(NEFA) increased significantly (P<0.05) after parturition in both
groups. GPX activity decreased gradually after parturition in the SARA group. In the SARA
group, gene expression of GPX 1 and microsomal glutathione S-transferase
3 (MGST3) decreased significantly (P<0.05), and
expression of metallothionein 2A increased significantly (P<0.05)
after parturition in the SARA group. Superoxide dismutase 1 and MGST3
decreased significantly (P<0.05) 2 weeks postpartum in the non-SARA
group. Gene expression related to oxidative stress was negatively correlated with AST,
NEFA and total ketone body levels. Therefore, the hepatic gene expression related to
oxidative stress might change associated with a negative energy balance, and might relate
the high oxidative stress in the SARA group during periparturient period.
Collapse
Affiliation(s)
- Yoshiyuki Tsuchiya
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate 020-8550, Japan.,Yamagata Prefectural Agricultural Mutual Aid Association, Tendo, Yamagata 994-8511, Japan
| | - Reiko Ozai
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Toshihisa Sugino
- The Research Center for Animal Science, Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Kenji Kawashima
- Chiba Prefectural Livestock Research Center, Yachimata, Chiba 289-1113, Japan
| | - Shiro Kushibiki
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki 305-0901, Japan
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Shigeru Sato
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate 020-8550, Japan.,Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
6
|
Li Q, Liang R, Li Y, Gao Y, Li Q, Sun D, Li J. Identification of candidate genes for milk production traits by RNA sequencing on bovine liver at different lactation stages. BMC Genet 2020; 21:72. [PMID: 32646377 PMCID: PMC7346489 DOI: 10.1186/s12863-020-00882-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Background RNA-sequencing was performed to explore the bovine liver transcriptomes of Holstein cows to detect potential functional genes related to lactation and milk composition traits in dairy cattle. The bovine transcriptomes of the nine liver samples from three Holstein cows during dry period (50-d prepartum), early lactation (10-d postpartum), and peak of lactation (60-d postpartum) were sequenced using the Illumina HiSeq 2500 platform. Results A total of 204, 147 and 81 differentially expressed genes (DEGs, p < 0.05, false discovery rate q < 0.05) were detected in early lactation vs. dry period, peak of lactation vs. dry period, and peak of lactation vs. early lactation comparison groups, respectively. Gene ontology and KEGG pathway analysis showed that these DEGs were significantly enriched in specific biological processes related to metabolic and biosynthetic and signaling pathways of PPAR, AMPK and p53 (p < 0.05). Ten genes were identified as promising candidates affecting milk yield, milk protein and fat traits in dairy cattle by using an integrated analysis of differential gene expression, previously reported quantitative trait loci (QTL), data from genome-wide association studies (GWAS), and biological function information. These genes were APOC2, PPP1R3B, PKLR, ODC1, DUSP1, LMNA, GALE, ANGPTL4, LPIN1 and CDKN1A. Conclusion This study explored the complexity of the liver transcriptome across three lactation periods in dairy cattle by performing RNA sequencing. Integrated analysis of DEGs and reported QTL and GWAS data allowed us to find ten key candidate genes influencing milk production traits.
Collapse
Affiliation(s)
- Qian Li
- College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street, Baoding, 071001, China.,Hebei Animal Husbandry and Veterinary Institute, Baoding, 071000, China
| | - Ruobing Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yan Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street, Baoding, 071001, China
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street, Baoding, 071001, China
| | - Dongxiao Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street, Baoding, 071001, China.
| |
Collapse
|
7
|
Minuti A, Bionaz M, Lopreiato V, Janovick NA, Rodriguez-Zas SL, Drackley JK, Loor JJ. Prepartum dietary energy intake alters adipose tissue transcriptome profiles during the periparturient period in Holstein dairy cows. J Anim Sci Biotechnol 2020; 11:1. [PMID: 31908775 PMCID: PMC6941259 DOI: 10.1186/s40104-019-0409-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background The aim of the study was to investigate the effect of energy overfeeding during the dry period on adipose tissue transcriptome profiles during the periparturient period in dairy cows. Methods Fourteen primiparous Holstein cows from a larger cohort receiving a higher-energy diet (1.62 Mcal of net energy for lactation/kg of dry matter; 15% crude protein) for ad libitum intake to supply 150% (OVR) or 100% (CTR) of energy requirements from dry off until parturition were used. After calving, all cows received the same lactation diet. Subcutaneous adipose tissue (SAT) biopsies were collected at - 14, 1, and 14 d from parturition (d) and used for transcriptome profiling using a bovine oligonucleotide microarray. Data mining of differentially expressed genes (DEG) between treatments and due to sampling time was performed using the Dynamic Impact Approach (DIA) and Ingenuity Pathway Analysis (IPA). Results There was a strong effect of over-feeding energy on DEG with 2434 (False discovery rate-corrected P < 0.05) between OVR and CTR at - 14 d, and only 340 and 538 at 1 and 14 d. The most-impacted and activated pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database that were highlighted by DIA analysis at - 14 d in OVR vs. CTR included 9 associated with carbohydrate metabolism, with 'Pyruvate metabolism', 'Glycolysis/gluconeogenesis', and 'Pentose phosphate pathway' among the most-activated. Not surprisingly, OVR led to marked activation of lipid metabolism (e.g. 'Fatty acid biosynthesis' and 'Glycerolipid metabolism'). Unexpected metabolic pathways that were activated at - 14 d in OVR included several related to metabolism of amino acids (e.g. branched chain) and of cofactors and vitamins (thiamin). Among endocrine and immune system pathways, at - 14 d OVR led to marked activation of 'PPAR signalling' and 'Antigen processing and presentation'. Among key pathways affected over time in OVR, a number were related to translation (e.g. mTOR signaling), endocrine/immune signaling (CXCR4 and IGF1), and lipid metabolism (oxidative phosphorylation) with greater activation in OVR vs. CTR specifically at - 14 d. Although statistical differences for several pathways in OVR vs. CTR nearly disappeared at 1 and 14 vs. - 14 d, despite the well-known catabolic state of adipose depots after calving, the bioinformatics analyses suggested important roles for a number of signaling mechanisms at - 14 vs. 14 than 1 vs. -14 d. This was particularly evident in cows fed to meet predicted energy requirements during the dry period (CTR). Conclusions Data underscored a strong activation by overfeeding energy of anabolic processes in the SAT exclusively prepartum. The study confirmed that higher-energy diets prepartum drive a transcriptional cascade of events orchestrated in part by the activation of PPARγ that regulate preadipocyte differentiation and lipid storage in SAT. Novel aspects of SAT biology to energy overfeeding or change in physiologic state also were uncovered, including the role of amino acid metabolism, mTOR signaling, and the immune system.
Collapse
Affiliation(s)
- Andrea Minuti
- 1Department of Animal Sciences,Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Massimo Bionaz
- 2Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97330 USA
| | - Vincenzo Lopreiato
- 1Department of Animal Sciences,Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Nicole A Janovick
- 3Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Sandra L Rodriguez-Zas
- 3Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - James K Drackley
- 3Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Juan J Loor
- 3Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
8
|
Impact of the severity of negative energy balance on gene expression in the subcutaneous adipose tissue of periparturient primiparous Holstein dairy cows: Identification of potential novel metabolic signals for the reproductive system. PLoS One 2019; 14:e0222954. [PMID: 31557215 PMCID: PMC6763198 DOI: 10.1371/journal.pone.0222954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/10/2019] [Indexed: 12/02/2022] Open
Abstract
The severity of negative energy balance (NEB) in high-producing dairy cows has a high incidence among health diseases. The cow’s energy status during early lactation critically affects metabolic and reproductive parameters. The first objective of this study was to investigate by RNA-seq analysis and RT-qPCR the gene expression profile in white adipose tissue and by gene ontology and upstream regulation tools the relationships with energy metabolism and reproduction in two groups of primiparous dairy cows with extreme NEB statuses (NEB < -9 Mcal/day vs. NEB > -9 Mcal/day) around parturition. The second objective was to determine the potential involvement of a new adipokine identified as a candidate for the regulation of ovarian function in our RNA-seq analysis by using bovine primary granulosa culture, thymidine incorporation to determine cell proliferation and ELISA assays to measure progesterone secretion. The RNA-seq analysis revealed that 514 genes were over-expressed and 695 were under-expressed in the adipose tissue of cows with severe NEB (SNEB) and cows with moderate NEB (MNEB) during the -4 and 16 wkpp period. In addition, 491 genes were over-expressed and 705 genes were under-expressed in the adipose tissue of SNEB cows compared to MNEB cows. Among these differently expressed genes (DEGs), 298 were related to metabolic functions and 264 to reproductive traits. A set of 19 DEGs were validated by RT-qPCR, including CCL21 (C-C motif chemokine ligand 21). Moreover, CCL21, a gene known to be secreted by adipose tissue, was chosen for further analysis in plasma and ovaries. The use of next-generation sequencing technologies allowed us to characterise the transcriptome of white adipose tissue from primiparous cows with different levels of NEB during lactation. This study highlighted the alteration of the expression of genes related to lipid metabolism, including CCL21, which is released in the bloodstream and associated with the in vitro regulation of ovarian functions.
Collapse
|
9
|
Zinicola M, Bicalho MLS, Santin T, Marques EC, Bisinotto RS, Bicalho RC. Effects of recombinant bovine interleukin-8 (rbIL-8) treatment on health, metabolism, and lactation performance in Holstein cattle II: Postpartum uterine health, ketosis, and milk production. J Dairy Sci 2019; 102:10316-10328. [PMID: 31495609 DOI: 10.3168/jds.2019-16335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/14/2019] [Indexed: 11/19/2022]
Abstract
To evaluate the effect of recombinant bovine interleukin-8 (rbIL-8) on uterine health and milk production, 2 separate studies were conducted. For study 1, postpartum Holstein cows (n = 213) were randomly allocated into 1 of 3 intrauterine treatment groups: control (CTR, 250 mL of saline solution), low dose (L-IL8, 11.25 µg of rbIL-8 diluted in 250 mL of saline solution), and high dose (H-IL8, 1,125 µg of rbIL-8 diluted in 250 mL of saline solution). Intrauterine delivery of treatments was performed within 12 h of parturition. Cows were evaluated for retained fetal membranes, puerperal metritis, and clinical endometritis. Blood samples were collected immediately before treatment and 1, 2, and 3 d in milk for assessment of IL-8, haptoglobin, fatty acids, and β-hydroxybutyrate concentrations. Treatment with rbIL-8 reduced the incidence of puerperal metritis in multiparous cows (CTR = 34.3, L-IL8 = 8.11, and H-IL8 = 6.35%). Both the L-IL8 and H-IL8 groups produced significantly more milk, fat-corrected milk, and energy-corrected milk yields when compared with placebo-treated controls. A second study was performed to confirm the effect of rbIL-8 on milk production. In study 2, 164 primiparous cows were randomly allocated into 1 of 4 treatment groups: control (CTR, 250 mL of saline solution), low dose (L-IL8, 0.14 µg of rbIL-8), medium dose (M-IL8, 14 µg of rbIL-8), and high dose (H-IL8, 1,400 µg of rbIL-8). Treatments were prepared and administered as described for study 1. Cows in the L-IL8, M-IL8, and H-IL8 groups produced significantly more milk, fat-corrected milk, and energy-corrected milk yields when compared with control cows. In conclusion, treatment with rbIL-8 decreased the incidence of puerperal metritis in multiparous cows. The administration of rbIL-8 was repeatedly associated with a dramatic and long-lasting improvement of lactation performance.
Collapse
Affiliation(s)
- M Zinicola
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - M L S Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - T Santin
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - E C Marques
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - R S Bisinotto
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - R C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401.
| |
Collapse
|
10
|
Xu L, Shi L, Liu L, Liang R, Li Q, Li J, Han B, Sun D. Analysis of Liver Proteome and Identification of Critical Proteins Affecting Milk Fat, Protein, and Lactose Metabolism in Dariy Cattle with iTRAQ. Proteomics 2019; 19:e1800387. [DOI: 10.1002/pmic.201800387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/12/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Lingna Xu
- Department of Animal GeneticsBreeding and ReproductionCollege of Animal Science and TechnologyKey Laboratory of Animal GeneticsBreeding and Reproduction of Ministry of Agriculture and Rural AffairsNational Engineering Laboratory for Animal BreedingChina Agricultural University Beijing 100193 China
| | - Lijun Shi
- Department of Animal GeneticsBreeding and ReproductionCollege of Animal Science and TechnologyKey Laboratory of Animal GeneticsBreeding and Reproduction of Ministry of Agriculture and Rural AffairsNational Engineering Laboratory for Animal BreedingChina Agricultural University Beijing 100193 China
| | - Lin Liu
- Beijing Dairy Cattle Center Beijing 100192 China
| | - Ruobing Liang
- Department of Animal GeneticsBreeding and ReproductionCollege of Animal Science and TechnologyKey Laboratory of Animal GeneticsBreeding and Reproduction of Ministry of Agriculture and Rural AffairsNational Engineering Laboratory for Animal BreedingChina Agricultural University Beijing 100193 China
| | - Qian Li
- Department of Animal Production and Environmental ControlCollege of Animal Science and TechnologyHebei Agricultural University Baoding 071001 China
| | - Jianguo Li
- Department of Animal Production and Environmental ControlCollege of Animal Science and TechnologyHebei Agricultural University Baoding 071001 China
| | - Bo Han
- Department of Animal GeneticsBreeding and ReproductionCollege of Animal Science and TechnologyKey Laboratory of Animal GeneticsBreeding and Reproduction of Ministry of Agriculture and Rural AffairsNational Engineering Laboratory for Animal BreedingChina Agricultural University Beijing 100193 China
| | - Dongxiao Sun
- Department of Animal GeneticsBreeding and ReproductionCollege of Animal Science and TechnologyKey Laboratory of Animal GeneticsBreeding and Reproduction of Ministry of Agriculture and Rural AffairsNational Engineering Laboratory for Animal BreedingChina Agricultural University Beijing 100193 China
| |
Collapse
|
11
|
Salin S, Vanhatalo A, Jaakkola S, Elo K, Taponen J, Boston R, Kokkonen T. Effects of dry period energy intake on insulin resistance, metabolic adaptation, and production responses in transition dairy cows on grass silage–based diets. J Dairy Sci 2018; 101:11364-11383. [DOI: 10.3168/jds.2018-14728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
|
12
|
Qin N, Kokkonen T, Salin S, Seppänen-Laakso T, Taponen J, Vanhatalo A, Elo K. Prepartal high-energy feeding with grass silage-based diets does not disturb the hepatic adaptation of dairy cows during the periparturient period. J Dairy Sci 2018; 101:8929-8943. [DOI: 10.3168/jds.2017-13153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/08/2018] [Indexed: 12/15/2022]
|
13
|
Qin N, Bayat AR, Trevisi E, Minuti A, Kairenius P, Viitala S, Mutikainen M, Leskinen H, Elo K, Kokkonen T, Vilkki J. Dietary supplement of conjugated linoleic acids or polyunsaturated fatty acids suppressed the mobilization of body fat reserves in dairy cows at early lactation through different pathways. J Dairy Sci 2018; 101:7954-7970. [PMID: 29960784 DOI: 10.3168/jds.2017-14298] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/08/2018] [Indexed: 01/25/2023]
Abstract
To investigate the metabolic changes in the adipose tissue (AT) of dairy cows under milk fat depression (MFD), 30 cows were randomly allocated to a control diet, a conjugated linoleic acid (CLA)-supplemented diet, or a high-starch diet supplemented with a mixture of sunflower and fish oil (2:1; as HSO diet) from 1 to 112 d in milk. Performance of animals, milk yield, milk composition, energy balance, and blood metabolites were measured during lactation. Quantitative PCR analyses were conducted on the AT samples collected at wk 3 and 15 of lactation. The CLA and HSO diets considerably depressed milk fat yield and milk fat content at both wk 3 and 15 in the absence of significant changes in milk protein and lactose contents. In addition, the HSO diet lowered milk yield at wk 15 and decreased dry matter intake of cows from wk 3 to 15. Compared with the control, both CLA and HSO groups showed reduced body weight loss, improved energy balance, and decreased plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate at early lactation. The gene expression analyses reflected suppressed lipolysis in AT of the CLA and HSO groups compared with the control at wk 3, as suggested by the downregulation of hormone-sensitive lipase and fatty acid binding protein 4 and the upregulation of perilipin 2. In addition, the HSO diet promoted lipogenesis in AT at wk 15 through the upregulation of 1-acylglycerol-3-phosphate O-acyltransferase 2, mitochondrial glycerol-3-phosphate acyltransferase, perilipin 2, and peroxisome proliferator-activated receptor γ. The CLA diet likely regulated insulin sensitivity in AT as it upregulated the transcription of various genes involved in insulin signaling, inflammatory responses, and ceramide metabolism, including protein kinase B2, nuclear factor κ B1, toll-like receptor 4, caveolin 1, serine palmitoyltransferase long chain base subunit 1, and N-acylsphingosine amidohydrolase 1. In contrast, the HSO diet resulted in little or no change in the pathways relevant to insulin sensitivity. In conclusion, the CLA and HSO diets induced a shift in energy partitioning toward AT instead of mammary gland during lactation through the regulation of different pathways.
Collapse
Affiliation(s)
- Nanbing Qin
- Department of Agricultural Sciences, PO Box 28, FI-00014 University of Helsinki, Finland
| | - Ali-Reza Bayat
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Piia Kairenius
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Sirja Viitala
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Mervi Mutikainen
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Heidi Leskinen
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Kari Elo
- Department of Agricultural Sciences, PO Box 28, FI-00014 University of Helsinki, Finland
| | - Tuomo Kokkonen
- Department of Agricultural Sciences, PO Box 28, FI-00014 University of Helsinki, Finland
| | - Johanna Vilkki
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland.
| |
Collapse
|
14
|
Using RNA sequencing to identify putative competing endogenous RNAs (ceRNAs) potentially regulating fat metabolism in bovine liver. Sci Rep 2017; 7:6396. [PMID: 28743867 PMCID: PMC5527063 DOI: 10.1038/s41598-017-06634-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/14/2017] [Indexed: 12/22/2022] Open
Abstract
RNA sequencing has been extensively used to study specific gene expression patterns to discover potential key genes related to complex traits of interest in animals. Of note, a new regulatory mechanism builds a large-scale regulatory network among transcriptome, where lncRNAs act as competing endogenous RNAs (ceRNAs) to sponge miRNAs to regulate the expression of miRNA target genes post-transcriptionally. In this study, we sequenced the cDNA and sRNA libraries of nine liver samples from three Holstein cows during dry period, early lactation, and peak of lactation with HiSeq platform. As a result, we identified 665 genes, 57 miRNAs and 33 lncRNAs that displayed differential expression patterns across periods. Subsequently, a total of 41ceRNA pairs (lncRNA-mRNA) sharing 11 miRNAs were constructed including 30 differentially expressed genes. Importantly, 12 among them were presented in our large metabolic networks, and predicted to influence the lipid metabolism through insulin, PI3K-Akt, MAPK, AMPK, mTOR, and PPAR signaling pathways, thus, these genes were considered as the most promising candidates for milk fat formation. To our knowledge, this is first investigation to profile the ceRNA regulatory networks of liver transcriptome that could affect milk fat synthesis in bovine, providing a new view of the regulatory mechanism of RNAs.
Collapse
|
15
|
Salin S, Vanhatalo A, Elo K, Taponen J, Boston R, Kokkonen T. Effects of dietary energy allowance and decline in dry matter intake during the dry period on responses to glucose and insulin in transition dairy cows. J Dairy Sci 2017; 100:5266-5280. [DOI: 10.3168/jds.2016-11871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/11/2017] [Indexed: 12/13/2022]
|
16
|
Halmemies-Beauchet-Filleau A, Shingfield KJ, Simpura I, Kokkonen T, Jaakkola S, Toivonen V, Vanhatalo A. Effect of incremental amounts of camelina oil on milk fatty acid composition in lactating cows fed diets based on a mixture of grass and red clover silage and concentrates containing camelina expeller. J Dairy Sci 2016; 100:305-324. [PMID: 27865509 DOI: 10.3168/jds.2016-11438] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/30/2016] [Indexed: 12/30/2022]
Abstract
Camelina is an ancient oilseed crop that produces an oil rich in cis-9,cis-12 18:2 (linoleic acid, LA) and cis-9,cis-12,cis-15 18:3 (α-linolenic acid, ALA); however, reports on the use of camelina oil (CO) for ruminants are limited. The present study investigated the effects of incremental CO supplementation on animal performance, milk fatty acid (FA) composition, and milk sensory quality. Eight Finnish Ayrshire cows (91d in milk) were used in replicated 4×4 Latin squares with 21-d periods. Treatments comprised 4 concentrates (12kg/d on an air-dry basis) based on cereals and camelina expeller containing 0 (control), 2, 4, or 6% CO on an air-dry basis. Cows were offered a mixture of grass and red clover silage (RCS; 1:1 on a dry matter basis) ad libitum. Incremental CO supplementation linearly decreased silage and total dry matter intake, and linearly increased LA, ALA, and total FA intake. Treatments had no effect on whole-tract apparent organic matter or fiber digestibility and did not have a major influence on rumen fermentation. Supplements of CO quadratically decreased daily milk and lactose yields and linearly decreased milk protein yield and milk taste panel score from 4.2 to 3.6 [on a scale of 1 (poor) to 5 (excellent)], without altering milk fat yield. Inclusion of CO linearly decreased the proportions of saturated FA synthesized de novo (4:0 to 16:0), without altering milk fat 18:0, cis-9 18:1, LA, and ALA concentrations. Milk fat 18:0 was low (<5g/100g of FA) across all treatments. Increases in CO linearly decreased the proportions of total saturates from 58 to 45g/100g of FA and linearly enriched trans-11 18:1, cis-9,trans-11 18:2, and trans-11,cis-15 18:2 from 5.2, 2.6, and 1.7 to 11, 4.3, and 5.8g/100g of FA, respectively. Furthermore, CO quadratically decreased milk fat trans-10 18:1 and linearly decreased trans-10,cis-12 18:2 concentration. Overall, milk FA composition on all treatments suggested that one or more components in camelina seeds may inhibit the complete reduction of 18-carbon unsaturates in the rumen. In conclusion, CO decreased the secretion of saturated FA in milk and increased those of the trans-11 biohydrogenation pathway or their desaturation products. Despite increasing the intake of 18-carbon unsaturated FA, CO had no effect on the secretions of 18:0, cis-9 18:1, LA, or ALA in milk. Concentrates containing camelina expeller and 2% CO could be used for the commercial production of low-saturated milk from grass- and RCS-based diets without major adverse effects on animal performance.
Collapse
Affiliation(s)
- A Halmemies-Beauchet-Filleau
- Department of Agricultural Sciences, Animal Science, Helsinki, PO Box 28, FI-00014 University of Helsinki, Finland.
| | - K J Shingfield
- Green Technology, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom
| | - I Simpura
- Department of Agricultural Sciences, Animal Science, Helsinki, PO Box 28, FI-00014 University of Helsinki, Finland
| | - T Kokkonen
- Department of Agricultural Sciences, Animal Science, Helsinki, PO Box 28, FI-00014 University of Helsinki, Finland
| | - S Jaakkola
- Department of Agricultural Sciences, Animal Science, Helsinki, PO Box 28, FI-00014 University of Helsinki, Finland
| | - V Toivonen
- Green Technology, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - A Vanhatalo
- Department of Agricultural Sciences, Animal Science, Helsinki, PO Box 28, FI-00014 University of Helsinki, Finland
| |
Collapse
|
17
|
Puhakka L, Jaakkola S, Simpura I, Kokkonen T, Vanhatalo A. Effects of replacing rapeseed meal with fava bean at 2 concentrate crude protein levels on feed intake, nutrient digestion, and milk production in cows fed grass silage–based diets. J Dairy Sci 2016; 99:7993-8006. [DOI: 10.3168/jds.2016-10925] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/09/2016] [Indexed: 11/19/2022]
|
18
|
Mann S, Nydam DV, Abuelo A, Leal Yepes FA, Overton TR, Wakshlag JJ. Insulin signaling, inflammation, and lipolysis in subcutaneous adipose tissue of transition dairy cows either overfed energy during the prepartum period or fed a controlled-energy diet. J Dairy Sci 2016; 99:6737-6752. [PMID: 27209137 DOI: 10.3168/jds.2016-10969] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/09/2016] [Indexed: 01/18/2023]
Abstract
Adipose tissue mobilization is a hallmark of the transition period in dairy cows. Cows overfed energy during the dry period have higher concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) compared with cows fed a controlled-energy diet prepartum. The reason for an increase in blood NEFA concentrations at the level of adipose tissue in cows overfed energy has not been fully elucidated. One hypothesis is that cows with high BHB concentrations suffer from adipose tissue-specific insulin resistance, leading to higher rates of adipose tissue mobilization in the postpartum period. To test this hypothesis, subcutaneous adipose tissue biopsies of cows overfed energy in excess of predicted requirements by 50% in the dry period, and that had high concentrations of blood BHB postpartum (group H; n=12), were used. Findings were compared with results of biopsies from cows fed a controlled-energy diet and with low BHB concentrations postpartum (group C; n=12) to create the biggest contrast in BHB concentrations. Subcutaneous adipose tissue biopsies were obtained before and 60 min after an intravenous glucose challenge (0.25 g/kg of glucose) at 28 and 10 d before expected calving as well as on d 4 and 21 postpartum. Phosphorylation of protein kinase B, extracellular signal-regulated kinase, and hormone-sensitive lipase was determined before and after glucose infusion by Western blot. Western blot was also used to assess the baseline protein abundance of peroxisome proliferator-activated receptor gamma and insulin receptor β-subunit. In addition, gene expression of fatty acid synthase, adiponectin, monocyte chemoattractant protein 1, and tumor necrosis factor α was determined by real-time quantitative reverse-transcription PCR. Backfat thickness was determined in the thurl area by ultrasonography. Cows in group H showed a greater degree of lipogenesis prepartum, but no differences were found in lipolytic enzyme activity postpartum compared with cows in group C. Baseline plasma insulin concentrations were decreased and serum NEFA concentrations increased postpartum in group H. Insulin signaling through protein kinase B, quantity of insulin receptor, markers of inflammation, and peroxisome proliferator-activated receptor gamma in adipose tissue were not different between the groups, but expression of adiponectin was increased in adipose tissue of cows in group H during the immediate peripartum period. In conclusion, differences in serum concentrations of NEFA between cows overfed energy prepartum and high blood concentrations of BHB are likely due to greater negative energy balance postpartum reflected in lower circulating concentrations of glucose and insulin and an increase in the total amount of mobilized adipose tissue mass rather than due to changes in adipose tissue insulin signaling.
Collapse
Affiliation(s)
- S Mann
- Department of Population Medicine and Diagnostic Sciences, Cornell College of Veterinary Medicine, Ithaca, NY 14853
| | - D V Nydam
- Department of Population Medicine and Diagnostic Sciences, Cornell College of Veterinary Medicine, Ithaca, NY 14853
| | - A Abuelo
- Department of Animal Pathology, College of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, 27002 Spain
| | - F A Leal Yepes
- Department of Animal Science, Cornell College of Veterinary Medicine, Ithaca, NY 14853
| | - T R Overton
- Department of Animal Science, Cornell College of Veterinary Medicine, Ithaca, NY 14853
| | - J J Wakshlag
- Department of Clinical Sciences, Cornell College of Veterinary Medicine, Ithaca, NY 14853.
| |
Collapse
|
19
|
Mann S, Yepes F, Duplessis M, Wakshlag J, Overton T, Cummings B, Nydam D. Dry period plane of energy: Effects on glucose tolerance in transition dairy cows. J Dairy Sci 2016; 99:701-17. [DOI: 10.3168/jds.2015-9908] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/25/2015] [Indexed: 01/13/2023]
|
20
|
Vailati-Riboni M, Kanwal M, Bulgari O, Meier S, Priest NV, Burke CR, Kay JK, McDougall S, Mitchell MD, Walker CG, Crookenden M, Heiser A, Roche JR, Loor JJ. Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period. J Dairy Sci 2015; 99:758-70. [PMID: 26601585 DOI: 10.3168/jds.2015-10046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/08/2015] [Indexed: 01/11/2023]
Abstract
Recent studies demonstrating a higher incidence of metabolic disorders after calving have challenged the management practice of increasing dietary energy density during the last ~3 wk prepartum. Despite our knowledge at the whole-animal level, the tissue-level mechanisms that are altered in response to feeding management prepartum remain unclear. Our hypothesis was that prepartum body condition score (BCS), in combination with feeding management, plays a central role in the peripartum changes associated with energy balance and inflammatory state. Twenty-eight mid-lactation grazing dairy cows of mixed age and breed were randomly allocated to 1 of 4 treatment groups in a 2 × 2 factorial arrangement: 2 prepartum BCS categories (4.0 and 5.0, based on a 10-point scale; BCS4, BCS5) obtained via differential feeding management during late-lactation, and 2 levels of energy intake during the 3 wk preceding calving (75 and 125% of estimated requirements). Subcutaneous adipose tissue was harvested via biopsy at -1, 1, and 4 wk relative to parturition. Quantitative polymerase chain reaction was used to measure mRNA and microRNA (miRNA) expression of targets related to fatty acid metabolism (lipogenesis, lipolysis), adipokine synthesis, and inflammation. Both prepartum BCS and feeding management had a significant effect on mRNA and miRNA expression throughout the peripartum period. Overfed BCS5 cows had the greatest prepartum expression of fatty acid synthase (FASN) and an overall greater expression of leptin (LEP); BCS5 was also associated with greater overall adiponectin (ADIPOQ) and peroxisome proliferator-activated receptor gamma (PPARG), whereas overfeeding upregulated expression of proadipogenic miRNA. Higher postpartum expression of chemokine ligand 5 (CCL5) and the cytokines interleukin 6 (IL6) and tumor necrosis factor (TNF) was detected in overfed BCS5 cows. Feed-restricted BCS4 cows had the highest overall interleukin 1 (IL1B) expression. Prepartum feed restriction resulted in greater chemokine ligand 2 (CCL2) expression. Overall, changes in mRNA expression were consistent with the expression pattern of inflammation-related miRNA. These data shed light on molecular mechanisms underlying the effect of prepartum BCS and feeding management on metabolic and inflammatory status of adipose tissue during the peripartum period. Data support the use of a controlled feed restriction prepartum in optimally conditioned cows, as well as the use of a higher level of dietary energy in under-conditioned cows.
Collapse
Affiliation(s)
- M Vailati-Riboni
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - M Kanwal
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - O Bulgari
- Department of Animal Sciences, University of Illinois, Urbana 61801; Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - S Meier
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - N V Priest
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - C R Burke
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - J K Kay
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - S McDougall
- Cognosco, Anexa Animal Health, PO Box 21, Morrinsville 3300, New Zealand
| | - M D Mitchell
- University of Queensland, Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland 4029, Australia
| | - C G Walker
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - M Crookenden
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - A Heiser
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - J R Roche
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
21
|
Selim S, Kokkonen T, Taponen J, Vanhatalo A, Elo K. Effect of prepartal ad libitum feeding of grass silage on transcriptional adaptations of the liver and subcutaneous adipose tissue in dairy cows during the periparturient period. J Dairy Sci 2015; 98:5515-28. [DOI: 10.3168/jds.2014-8986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
|
22
|
Selim S, Elo K, Jaakkola S, Karikoski N, Boston R, Reilas T, Särkijärvi S, Saastamoinen M, Kokkonen T. Relationships among Body Condition, Insulin Resistance and Subcutaneous Adipose Tissue Gene Expression during the Grazing Season in Mares. PLoS One 2015; 10:e0125968. [PMID: 25938677 PMCID: PMC4418745 DOI: 10.1371/journal.pone.0125968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/27/2015] [Indexed: 01/09/2023] Open
Abstract
Obesity and insulin resistance have been shown to be risk factors for laminitis in horses. The objective of the study was to determine the effect of changes in body condition during the grazing season on insulin resistance and the expression of genes associated with obesity and insulin resistance in subcutaneous adipose tissue (SAT). Sixteen Finnhorse mares were grazing either on cultivated high-yielding pasture (CG) or semi-natural grassland (NG) from the end of May to the beginning of September. Body measurements, intravenous glucose tolerance test (IVGTT), and neck and tailhead SAT gene expressions were measured in May and September. At the end of grazing, CG had higher median body condition score (7 vs. 5.4, interquartile range 0.25 vs. 0.43; P=0.05) and body weight (618 kg vs. 572 kg ± 10.21 (mean ± SEM); P=0.02), and larger waist circumference (P=0.03) than NG. Neck fat thickness was not different between treatments. However, tailhead fat thickness was smaller in CG compared to NG in May (P=0.04), but this difference disappeared in September. Greater basal and peak insulin concentrations, and faster glucose clearance rate (P=0.03) during IVGTT were observed in CG compared to NG in September. A greater decrease in plasma non-esterified fatty acids during IVGTT (P<0.05) was noticed in CG compared to NG after grazing. There was down-regulation of insulin receptor, retinol binding protein 4, leptin, and monocyte chemoattractant protein-1, and up-regulation of adiponectin (ADIPOQ), adiponectin receptor 1 and stearoyl-CoA desaturase (SCD) gene expressions in SAT of both groups during the grazing season (P<0.05). Positive correlations were observed between ADIPOQ and its receptors and between SCD and ADIPOQ in SAT (P<0.01). In conclusion, grazing on CG had a moderate effect on responses during IVGTT, but did not trigger insulin resistance. Significant temporal differences in gene expression profiles were observed during the grazing season.
Collapse
Affiliation(s)
- Shaimaa Selim
- Department of Agricultural Sciences, P.O. Box 28, FI-00014 University of Helsinki, Helsinki, Finland
| | - Kari Elo
- Department of Agricultural Sciences, P.O. Box 28, FI-00014 University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Seija Jaakkola
- Department of Agricultural Sciences, P.O. Box 28, FI-00014 University of Helsinki, Helsinki, Finland
| | - Ninja Karikoski
- Department of Equine and Small Animal Medicine, P.O. Box 57, FI-00014 University of Helsinki, Helsinki, Finland
| | - Ray Boston
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Tiina Reilas
- Department of Green Technology, Natural Resources Institute Finland (Luke), Opistontie 10 A 1, FI-32100 Ypäjä, Finland
| | - Susanna Särkijärvi
- Department of Green Technology, Natural Resources Institute Finland (Luke), Opistontie 10 A 1, FI-32100 Ypäjä, Finland
| | - Markku Saastamoinen
- Department of Green Technology, Natural Resources Institute Finland (Luke), Opistontie 10 A 1, FI-32100 Ypäjä, Finland
| | - Tuomo Kokkonen
- Department of Agricultural Sciences, P.O. Box 28, FI-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Crookenden MA, Mandok KS, Grala TM, Phyn CVC, Kay JK, Greenwood SL, Roche JR. Source of metabolizable energy affects gene transcription in metabolic pathways in adipose and liver tissue of nonlactating, pregnant dairy cows1. J Anim Sci 2015; 93:685-98. [DOI: 10.2527/jas.2014-7978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|