1
|
Wang T, Ma X, Zheng Q, Ma C, Zhang Z, Pan H, Guo X, Wu X, Chu M, Liang C, Yan P. A comprehensive study on the longissius dorsi muscle of Ashdan yaks under different feeding regimes based on transcriptomic and metabolomic analyses. Anim Biotechnol 2024; 35:2294785. [PMID: 38193799 DOI: 10.1080/10495398.2023.2294785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Yak is an important dominant livestock species at high altitude, and the growth performance of yak has obvious differences under different feeding methods. This experiment was conducted to compare the effects of different feeding practices on growth performance and meat quality of yaks through combined transcriptomic and metabolomic analyses. In terms of yak growth performance, compared with traditional grazing, in-house feeding can significantly improve the average daily weight gain, carcass weight and net meat weight of yaks; in terms of yak meat quality, in-house feeding can effectively improve the quality of yak meat. A combined transcriptomic and metabolomic analysis revealed 31 co-enriched pathways, among which arginine metabolism, proline metabolism and glycerophospholipid metabolism may be involved in the development of the longissimus dorsi muscle of yak and the regulation of meat quality-related traits. The experimental results increased our understanding of yak meat quality and provided data materials for subsequent deep excavation of the mechanism of yak meat quality.
Collapse
Affiliation(s)
- Tong Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Life science and Engineering College, Northwest Minzu University, Lanzhou, China
| | - Xiaoming Ma
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Qingbo Zheng
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chaofan Ma
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Life science and Engineering College, Northwest Minzu University, Lanzhou, China
| | - Zhilong Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Heping Pan
- Life science and Engineering College, Northwest Minzu University, Lanzhou, China
| | - Xian Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xiaoyun Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chunnian Liang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| |
Collapse
|
2
|
Panzer AA, Regmi SD, Cormier D, Danzo MT, Chen IBD, Winston JB, Hutchinson AK, Salm D, Schulkey CE, Cochran RS, Wilson DB, Jay PY. Nkx2-5 and Sarcospan genetically interact in the development of the muscular ventricular septum of the heart. Sci Rep 2017; 7:46438. [PMID: 28406175 PMCID: PMC5390293 DOI: 10.1038/srep46438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
The muscular ventricular septum separates the flow of oxygenated and de-oxygenated blood in air-breathing vertebrates. Defects within it, termed muscular ventricular septal defects (VSDs), are common, yet less is known about how they arise than rarer heart defects. Mutations of the cardiac transcription factor NKX2-5 cause cardiac malformations, including muscular VSDs. We describe here a genetic interaction between Nkx2-5 and Sarcospan (Sspn) that affects the risk of muscular VSD in mice. Sspn encodes a protein in the dystrophin-glycoprotein complex. Sspn knockout (SspnKO) mice do not have heart defects, but Nkx2-5+/−/SspnKO mutants have a higher incidence of muscular VSD than Nkx2-5+/− mice. Myofibers in the ventricular septum follow a stereotypical pattern that is disrupted around a muscular VSD. Subendocardial myofibers normally run in parallel along the left ventricular outflow tract, but in the Nkx2-5+/−/SspnKO mutant they commonly deviate into the septum even in the absence of a muscular VSD. Thus, Nkx2-5 and Sspn act in a pathway that affects the alignment of myofibers during the development of the ventricular septum. The malalignment may be a consequence of a defect in the coalescence of trabeculae into the developing ventricular septum, which has been hypothesized to be the mechanistic basis of muscular VSDs.
Collapse
Affiliation(s)
- Adam A Panzer
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Suk D Regmi
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - DePorres Cormier
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Megan T Danzo
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Iuan-Bor D Chen
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Julia B Winston
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Alayna K Hutchinson
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Diana Salm
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Claire E Schulkey
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Rebecca S Cochran
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Patrick Y Jay
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA.,Department of Genetics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| |
Collapse
|
3
|
Ollé-Vila A, Duran-Nebreda S, Conde-Pueyo N, Montañez R, Solé R. A morphospace for synthetic organs and organoids: the possible and the actual. Integr Biol (Camb) 2016; 8:485-503. [PMID: 27032985 DOI: 10.1039/c5ib00324e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Efforts in evolutionary developmental biology have shed light on how organs are developed and why evolution has selected some structures instead of others. These advances in the understanding of organogenesis along with the most recent techniques of organotypic cultures, tissue bioprinting and synthetic biology provide the tools to hack the physical and genetic constraints in organ development, thus opening new avenues for research in the form of completely designed or merely altered settings. Here we propose a unifying framework that connects the concept of morphospace (i.e. the space of possible structures) with synthetic biology and tissue engineering. We aim for a synthesis that incorporates our understanding of both evolutionary and architectural constraints and can be used as a guide for exploring alternative design principles to build artificial organs and organoids. We present a three-dimensional morphospace incorporating three key features associated to organ and organoid complexity. The axes of this space include the degree of complexity introduced by developmental mechanisms required to build the structure, its potential to store and react to information and the underlying physical state. We suggest that a large fraction of this space is empty, and that the void might offer clues for alternative ways of designing and even inventing new organs.
Collapse
Affiliation(s)
- Aina Ollé-Vila
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
4
|
Xu H, Luo J, Zhao W, Yang Y, Tian H, Shi H, Bionaz M. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells. J Dairy Sci 2016; 99:783-95. [DOI: 10.3168/jds.2015-9736] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023]
|
5
|
|
6
|
Schillebeeckx M, Pihlajoki M, Gretzinger E, Yang W, Thol F, Hiller T, Löbs AK, Röhrig T, Schrade A, Cochran R, Jay PY, Heikinheimo M, Mitra RD, Wilson DB. Novel markers of gonadectomy-induced adrenocortical neoplasia in the mouse and ferret. Mol Cell Endocrinol 2015; 399:122-30. [PMID: 25289806 PMCID: PMC4262703 DOI: 10.1016/j.mce.2014.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 07/18/2014] [Accepted: 09/29/2014] [Indexed: 12/25/2022]
Abstract
Gonadectomy (GDX) induces sex steroid-producing adrenocortical tumors in certain mouse strains and in the domestic ferret. Transcriptome analysis and DNA methylation mapping were used to identify novel genetic and epigenetic markers of GDX-induced adrenocortical neoplasia in female DBA/2J mice. Markers were validated using a combination of laser capture microdissection, quantitative RT-PCR, in situ hybridization, and immunohistochemistry. Microarray expression profiling of whole adrenal mRNA from ovariectomized vs. intact mice demonstrated selective upregulation of gonadal-like genes including Spinlw1 and Insl3 in GDX-induced adrenocortical tumors of the mouse. A complementary candidate gene approach identified Foxl2 as another gonadal-like marker expressed in GDX-induced neoplasms of the mouse and ferret. That both "male-specific" (Spinlw1) and "female-specific" (Foxl2) markers were identified is noteworthy and implies that the neoplasms exhibit mixed characteristics of male and female gonadal somatic cells. Genome-wide methylation analysis showed that two genes with hypomethylated promoters, Igfbp6 and Foxs1, are upregulated in GDX-induced adrenocortical neoplasms. These new genetic and epigenetic markers may prove useful for studies of steroidogenic cell development and for diagnostic testing.
Collapse
Affiliation(s)
- Maximiliaan Schillebeeckx
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Marjut Pihlajoki
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Elisabeth Gretzinger
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Franziska Thol
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Theresa Hiller
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Ann-Kathrin Löbs
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Theresa Röhrig
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Anja Schrade
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Rebecca Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Patrick Y Jay
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Abstract
The coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) is widely considered a central transcriptional regulator of adaptive thermogenesis in brown adipose tissue (BAT). However, mice lacking PGC-1α specifically in adipose tissue have only mild thermogenic defects, suggesting the presence of additional regulators. Using the activity of estrogen-related receptors (ERRs), downstream effectors of PGC-1α, as read-out in a high-throughput genome-wide cDNA screen, we identify here growth arrest and DNA-damage-inducible protein 45 γ (GADD45γ) as a cold-induced activator of uncoupling protein 1 (UCP1) and oxidative capacity in BAT. Mice lacking Gadd45γ have defects in Ucp1 induction and the thermogenic response to cold. GADD45γ works by activating MAPK p38, which is a potent activator of ERRβ and ERRγ transcriptional function. GADD45γ activates ERRγ independently of PGC-1 coactivators, yet synergizes with PGC-1α to induce the thermogenic program. Our findings elucidate a previously unidentified GADD45γ/p38/ERRγ pathway that regulates BAT thermogenesis and may enable new approaches for the stimulation of energy expenditure. Our study also implicates GADD45 proteins as general metabolic regulators.
Collapse
|