1
|
Koerber-Rosso I, Brandt S, von Schnurbein J, Fischer-Posovszky P, Hoegel J, Rabenstein H, Siebert R, Wabitsch M. A fresh look to the phenotype in mono-allelic likely pathogenic variants of the leptin and the leptin receptor gene. Mol Cell Pediatr 2021; 8:10. [PMID: 34448070 PMCID: PMC8390564 DOI: 10.1186/s40348-021-00119-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Leptin (LEP) and leptin receptor (LEPR) play a major role in energy homeostasis, metabolism, and reproductive function. While effects of biallelic likely pathogenic variants (-/-) on the phenotype are well characterized, effects of mono-allelic likely pathogenic variants (wt/-) in the LEP and LEPR gene on the phenotype compared to wild-type homozygosity (wt/wt) have not been systematically investigated. We identified in our systematic review 44 animal studies (15 on Lep, 29 on Lepr) and 39 studies in humans reporting on 130 mono-allelic likely pathogenic variant carriers with 20 distinct LEP variants and 108 heterozygous mono-allelic likely pathogenic variant carriers with 35 distinct LEPR variants. We found indications for a higher weight status in carriers of mono-allelic likely pathogenic variant in the leptin and in the leptin receptor gene compared to wt/wt, in both animal and human studies. In addition, animal studies showed higher body fat percentage in Lep and Lepr wt/- vs wt/wt. Animal studies provided indications for lower leptin levels in Lep wt/- vs. wt/wt and indications for higher leptin levels in Lepr wt/- vs wt/wt. Data on leptin levels in human studies was limited. Evidence for an impaired metabolism in mono-allelic likely pathogenic variants of the leptin and in leptin receptor gene was not conclusive (animal and human studies). Mono-allelic likely pathogenic variants in the leptin and in leptin receptor gene have phenotypic effects disposing to increased body weight and fat accumulation.
Collapse
Affiliation(s)
- Ingrid Koerber-Rosso
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stephanie Brandt
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Julia von Schnurbein
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Josef Hoegel
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Hannah Rabenstein
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
2
|
Abstract
Metabolic syndrome is a complex disorder that comprises several other complex disorders, including obesity, hypertension, dyslipidemia, and diabetes. There are several rat models that encompass component features of MetS. Some models are inbred strains selected for one or more traits underlying MetS; others are population models with genetic risk for MetS traits, are induced by environmental stressors such as diet, are spontaneous monogenic mutant models, or are congenic strains derived from a combination of these models. Together they can be studied to identify the genetic and physiological underpinnings of MetS to identify candidate genes or mechanisms for study in human MetS subjects.
Collapse
Affiliation(s)
- Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Zduniak K, Ziółkowski P, Regnell P, Tollet-Egnell P, Åkesson L, Cooper ME. Immunohistochemical analysis of cannabinoid receptor 1 expression in steatotic rat livers. Exp Ther Med 2016; 11:1227-1230. [PMID: 27073427 PMCID: PMC4812478 DOI: 10.3892/etm.2016.3036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 11/02/2015] [Indexed: 12/30/2022] Open
Abstract
The primary aim of the present study was to determine the expression levels of cannabinoid receptor type 1 (CB1) in steatotic rat livers. The secondary aim was to clarify whether steatosis and inflammation are more marked in areas with increased CB1 overexpression. For ethical and economic reasons, the present study investigated tissue from archived liver blocks, which were obtained from 38 rats that had been euthanized during the course of previous research at the Karolinska Institute of the Karolinska University Hospital (Stockholm, Sweden) and Lund University (Malmö, Sweden). Liver tissue fixed in formalin and embedded in paraffin was used that had been sourced from 36 male Sprague Dawley rats (age, 7 weeks) and 2 rats (age, 180 days) lacking normal leptin receptors. The rat liver tissue was stained with antibodies against CB1 and counterstained with hematoxylin. The expression of CB1 and the number of cells overexpressing CB1 were determined. Steatosis was scored according to the Dixon scoring system. CB1 overexpression and steatosis were detected in hepatocytes from all 38 livers sampled. The expression of CB1 was more marked in hepatocytes localized next to portal triads. Near the central veins, the expression was significantly weaker. Steatosis was more marked in areas of increased CB1 overexpression. Lymphocyte infiltration was more commonly observed in areas of increased CB1 overexpression. Therefore, the present results indicate that CB1 receptors are overexpressed in areas with steatosis, and indicate that CB1 in hepatocytes contributes to the formation of steatosis in rats, even prior to its progression to steatohepatitis. These results are consistent with publications reporting that CB1 in hepatocytes increases lipogenesis and contributes to inflammation.
Collapse
Affiliation(s)
- Krzysztof Zduniak
- Department of Pathology, Wrocław Medical University, Wrocław PL-50-368, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University, Wrocław PL-50-368, Poland
| | | | - Petra Tollet-Egnell
- Department of Molecular Medicine and Surgery, The Karolinska Institute, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Lina Åkesson
- Diabetes and Celiac Unit, Faculty of Medicine, Lund University, Malmö 205 02, Sweden
| | | |
Collapse
|
4
|
Moser VA, Pike CJ. Obesity and sex interact in the regulation of Alzheimer's disease. Neurosci Biobehav Rev 2015; 67:102-18. [PMID: 26708713 DOI: 10.1016/j.neubiorev.2015.08.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, for which a number of genetic, environmental, and lifestyle risk factors have been identified. A significant modifiable risk factor is obesity in mid-life. Interestingly, both obesity and AD exhibit sex differences and are regulated by sex steroid hormones. Accumulating evidence suggests interactions between obesity and sex in regulation of AD risk, although the pathways underlying this relationship are unclear. Inflammation and the E4 allele of apolipoprotein E have been identified as independent risk factors for AD and both interact with obesity and sex steroid hormones. We review the individual and cooperative effects of obesity and sex on development of AD and examine the potential contributions of apolipoprotein E, inflammation, and their interactions to this relationship.
Collapse
Affiliation(s)
- V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
5
|
Hayatdavoudi P, Ghasemi M, Zendehbad B, Soukhtanloo M, Golshan A, Hadjzadeh MAR. Effect of exogenous leptin on serum levels of lipids, glucose, renal and hepatic variables in both genders of obese and streptozotocin-induced diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:1072-8. [PMID: 26949493 PMCID: PMC4764107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Leptin exerts various effects on appetite and body weight. Disruption of the obesity gene is precedent to fatness. Insulin or glucose elevates leptin, but streptozotocin reduces it. However, controversial data exist for the effects of leptin on diabetes and leptin level in each gender. Leptin can damage the kidney function but little evidence exists for its hepatic effects. The aim of this study was to investigate the probable sex-dependent differences in blood sugar levels, lipid profile, and renal and hepatic biochemical factors in the obesity and streptozotocin-induced diabetic rats after leptin administration. MATERIALS AND METHODS Wistar rats of both sexes were randomly divided into two groups, namely obese and diabetic rats. Each group was further divided into male and female subgroups. Extra fat and carbohydrate was added to the diet to induce obesity. Furthermore, streptozotocin (55 mg/kg, IP) was injected to induce diabetes. The treatment groups received leptin (0.1 mg/kg SC) for 10 days, and then, blood samples were taken from the orbital sinus for laboratory evaluations. RESULTS Leptin resulted in a significant weight loss in both sexes (P<0.001), food intake reduction in male rats (P<0.05), LDL reduction in female rats (obese (P<0.05) and diabetic (P<0.001)), and glucose level decline in the female diabetic rats (P<0.001). However, total protein concentration, LFT (liver function tests), urea and creatinin concentrations among different groups did not show any significant changes. CONCLUSION Leptin caused some discrepant results, especially regarding the LDL and glucose levels in diabetic female rats.
Collapse
Affiliation(s)
- Parichehr Hayatdavoudi
- Neurogenic Inflammation Research center, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Ghasemi
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bamdad Zendehbad
- Neurogenic Inflammation Research center, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Golshan
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mousa Al-Reza Hadjzadeh
- Neurocognitive Research Center, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Mousa Al-Reza Hadjzadeh. Neurocognitive Research Center, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38828565; Fax: +98-51-38828564;
| |
Collapse
|
6
|
Kadota Y, Kawakami T, Takasaki S, Sato M, Suzuki S. Gene expression related to lipid and glucose metabolism in white adipose tissue. Obes Res Clin Pract 2015; 10:85-93. [PMID: 25979685 DOI: 10.1016/j.orcp.2015.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 04/13/2015] [Accepted: 04/23/2015] [Indexed: 02/08/2023]
Abstract
PROBLEM A number of endogenous and external factors influence the development of obesity. However, the factors responsible for these differences in obesity pathogenesis between males and females are largely unknown. METHODS We investigated the expression of 35 genes related to lipid and glucose metabolism and to receptors for insulin signaling in white adipose tissue (WAT) of 8-week-old 129/Sv mice and mice fed standard diet (STD) or high fat diet (HFD) for 35 weeks in males and females. RESULTS At 8 weeks, the expression levels of two genes for fatty acid synthesis, Acaca and Fasn, were higher in females than in males. Female mice fed a STD for 35 weeks also had higher expression levels of an additional four genes related to glucose transporters (Slc2a1 and Slc2a4) and adipokines (Adipoq and Nampt). The expression levels of these six genes were also higher in females than in males fed a HFD for 35 weeks. At 43 weeks old, the female-to-male expression ratio of these six genes was similar for the STD and HFD groups. Furthermore, glucose tolerance testing showed that the half-life for the elimination of elevated blood glucose was shorter in females than males, although blood glucose parameters were generally similar between females and males. CONCLUSIONS These findings suggest that sex and aging may cause diet-independent differences in gene expression levels in female and male mice, and that higher expression of these genes in females could contribute to higher metabolic activity and resistance to obesity compared with males.
Collapse
Affiliation(s)
- Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | - Satoshi Takasaki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
7
|
Moralejo D, Yanay O, Kernan K, Bailey A, Lernmark A, Osborne W. Sustained glucagon-like peptide 1 expression from encapsulated transduced cells to treat obese diabetic rats. J Biosci Bioeng 2011; 111:383-7. [PMID: 21216666 DOI: 10.1016/j.jbiosc.2010.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/29/2010] [Accepted: 12/07/2010] [Indexed: 12/25/2022]
Abstract
Obesity and type 2 diabetes (T2D) are two prevalent chronic diseases that have become a major public health concern in industrialized countries. T2D is characterized by hyperglycemia and islet beta cell dysfunction. Glucagon-like peptide 1 (GLP-1) promotes β cell proliferation and neogenesis and has a potent insulinotropic effect. Leptin receptor deficient male rats are obese and diabetic and provide a model of T2D. We hypothesized that their treatment by sustained expression of GLP-1 using encapsulated cells may prevent or delay diabetes onset. Vascular smooth muscle cells (VSMC) retrovirally transduced to secrete GLP-1 were seeded into TheraCyte(TM) encapsulation devices, implanted subcutaneously and rats were monitored for diabetes. Rats that received cell implants showed mean plasma GLP-1 level of 119.3 ± 10.2pM that was significantly elevated over control values of 32.4 ± 2.9pM (P<0.001). GLP-1 treated rats had mean insulin levels of 45.9 ± 2.3ng/ml that were significantly increased over control levels of 7.3±1.5ng/ml (P<0.001). In rats treated before diabetes onset elevations in blood glucose were delayed and rats treated after onset became normoglycemic and showed improved glucose tolerance tests. Untreated diabetic rats possess abnormal islet structures characterized by enlarged islets with α-cell infiltration and multifocal vacuolization. GLP-1 treatment induced normalization of islet structures including a mantle of α-cells and increased islet mass. These data suggest that encapsulated transduced cells may offer a potential long term treatment of patients.
Collapse
Affiliation(s)
- Daniel Moralejo
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
8
|
Yanay O, Moralejo D, Kernan K, Brzezinski M, Fuller JM, Barton R, Lernmark A, Osborne WR. Prolonged survival and improved glycemia in BioBreeding diabetic rats after early sustained exposure to glucagon-like peptide 1. J Gene Med 2010; 12:538-44. [PMID: 20527046 PMCID: PMC2882674 DOI: 10.1002/jgm.1466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) in both humans and BioBreeding (BB) rats is an autoimmune disease that results in complete destruction of islets and insulin dependency for life. Glucagon-like peptide 1 (GLP-1) promotes beta cell proliferation and neogenesis and has a potent insulinotropic effect. We hypothesized that the expression of GLP-1 before disease onset would increase islet mass, delay diabetes and prolong survival of BB rats. METHODS Vascular smooth muscle cells retrovirally transduced to secrete GLP-1 were seeded into TheraCyte encapsulation devices, implanted subcutaneously, and rats were monitored for diabetes. RESULTS In untreated control rats, plasma GLP-1 levels were 34.5-39.5 pmol/l, whereas, in treated rats, plasma levels were elevated, in the range 90-250.4 pmol/l. Hypoglycemia was not detected and this was anticipated from the glucose-regulated action of GLP-1. Diabetes onset (mean + or - SEM) in untreated rats occurred at 56.5 + or - 0.6 days (n = 6) and, in GLP-1-treated rats, was delayed until 76.4 + or - 3.3 days (n = 5) (p < 0.001). After disease onset, untreated control rats showed a rapid weight loss and elevated blood glucose (>650 mg/dl) and did not survive beyond 11 days. At 5 days after diabetes onset, insulin-secreting islets were absent in untreated rats. By contrast, treated rats maintained weight for up to 143 days of age and showed insulin-secreting beta cells. CONCLUSIONS Sustained GLP-1 expression delivered by encapsulated cells before diabetes onset in BB rats showed an improved clinical outcome, suggesting the potential for treating patients using long lasting GLP-1 analogs.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Cell Proliferation/drug effects
- Diabetes Mellitus, Experimental/diagnosis
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/therapy
- Female
- Glucagon/metabolism
- Glucagon-Like Peptide 1/pharmacology
- Glucagon-Like Peptide 1/therapeutic use
- Humans
- Implants, Experimental
- Male
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/physiology
- Pancreas/cytology
- Pancreas/metabolism
- Rats
- Rats, Inbred BB
- Rats, Wistar
- Transduction, Genetic
Collapse
Affiliation(s)
- Ofer Yanay
- Department of Pediatrics, University of Washington, Seattle WA
| | - Daniel Moralejo
- Department of Comparative Medicine, University of Washington, Seattle WA
- Department of Medicine, University of Washington, Seattle WA
| | - Kelly Kernan
- Department of Pediatrics, University of Washington, Seattle WA
| | | | | | | | - Ake Lernmark
- Department of Medicine, University of Washington, Seattle WA
| | | |
Collapse
|