1
|
Liu Q, Zhao Y, Wang Q, Yan L, Fu X, Xiao R. Convergent alteration of the mesenchymal stem cell heterogeneity in adipose tissue during aging. FASEB J 2023; 37:e23114. [PMID: 37498236 DOI: 10.1096/fj.202300807r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Adipose-derived stem cells (ASCs) from distinct age groups possess different characteristics; however, the age-associated changes in ASCs heterogenicity remain largely unknown. In this study, several publicly available single-cell RNA sequencing (RNA-seq) data cohorts of inguinal adipose tissues, including young (2 weeks), adult (8 weeks), and old (18 months) C57BL/6 mice, were analyzed. Transcriptomic clustering of integrated single-cell RNA-seq data from different age groups revealed the existence of five ASCs subtypes. Interestingly, ASCs showed a loss of heterogeneity with aging, and ASCs subtype 4 (ASC-4) was the dominant subpopulation accounting for more than 98% of aged ASCs converging to the terminal differentiation state. The multidirectional differentiation potentials of different ASCs subtypes were largely distinct while the adipogenic ability of ASC-4 increased with age persistently. Regulon analysis of ASC subtypes further identified Cebpb as the ASC-4-specific transcription factor, which was known as one of the major adipogenic regulators. Analysis of ligand-receptor pairs between ASCs and other cell types in adipose tissue identified age-associated upregulation of inflammatory responses-associated factors including CCL2 and CCL7. Treatment with 100 ng/mL CCL2 in vitro could significantly promote the adipogenesis of ASCs through enhanced phosphorylation of AKT and decreased expression of β-catenin. In addition, supplementation of 100 ng/mL CCL7 could significantly increase the expression of inflammatory genes and ASC-4-specific transcriptional factors in 2-week-old ASCs, potentially acting as a driver of ASCs convergence. Our findings help to delineate the complex biological processes of ASCs aging and shed light on better regenerative and therapeutic applications of ASCs.
Collapse
Affiliation(s)
- Qiwei Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Yu Zhao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
2
|
Zhu Z, Guo L, Yeltai N, Xu H, Zhang Y. Chemokine (C-C motif) ligand 2-enhanced adipogenesis and angiogenesis of human adipose-derived stem cell and human umbilical vein endothelial cell co-culture system in adipose tissue engineering. J Tissue Eng Regen Med 2021; 16:163-176. [PMID: 34811942 DOI: 10.1002/term.3264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
Human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) co-cultured in vitro are widely used in adipose tissue engineering but exhibit various limitations. Chemokine (C-C motif) ligand 2 (CCL2) has been proved essential during adipogenesis and angiogenesis in vivo. We examined whether adipogenesis and angiogenesis could also be directly promoted by CCL2 in vitro. Cells were cultured with 0, 10, 50, and 100 ng/ml CCL2. The effects of CCL2 on adipogenesis of hADSCs, and lipid accumulation in the positive control group (hADSCs), blank control group (hADSCs + HUVECs), and experimental group (hADSCs + HUVECs + CCL2) in the hADSC and HUVEC direct co-culture system were evaluated by Oil Red O staining. Angiogenesis in the presence of CCL2 was evaluated by Matrigel tube formation assay. Angiogenic- and adipogenic-associated gene and protein expression in the co-culture system were measured by Quantitative Real-time Polymerase Chain Reaction and western blotting, respectively. All concentrations of CCL2 promoted hADSC adipogenic differentiation and HUVEC tube formation (P < 0.05). Following direct co-culture, the experimental group accumulated more lipid droplets than the positive control (P < 0.0001), whereas the latter showed better adipogenesis than the blank control group. 50 ng/ml CCL2 exhibited stronger adipogenic and angiogenic potential than other concentrations. After 72 h of direct co-culture, the mRNA expression of adipogenic differentiation (peroxisome proliferators-activated receptorsγ, CCAAT/enhancer binding protein-α, Leptin, and lipoprotein lipase) and angiogenic genes (vascular endothelial growth factor-A, vascular endothelial growth factor receptor 2, matrix metalloprotein (MMP) 9, and 14) in the experimental group was much higher than in the control (P < 0.05). The addition of 50 ng/ml CCL2 in the system resulted in elevated phosphorylated Protein kinase B/AKT expression. In summary, CCL2 directly promoted adipogenesis of hADSCs and angiogenesis of HUVECs under both mono-culture and co-culture condition in vitro possibly by enhancing AKT phosphorylation. An optimal concentration of 50 ng/ml CCL2 could improve the adipogenesis and angiogenesis of hADSC and HUVEC co-culture system.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Linxiumei Guo
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Nurzat Yeltai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
3
|
Wan X, Zhu L, Zhao L, Peng L, Xiong J, Yang W, Yuan J, Liang F, Zhang K, Chen K. hPER3 promotes adipogenesis via hHSP90AA1-mediated inhibition of Notch1 pathway. Cell Death Dis 2021; 12:301. [PMID: 33741899 PMCID: PMC7979882 DOI: 10.1038/s41419-021-03584-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
The period circadian regulator 3 (PER3) has been reported to play a negative role in human immortalized bone marrow-derived Scp-1 cells (iBMSCs) and patient adipose-derived stromal cells (PASCs) or a negative/positive role in mice adipogenesis. However, human PER3 (hPER3) was identified as a positive regulator of human adipose tissue-derived stromal cells (hADSCs) adipogenesis in this study. Silencing or overexpression of hPER3 in hADSCs inhibited and promoted adipogenesis in vitro. In vivo, the overexpression of hPER3 increased high-fat diet-induced inguinal white adipose tissue (iWAT) and epididymal white adipose tissue (eWAT) forms, increasing systemic glucose intolerance and insulin resistance. Molecularly, hPER3 does not interact with hPPARγ, but represses Notch1 signaling pathway to enhance adipogenesis by interacting with hHSP90AA1, which is able to combine with the promoter of hNotch1 and inactivate its expression. Thus, our study revealed hPER3 as a critical positive regulator of hADSCs adipogenesis, which was different from the other types of cells, providing a critical role of it in treating obesity.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Liyong Zhu
- Department of Bariatric and Metabolic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Liling Zhao
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, Hunan, 410005, China
| | - Jing Xiong
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wenjun Yang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jingjing Yuan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Fang Liang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Keke Zhang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ke Chen
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
4
|
Sedlmeier EM, Meyer DM, Stecher L, Sailer M, Daniel H, Hauner H, Bader BL. Fetal sex modulates placental microRNA expression, potential microRNA-mRNA interactions, and levels of amino acid transporter expression and substrates: INFAT study subpopulation analysis of n-3 LCPUFA intervention during pregnancy and associations with offspring body composition. BMC Mol Cell Biol 2021; 22:15. [PMID: 33657992 PMCID: PMC7931339 DOI: 10.1186/s12860-021-00345-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Previously, we revealed sexually dimorphic mRNA expression and responsiveness to maternal dietary supplementation with n-3 long-chain polyunsaturated fatty acids (LCPUFA) in placentas from a defined INFAT study subpopulation. Here, we extended these analyses and explored the respective placental microRNA expression, putative microRNA-mRNA interactions, and downstream target processes as well as their associations with INFAT offspring body composition. Results We performed explorative placental microRNA profiling, predicted microRNA-mRNA interactions by bioinformatics, validated placental target microRNAs and their putative targets by RT-qPCR and western blotting, and measured amino acid levels in maternal and offspring cord blood plasma and placenta. microRNA, mRNA, protein, and amino acid levels were associated with each other and with offspring body composition from birth to 5 years of age. Forty-six differentially regulated microRNAs were found. Validations identified differential expression for microRNA-99a (miR-99a) and its predicted target genes mTOR, SLC7A5, encoding L-type amino acid transporter 1 (LAT1), and SLC6A6, encoding taurine transporter (TauT), and their prevailing significant sexually dimorphic regulation. Target mRNA levels were mostly higher in placentas from control male than from female offspring, whereas respective n-3 LCPUFA responsive target upregulation was predominantly found in female placentas, explaining the rather balanced expression levels between the sexes present only in the intervention group. LAT1 and TauT substrates tryptophan and taurine, respectively, were significantly altered in both maternal plasma at 32 weeks’ gestation and cord plasma following intervention, but not in the placenta. Several significant associations were observed for miR-99a, mTOR mRNA, SLC7A5 mRNA, and taurine and tryptophan in maternal and cord plasma with offspring body composition at birth, 1 year, 3 and 5 years of age. Conclusions Our data suggest that the analyzed targets may be part of a sexually dimorphic molecular regulatory network in the placenta, possibly modulating gene expression per se and/or counteracting n-3 LCPUFA responsive changes, and thereby stabilizing respective placental and fetal amino acid levels. Our data propose placental miR-99, SLC7A5 mRNA, and taurine and tryptophan levels in maternal and fetal plasma as potentially predictive biomarkers for offspring body composition. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00345-x.
Collapse
Affiliation(s)
- Eva-Maria Sedlmeier
- ZIEL-PhD Graduate School 'Epigenetics, Imprinting and Nutrition', ZIEL-Institute for Food and Health, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 2, 85354, Freising, Germany.,Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 2, 85354, Freising, Germany
| | - Dorothy M Meyer
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Georg-Brauchle-Ring 62, 80992, Munich, Germany
| | - Lynne Stecher
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Georg-Brauchle-Ring 62, 80992, Munich, Germany
| | - Manuela Sailer
- Molecular Nutrition Unit, ZIEL-Institute for Food and Health, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 2, 85354, Freising, Germany
| | - Hannelore Daniel
- Molecular Nutrition Unit, ZIEL-Institute for Food and Health, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 2, 85354, Freising, Germany
| | - Hans Hauner
- Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 2, 85354, Freising, Germany.,Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Georg-Brauchle-Ring 62, 80992, Munich, Germany.,Clinical Nutritional Medicine Unit, ZIEL-Institute for Food and Health, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 2, 85354, Freising, Germany
| | - Bernhard L Bader
- ZIEL-PhD Graduate School 'Epigenetics, Imprinting and Nutrition', ZIEL-Institute for Food and Health, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 2, 85354, Freising, Germany. .,Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 2, 85354, Freising, Germany. .,Clinical Nutritional Medicine Unit, ZIEL-Institute for Food and Health, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 2, 85354, Freising, Germany.
| |
Collapse
|
5
|
Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells. PLoS One 2012; 7:e47496. [PMID: 23071815 PMCID: PMC3468566 DOI: 10.1371/journal.pone.0047496] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 09/17/2012] [Indexed: 01/09/2023] Open
Abstract
Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423) as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates) were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR) α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05) in high adipogenic cells, while transforming growth factor (TGF)-β was higher (156.1±48.7%, P<0.05) in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05) in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular adipogenesis and marbling in beef cattle.
Collapse
|
6
|
Ren G, Kim JY, Smas CM. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am J Physiol Endocrinol Metab 2012; 303:E334-51. [PMID: 22569073 PMCID: PMC3423120 DOI: 10.1152/ajpendo.00084.2012] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To identify new genes that are important in fat metabolism, we utilized the Lexicon-Genentech knockout database of genes encoding transmembrane and secreted factors and whole murine genome transcriptional profiling data that we generated for 3T3-L1 in vitro adipogenesis. Cross-referencing null models evidencing metabolic phenotypes with genes induced in adipogenesis led to identification of a new gene, which we named RIFL (refeeding induced fat and liver). RIFL-null mice have serum triglyceride levels approximately one-third of wild type. RIFL transcript is induced >100-fold during 3T3-L1 adipogenesis and is also increased markedly during adipogenesis of murine and human primary preadipocytes. siRNA-mediated knockdown of RIFL during 3T3-L1 adipogenesis results in an ~35% decrease in adipocyte triglyceride content. Murine RIFL transcript is highly enriched in white and brown adipose tissue and liver. Fractionation of WAT reveals that RIFL transcript is exclusive to adipocytes with a lack of expression in stromal-vascular cells. Nutritional and hormonal studies are consistent with a prolipogenic function for RIFL. There is evidence of an approximately eightfold increase in RIFL transcript level in WAT in ob/ob mice compared with wild-type mice. RIFL transcript level in WAT and liver is increased ~80- and 12-fold, respectively, following refeeding of fasted mice. Treatment of 3T3-L1 adipocytes with insulin increases RIFL transcript ≤35-fold, whereas agents that stimulate lipolysis downregulate RIFL. Interestingly, the 198-amino acid RIFL protein is predicted to be secreted and shows ~30% overall conservation with the NH(2)-terminal half of angiopoietin-like 3, a liver-secreted protein that impacts lipid metabolism. In summary, our data suggest that RIFL is an important new regulator of lipid metabolism.
Collapse
Affiliation(s)
- Gang Ren
- Department of Biochemistry and Cancer Biology and Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | |
Collapse
|
7
|
Wu Y, Zhou S, Smas CM. Downregulated expression of the secreted glycoprotein follistatin-like 1 (Fstl1) is a robust hallmark of preadipocyte to adipocyte conversion. Mech Dev 2010; 127:183-202. [PMID: 20043993 DOI: 10.1016/j.mod.2009.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 12/14/2009] [Accepted: 12/21/2009] [Indexed: 11/20/2022]
Abstract
Obesity is a public health crisis in the United States. Targeting preadipocyte to adipocyte conversion may be an effective approach to regulate adipose mass. Using differential screening we identified Fstl1, a secreted glycoprotein with roles in immunomodulation, cell growth, cardioprotection, and vascularization, as a "preadipokine". Fstl1 is highly expressed in 3T3-L1 preadipocytes and dramatically downregulated early in their differentiation to adipocytes. Northern blot analysis of murine tissues reveals white adipose tissue (WAT), lung and heart as primary sites of Fstl1 transcript expression. In WAT, Fstl1 transcript is restricted to the preadipocyte-containing stromal-vascular cell population. Time course studies in multiple adipogenesis models reveal downregulation of Fstl1 is a hallmark of white and brown adipocyte conversion. By Western blot, we show culture media of 3T3-L1 preadipocytes contains high levels of Fstl1 protein that rapidly decline in adipocyte conversion. Moreover, we observe a correlation between preadipocyte phenotype and Fstl1 expression in that TNFalpha-mediated de-differentiation of 3T3-L1 adipocytes is accompanied by re-expression of Fstl1 transcript and protein. Treatment of 3T3-L1 preadipocytes with a panel of 18 hormones and other agents revealed the demethylating agent 5-aza-cytidine decreases Fstl1 transcript and protein levels by approximately 90%. Furthermore, of 10 additional preadipocyte-expressed genes analyzed we find Pref-1, Col1A1, Sca-1/Ly6a, Lox and Thbs2, are also downregulated by 5-aza-cytidine. Using luciferase reporter constructs containing 791 or 3922 bp of the Fstl1 5' flanking region, we determine negative transcriptional regulation by Kruppel-like factor 15. Together, our data suggest downregulation of Fstl1 expression may be an important feature of preadipocyte to adipocyte conversion.
Collapse
Affiliation(s)
- Yu Wu
- Department of Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | |
Collapse
|
8
|
Chaerkady R, Kerr CL, Marimuthu A, Kelkar DS, Kashyap MK, Gucek M, Gearhart JD, Pandey A. Temporal analysis of neural differentiation using quantitative proteomics. J Proteome Res 2009; 8:1315-26. [PMID: 19173612 PMCID: PMC2693473 DOI: 10.1021/pr8006667] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to derive neural progenitors, differentiated neurons and glial cells from human embryonic stem cells (hESCs) with high efficiency holds promise for a number of clinical applications. However, investigating the temporal events is crucial for defining the underlying mechanisms that drive this process of differentiation along different lineages. We carried out quantitative proteomic profiling using a multiplexed approach capable of analyzing eight different samples simultaneously to monitor the temporal dynamics of protein abundance as human embryonic stem cells differentiate into motor neurons or astrocytes. With this approach, a catalog of approximately 1200 proteins along with their relative quantitative expression patterns was generated. The differential expression of the large majority of these proteins has not previously been reported or studied in the context of neural differentiation. As expected, two of the widely used markers of pluripotency, alkaline phosphatase (ALPL) and LIN28, were found to be downregulated during differentiation, while S-100 and tenascin C were upregulated in astrocytes. Neurofilament 3 protein, doublecortin and CAM kinase-like 1 and nestin proteins were upregulated during motor neuron differentiation. We identified a number of proteins whose expression was largely confined to specific cell types, embryonic stem cells, embryoid bodies and differentiating motor neurons. For example, glycogen phosphorylase (PYGL) and fatty acid binding protein 5 (FABP5) were enriched in ESCs, while beta spectrin (SPTBN5) was highly expressed in embryoid bodies. Karyopherin, heat shock 27 kDa protein 1 and cellular retinoic acid binding protein 2 (CRABP2) were upregulated in differentiating motor neurons but were downregulated in mature motor neurons. We validated some of the novel markers of the differentiation process using immunoblotting and immunocytochemical labeling. To our knowledge, this is the first large-scale temporal proteomic profiling of human stem cell differentiation into neural cell types highlighting proteins with limited or undefined roles in neural fate.
Collapse
Affiliation(s)
- Raghothama Chaerkady
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- McKusick-Nathans Institute of Genetic Medicine and Departments of Biological Chemistry, Baltimore, MD, 21205, USA
- To whom correspondence should be addressed. E-mail: and E-mail:
| | - Candace L. Kerr
- Institute for Cell Engineering, Department of Obstetrics and Gynecology, Baltimore, MD, 21205, USA
- To whom correspondence should be addressed. E-mail: and E-mail:
| | - Arivusudar Marimuthu
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- McKusick-Nathans Institute of Genetic Medicine and Departments of Biological Chemistry, Baltimore, MD, 21205, USA
| | - Dhanashree S. Kelkar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Manoj Kumar Kashyap
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- McKusick-Nathans Institute of Genetic Medicine and Departments of Biological Chemistry, Baltimore, MD, 21205, USA
| | - Marjan Gucek
- Institute of Basic Biomedical Sciences, Baltimore, MD, 21205, USA
| | - John D. Gearhart
- Institute for Cell Engineering, Department of Obstetrics and Gynecology, Baltimore, MD, 21205, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine and Departments of Biological Chemistry, Baltimore, MD, 21205, USA
- Department of Pathology and Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
9
|
Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 2008; 50:3-21. [PMID: 18952573 DOI: 10.1194/jlr.r800031-jlr200] [Citation(s) in RCA: 405] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fatty acids (FAs) are essential components of all lipid classes and pivotal substrates for energy production in all vertebrates. Additionally, they act directly or indirectly as signaling molecules and, when bonded to amino acid side chains of peptides, anchor proteins in biological membranes. In vertebrates, FAs are predominantly stored in the form of triacylglycerol (TG) within lipid droplets of white adipose tissue. Lipid droplet-associated TGs are also found in most nonadipose tissues, including liver, cardiac muscle, and skeletal muscle. The mobilization of FAs from all fat depots depends on the activity of TG hydrolases. Currently, three enzymes are known to hydrolyze TG, the well-studied hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL), discovered more than 40 years ago, as well as the relatively recently identified adipose triglyceride lipase (ATGL). The phenotype of HSL- and ATGL-deficient mice, as well as the disease pattern of patients with defective ATGL activity (due to mutation in ATGL or in the enzyme's activator, CGI-58), suggest that the consecutive action of ATGL, HSL, and MGL is responsible for the complete hydrolysis of a TG molecule. The complex regulation of these enzymes by numerous, partially uncharacterized effectors creates the "lipolysome," a complex metabolic network that contributes to the control of lipid and energy homeostasis. This review focuses on the structure, function, and regulation of lipolytic enzymes with a special emphasis on ATGL.
Collapse
Affiliation(s)
- Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Austria.
| | | | | | | | | |
Collapse
|
10
|
Wu Y, Smas CM. Expression and regulation of transcript for the novel transmembrane protein Tmem182 in the adipocyte and muscle lineage. BMC Res Notes 2008; 1:85. [PMID: 18803820 PMCID: PMC2564950 DOI: 10.1186/1756-0500-1-85] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 09/19/2008] [Indexed: 12/11/2022] Open
Abstract
Background White adipose tissue is not only an energy storage organ; it also functions as an endocrine organ. The coordination and integration of numerous gene expression events is required to establish and maintain the adipocyte phenotype. Findings We previously observed a 45-fold upregulation for a transcript encoding a novel predicted transmembrane protein, Tmem182, upon brown preadipocyte to adipocyte conversion. Here we use real-time PCR analysis to further characterize Tmem182 transcript expression in the adipocyte lineage. Analysis across a panel of 10 murine tissues revealed highest Tmem182 transcript expression in white adipose tissues (WAT), with 10-fold to 20-fold higher levels than in brown adipose tissue (BAT). Tmem182 transcript expression is ~3-fold upregulated in BAT of genetically obese (ob/ob) mice vs. wild type C57BL/6. Analysis of three in vitro models of white adipogenesis indicates markedly enriched expression of Tmem182 transcript in adipocytes vs. preadipocytes. Compared to 3T3-L1 preadipocytes, a 157-fold higher level of Tmem182 transcript is detected at 3 day post-induction of adipogenesis and an ~2500-fold higher level in mature 3T3-L1 adipocytes. TNFα treatment of 3T3-L1 adipocytes resulted in a ~90% decrease in Tmem182 transcript level. As skeletal muscle and heart were also found to express Tmem182 transcript, we assessed expression in C2C12 myogenesis and observed a ~770-fold upregulation upon conversion of myoblasts to myocytes. Conclusion WAT is the most prominent site of Tmem182 transcript expression and levels of transcript for Tmem182 are altered in adipose tissues of ob/ob mice and upon exposure of 3T3-L1 adipocytes to the proinflammatory cytokine TNFα. The dramatic upregulation of Tmem182 transcript during in vitro adipogenesis and myogenesis suggests Tmem182 may function in intracellular pathways important in these two cell types.
Collapse
Affiliation(s)
- Yu Wu
- Department of Biochemistry and Cancer Biology and Center for Diabetes and Endocrine Research, University of Toledo, Health Science Campus, Toledo, OH 43614, USA.
| | | |
Collapse
|
11
|
Wu Y, Kim JY, Zhou S, Smas CM. Differential screening identifies transcripts with depot-dependent expression in white adipose tissues. BMC Genomics 2008; 9:397. [PMID: 18721461 PMCID: PMC2547859 DOI: 10.1186/1471-2164-9-397] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 08/22/2008] [Indexed: 01/15/2023] Open
Abstract
Background The co-morbidities of obesity are tied to location of excess fat in the intra-abdominal as compared to subcutaneous white adipose tissue (WAT) depot. Genes distinctly expressed in WAT depots may impart depot-dependent physiological functions. To identify such genes, we prepared subtractive cDNA libraries from murine subcutaneous (SC) or intra-abdominal epididymal (EP) white adipocytes. Results Differential screening and qPCR validation identified 7 transcripts with 2.5-fold or greater enrichment in EP vs. SC adipocytes. Boc, a component of the hedgehog signaling pathway demonstrated highest enrichment (~12-fold) in EP adipocytes. We also identified a dramatic enrichment in SC adipocytes vs. EP adipocytes and in SC WAT vs. EP WAT for transcript(s) for the major urinary proteins (Mups), small secreted proteins with pheromone functions that are members of the lipocalin family. Expression of Boc and Mup transcript was further assessed in murine tissues, adipogenesis models, and obesity. qPCR analysis reveals that EP WAT is a major site of expression of Boc transcript. Furthermore, Boc transcript expression decreased in obese EP WAT with a concomitant upregulation of Boc transcript in the obese SC WAT depot. Assessment of the Boc binding partner Cdon in adipose tissue and cell fractions thereof, revealed transcript expression similar to Boc; suggestive of a role for the Boc-Cdon axis in WAT depot function. Mup transcripts were predominantly expressed in liver and in the SC and RP WAT depots and increased several thousand-fold during differentiation of primary murine preadipocytes to adipocytes. Mup transcripts were also markedly reduced in SC WAT and liver of ob/ob genetically obese mice compared to wild type. Conclusion Further assessment of WAT depot-enriched transcripts may uncover distinctions in WAT depot gene expression that illuminate the physiological impact of regional adiposity.
Collapse
Affiliation(s)
- Yu Wu
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| | | | | | | |
Collapse
|