1
|
Investigating the impact of RNA integrity variation on the transcriptome of human leukemic cells. 3 Biotech 2022; 12:160. [PMID: 35814037 PMCID: PMC9259771 DOI: 10.1007/s13205-022-03223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/17/2022] [Indexed: 11/12/2022] Open
Abstract
High RNA integrity is essential for good quality of transcriptomics profiling. Nevertheless, in some cases samples with low RNA integrity is the only available material to study. This work was set to investigate the impact of thermal-induced RNA degradation on the transcriptomic profiles of human leukemic cells. DNA microarray-based transcriptomics was conducted on two groups of samples; high RNA integrity samples (n = 4) and low RNA integrity samples (n = 5). RNA degradation caused limited but noticeable changes in the transcriptomes. Only 1945 (6.7%) of 29,230 genes showed altered quantitation (fold change ≥ two-fold, p value ≤ 0.03, corrected p value ≤ 0.05). RNA degradation had the most impact on short transcripts and those with short distance between their 5’end and the probe binding position. Overall, the present work identified the genes whose relative quantification is sensitive to RNA degradation. Therefore, altered expression of these genes should be interpreted with caution when studied in low integrity RNA samples.
Collapse
|
2
|
Wu D, Zhou M, Li L, Leng X, Zhang Z, Wang N, Sun Y. Severe Burn Injury Progression and Phasic Changes of Gene Expression in Mouse Model. Inflammation 2020; 42:1239-1251. [PMID: 30877509 DOI: 10.1007/s10753-019-00984-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Patients with severe burns are susceptible to infectious complications including burn-site infections and sepsis. The purpose of this study was to explore the pathologic development of burn injury in a mouse model and to screen genes dysregulated at different time points on the basis of gene expression microarrays. Differential expression analysis identified a total 223 genes that related to only time progression independent of burn injury and 214 genes with aberrant expression due to burn injury. Weighted gene co-expression network analysis (WGCNA) of the 214 genes obtained seven gene modules which named as red, blue, turquoise, green, brown, yellow, and gray module, and the blue module was found to be significantly associated with severe burn injury progression, and in which several genes were previously reported being associated with inflammation and immune response, such as interleukin IL-6, IL-8, and IL-1b. Functional enrichment analysis indicated significant enrichment of biological processes that related to metabolism and catabolism, and pathways of proteasome, notch signaling and cell cycle. This result supports a phase progression of severe burn with gene expression changes and interpretation of biological processes in mouse.
Collapse
Affiliation(s)
- Dan Wu
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China.
| | - Ming Zhou
- Department of Joint Surgery, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Liang Li
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Xiangfeng Leng
- Department of Plastic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Zheng Zhang
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Ning Wang
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Yanwei Sun
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| |
Collapse
|
3
|
Liu FW, Liu FC, Wang YR, Tsai HI, Yu HP. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System. PLoS One 2015; 10:e0143528. [PMID: 26637174 PMCID: PMC4670167 DOI: 10.1371/journal.pone.0143528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/05/2015] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.
Collapse
Affiliation(s)
- Fu-Wei Liu
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital Puli Branch, Nantou, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ren Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-I Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Abstract
The heat shock response (HSR) is an ancient and highly conserved process that is essential for coping with environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review the phylogenetically conserved mechanisms that regulate fever and discuss the effects that febrile-range temperatures have on multiple biological processes involved in host defense and cell death and survival, including the HSR and its implications for patients with severe sepsis, trauma, and other acute systemic inflammatory states. Heat shock factor-1, a heat-induced transcriptional enhancer is not only the central regulator of the HSR but also regulates expression of pivotal cytokines and early response genes. Febrile-range temperatures exert additional immunomodulatory effects by activating mitogen-activated protein kinase cascades and accelerating apoptosis in some cell types. This results in accelerated pathogen clearance, but increased collateral tissue injury, thus the net effect of exposure to febrile range temperature depends in part on the site and nature of the pathologic process and the specific treatment provided.
Collapse
Affiliation(s)
- Jeffrey D Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine and the Baltimore V.A. Medical Center, Baltimore, Maryland
| | | | | |
Collapse
|
5
|
IKK2 inhibition attenuates laser-induced choroidal neovascularization. PLoS One 2014; 9:e87530. [PMID: 24489934 PMCID: PMC3905033 DOI: 10.1371/journal.pone.0087530] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 12/27/2013] [Indexed: 11/20/2022] Open
Abstract
Choroidal neovascularization (CNV) is aberrant angiogenesis associated with exudative age-related macular degeneration (AMD), a leading cause of blindness in the elderly. Inflammation has been suggested as a risk factor for AMD. The IKK2/NF-κB pathway plays a key role in the inflammatory response through regulation of the transcription of cytokines, chemokines, growth factors and angiogenic factors. We investigated the functional role of IKK2 in development of the laser-induced CNV using either Ikk2 conditional knockout mice or an IKK2 inhibitor. The retinal neuronal tissue and RPE deletion of IKK2 was generated by breeding Ikk2−/flox mice with Nestin-Cre mice. Deletion of Ikk2 in the retina caused no obvious defect in retinal development or function, but resulted in a significant reduction in laser-induced CNV. In addition, intravitreal or retrobulbar injection of an IKK2 specific chemical inhibitor, TPCA-1, also showed similar inhibition of CNV. Furthermore, in vitro inhibition of IKK2 in ARPE-19 cells significantly reduced heat shock-induced expression of NFKBIA, IL1B, CCL2, VEGFA, PDGFA, HIF1A, and MMP-2, suggesting that IKK2 may regulate multiple molecular pathways involved in laser-induced CNV. The in vivo laser-induced expression of VEGFA, and HIF1A in RPE and choroidal tissue was also blocked by TPCA-1 treatment. Thus, IKK2/NF-κB signaling appears responsible for production of pro-inflammatory and pro-angiogenic factors in laser-induced CNV, suggesting that this intracellular pathway may serve as an important therapeutic target for aberrant angiogenesis in exudative AMD.
Collapse
|
6
|
Abstract
The heat shock response is a highly conserved primitive response that is essential for survival against a wide range of stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms raise their core body temperature and temporarily subject themselves to thermal stress in the face of infections. The present review documents studies showing the potential overlap between the febrile response and the heat shock response and how both activate the same common transcriptional programme (although with different magnitudes) including the stress-activated transcription factor, heat shock factor-1, to modify host defences in the context of infection, inflammation and injury. The review focuses primarily on how hyperthermia within the febrile range that often accompanies infections and inflammation acts as a biological response modifier and modifies innate immune responses. The characteristic 2-3 °C increase in core body temperature during fever activates and utilises elements of the heat shock response pathway to modify cytokine and chemokine gene expression, cellular signalling and immune cell mobilisation to sites of inflammation, infection and injury. Interestingly, typical proinflammatory agonists such as Toll-like receptor agonists modify the heat shock-induced transcriptional programme and expression of HSP genes following co-exposure to febrile range hyperthermia or heat shock, suggesting a complex reciprocal regulation between the inflammatory pathway and the heat shock response pathway.
Collapse
Affiliation(s)
- Ishwar S Singh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
7
|
KARIYA AYAKO, TABUCHI YOSHIAKI, YUNOKI TATSUYA, KONDO TAKASHI. Identification of common gene networks responsive to mild hyperthermia in human cancer cells. Int J Mol Med 2013; 32:195-202. [DOI: 10.3892/ijmm.2013.1366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/14/2013] [Indexed: 11/05/2022] Open
|
8
|
Tabuchi Y, Furusawa Y, Kariya A, Wada S, Ohtsuka K, Kondo T. Common gene expression patterns responsive to mild temperature hyperthermia in normal human fibroblastic cells. Int J Hyperthermia 2013; 29:38-50. [PMID: 23311377 DOI: 10.3109/02656736.2012.753163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Heat stress induces complex cellular responses, and its detailed molecular mechanisms still remain to be clarified. The objective of this study was to investigate the molecular mechanisms underlying cellular responses to mild hyperthermia (MHT) in normal human fibroblastic (NHF) cells. MATERIALS AND METHODS Cells were treated with MHT (41°C, 30 min) and then cultured at 37°C. Gene expression was determined by the GeneChip® system and bioinformatics tools. RESULTS Treatment of the NHF cell lines, Hs68 and OUMS-36, with MHT did not affect the cell viability or cell cycle. In contrast, many probe sets were differentially expressed by >1.5-fold in both cell lines after MHT treatment. Of the 1,196 commonly and differentially expressed probe sets analysed by k-means clustering, three gene clusters, Up-I, Down-I and Down-II, were observed. Interestingly, two gene networks were obtained from the up-regulated genes in cluster Up-I. The gene network E contained DDIT3 and HSPA5 and was mainly associated with the biological process of endoplasmic reticulum stress, while the network S contained HBEGF and LIF and was associated with the biological process of cell survival. Eighteen genes were validated by quantitative real-time polymerase chain reaction, consistent with the microarray data, in four kinds of NHF cells. CONCLUSIONS Common genes that were differentially expressed and/or acted within a gene network in response to MHT in NHF cells were identified. These findings provide the molecular basis for a further understanding of the mechanisms of the MHT response in NHF cells.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Centre, University of Toyama, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Bhayani KR, Rajwade JM, Paknikar KM. Radio frequency induced hyperthermia mediated by dextran stabilized LSMO nanoparticles: in vitro evaluation of heat shock protein response. NANOTECHNOLOGY 2013; 24:015102. [PMID: 23221040 DOI: 10.1088/0957-4484/24/1/015102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dextran stabilized La(0.7)Sr(0.3)MnO(3) (Dex-LSMO) is an alternative cancer hyperthermia agent holding considerable promise. Here, we have carried out a comparative study on radio frequency (~264 kHz) induced Dex-LSMO mediated heating and extraneous heating (mimicking generalized hyperthermia) in terms of changes in the morphology, proliferation pattern and induction of heat shock proteins in a human melanoma cell line (A375). Our results clearly show that the cellular effects seen with extraneous heating (60 min at 43 °C) could be reproduced by just six minutes of radio frequency induced Dex-LSMO mediated heating. More importantly, the observed enhanced levels of HSP 70 and 90 (molecular markers of heat shock that trigger favorable immunological reactions) seen with Dex-LSMO mediated heating were comparable to extraneous heating. These results suggest the possible utility of Dex-LSMO as a cancer hyperthermia agent.
Collapse
Affiliation(s)
- K R Bhayani
- Centre for Nanobioscience, Agharkar Research Institute, G G Agarkar Road, Pune 411004, India
| | | | | |
Collapse
|
10
|
Faroja M, Ahmed M, Appelbaum L, Ben-David E, Moussa M, Sosna J, Nissenbaum I, Goldberg SN. Irreversible electroporation ablation: is all the damage nonthermal? Radiology 2012; 266:462-70. [PMID: 23169795 DOI: 10.1148/radiol.12120609] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine whether high-dose irreversible electroporation (IRE) ablation induces thermal effects in normal liver tissue. MATERIALS AND METHODS Animal care and use committee approval was obtained prior to the experiments. IRE ablation (n = 78) was performed by a single four-person team in vivo in 22 porcine livers by applying electric current to two 1.3-cm-diameter circular flat-plate electrodes spaced 1 cm apart. Cardiac-gated IRE pulses (n = 40-360) were systematically applied at varying voltages (1500-2900 V). End temperatures at the ablation zone center were measured and were correlated with ablation time, energy parameters, and resultant treatment effect as determined at gross pathologic and histopathologic examination. Temperatures were then monitored at the center and periphery of four ablations created by using a four-electrode IRE array (3000 V, 90 pulses per electrode pair). Data were analyzed by using multivariate analysis of variance with multiple comparisons and/or paired t tests and regression analysis, as appropriate. RESULTS Temperature rose above the 34°C baseline after IRE in all flat-plate experiments and correlated linearly (R(2) = 0.39) with IRE "energy dose" (product of voltage and number of pulses) and more tightly in univariate analysis with both voltage and number of pulses. Thus, mean temperatures as high as 86°C ± 3 (standard deviation) were seen for 2500 V and 270 pulses. Ablations of 90 pulses or more at 2500 V produced temperatures of 50°C or greater and classic gross and histopathologic findings of thermal coagulation (pyknotic nuclei and streaming cytoplasm). For lower IRE doses (ie, 2100 V, 90 pulses), temperatures remained below 45°C, and only IRE-associated pathologic findings (ie, swollen sinusoids, dehydrated cells, and hemorrhagic infiltrate) were seen. For the four-electrode arrays, temperatures measured 54.2°C ± 6.1 at the electrode surfaces and 38.6°C ± 3.2 at the ablation zone margin. CONCLUSION In some conditions of high intensity, IRE can produce sufficient heating to induce "white zone" thermal coagulation. While this can be useful in some settings to increase tumor destruction, further characterization of the thermal profile created with clinical electrodes and energy parameters is therefore needed to better understand the best ways to avoid unintended damage when ablating near thermally sensitive critical structures.
Collapse
Affiliation(s)
- Mohammad Faroja
- Department of Surgery and Radiology, Hadassah Hebrew University Medical Center, Kiryat Hadassah, POB 12000, 91120 Jerusalem, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Beckham JT, Wilmink GJ, Opalenik SR, Mackanos MA, Abraham AA, Takahashi K, Contag CH, Takahashi T, Jansen ED. Microarray analysis of cellular thermotolerance. Lasers Surg Med 2011; 42:752-65. [PMID: 21246580 DOI: 10.1002/lsm.20983] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Previously, we have shown that a 43°C pretreatment can provide thermotolerance to a following, more severe, thermal stress at 45°C. Using cells that lack the Hsp70 gene, we have also shown that there is still some thermotolerance in the absence of HSP70 protein. The purpose of this study was to determine which genes play a role in thermotolerance by measuring viability and proliferation of the cells at 2 days after heating. Specifically, we wanted to understand which pathways may be responsible for protecting cells in the absence of HSP70. STUDY DESIGN/MATERIALS AND METHODS Murine embryonic fibroblast cells with and without Hsp70 (MEF(+/+) and MEF(-/-), respectively) were exposed to a mild heat shock of 43°C for 30 minutes in a constant temperature water bath. After 3 hours of recovery, RNA was harvested from three heated samples alongside three untreated controls using a MicroRNeasy kit with DNAse treatment. RNA quality was verified by an Agilent Bioanalyzer. The RNA was then converted to cDNA and hybridized to Affymetrix gene expression DNA microarrays. The genes that showed a twofold change (up or down) relative to unheated controls were filtered by t-test for significance at a threshold of P < 0.05 using Genespring software. Data were verified by qRT-PCR. Genes were then categorized based upon their ontology. RESULTS While many genes were similarly upregulated, the main difference between cell types was an increase in transcription factors and nucleic acid binding proteins. Several genes known to be involved in the heat response were upregulated more than twofold (Hsp70, Hsp40, Hsp110, Hsp25, Atf3), however, another well studied heat responsive gene Hsp90 only increased by 1.5-fold under these conditions despite its role in thermotolerance. CONCLUSIONS The data herein presents genetic pathways which are candidates for further study of pretreatment protocols in laser irradiation.
Collapse
Affiliation(s)
- Josh T Beckham
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mackanos MA, Helms M, Kalish F, Contag CH. Image-guided genomic analysis of tissue response to laser-induced thermal stress. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:058001. [PMID: 21639585 PMCID: PMC3107838 DOI: 10.1117/1.3573387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 05/30/2023]
Abstract
The cytoprotective response to thermal injury is characterized by transcriptional activation of "heat shock proteins" (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing.
Collapse
Affiliation(s)
- Mark A Mackanos
- Department of Pediatrics, Stanford University School of Medicine, Clark Center E-150, 318 Campus Drive, Stanford, California 94305-5427, USA
| | | | | | | |
Collapse
|
13
|
Heat shock proteins in the human eye. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2010:479571. [PMID: 22084677 PMCID: PMC3200129 DOI: 10.1155/2010/479571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/11/2010] [Accepted: 12/17/2010] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (Hsps) are believed to primarily protect and maintain cell viability under stressful conditions such as those occurring during thermal and oxidative challenges chiefly by refolding and stabilizing proteins. Hsps are found throughout the various tissues of the eye where they are thought to confer protection from disease states such as cataract, glaucoma, and cancer. This minireview summarizes the placement, properties, and roles of Hsps in the eye and aims to provide a better comprehension of their function and involvement in ocular disease pathogenesis.
Collapse
|
14
|
Vallanat B, Anderson SP, Brown-Borg HM, Ren H, Kersten S, Jonnalagadda S, Srinivasan R, Corton JC. Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). BMC Genomics 2010; 11:16. [PMID: 20059764 PMCID: PMC2823686 DOI: 10.1186/1471-2164-11-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 01/07/2010] [Indexed: 11/22/2022] Open
Abstract
Background The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by heat shock (HS) through activation by HS factor-1 (HSF1). We hypothesized that there are interactions on a genetic level between PPARα and the HS response mediated by HSF1. Results Wild-type and PPARα-null mice were exposed to HS, the PPARα agonist WY-14,643 (WY), or both; gene and protein expression was examined in the livers of the mice 4 or 24 hrs after HS. Gene expression profiling identified a number of Hsp family members that were altered similarly in both mouse strains. However, most of the targets of HS did not overlap between strains. A subset of genes was shown by microarray and RT-PCR to be regulated by HS in a PPARα-dependent manner. HS also down-regulated a large set of mitochondrial genes specifically in PPARα-null mice that are known targets of PPARγ co-activator-1 (PGC-1) family members. Pretreatment of PPARα-null mice with WY increased expression of PGC-1β and target genes and prevented the down-regulation of the mitochondrial genes by HS. A comparison of HS genes regulated in our dataset with those identified in wild-type and HSF1-null mouse embryonic fibroblasts indicated that although many HS genes are regulated independently of both PPARα and HSF1, a number require both factors for HS responsiveness. Conclusions These findings demonstrate that the PPARα genotype has a dramatic effect on the transcriptional targets of HS and support an expanded role for PPARα in the regulation of proteome maintenance genes after exposure to diverse forms of environmental stress including HS.
Collapse
Affiliation(s)
- Beena Vallanat
- NHEERL Toxicogenomics Core, US EPA, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhou M, Zhang A, Lin B, Liu J, Xu LX. Study of heat shock response of human umbilical vein endothelial cells (HUVECs) using cDNA microarray. Int J Hyperthermia 2009; 23:225-58. [PMID: 17523017 DOI: 10.1080/02656730701295441] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Genetic response of human umbilical vein cells (HUVECs) to heat shock was studied using gene expression analysis. HUVECs were subjected to heat treatment at 44 degrees C and 55 degrees C for 1 h, respectively. Four hours after the treatment, gene expression of the treated cells and control cells (37 degrees C) were profiled using cDNA microarray. Data were analyzed using bioinformatics tools, and the results were verified by real-time quantitative PCR experiment. It has been shown that a large number of genes were regulated indicating global response to heat treatment at the genetic level.
Collapse
Affiliation(s)
- M Zhou
- Key Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | | | | | | |
Collapse
|
16
|
Beckham JT, Wilmink GJ, Mackanos MA, Takahashi K, Contag CH, Takahashi T, Jansen ED. Role of HSP70 in cellular thermotolerance. Lasers Surg Med 2009; 40:704-15. [PMID: 19065555 DOI: 10.1002/lsm.20713] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE Thermal pretreatment has been shown to condition tissue to a more severe secondary heat stress. In this research we examined the particular contribution of heat shock protein 70 (HSP70) in thermal preconditioning. STUDY DESIGN/MATERIALS AND METHODS For optimization of preshock exposures, a bioluminescent Hsp70-luciferase reporter system in NIH3T3 cells tracked the activation of the Hsp70 gene. Cells in 96-well plates were pretreated in a 43 degrees C water bath for 30 minutes, followed 4 hours later with a severe heat shock at 45 degrees C for 50 minutes. Bioluminescence was measured at 2, 4, 6, 8, and 10 hours after preshock only (PS) and at 4 hours after preshock with heatshock (PS+HS). Viability was assessed 48 hours later with a fluorescent viability dye. Preshock induced thermotolerance was then evaluated in hsp70-containing Murine Embryo Fibroblast (+/+) cells and Hsp70-deficient MEF cells (-/-) through an Arrhenius damage model across varying temperatures (44.5-46 degrees C). RESULTS A time gap of 4 hours between preconditioning and the thermal insult was shown to be the most effective for thermotolerance with statistical confidence of P<0.05. The benefit of preshocking was largely abrogated in Hsp70-deficient cells. The Arrhenius data showed that preshocking leads to increases in the activation energies, E(a), and increases in frequency factors, A. The frequency factor increase was significantly greater in Hsp70-deficient cells. CONCLUSION The data shows that HSP70 contributes significantly to cellular thermotolerance but there are other pathways that provide residual thermotolerance in cells deficient in Hsp70.
Collapse
Affiliation(s)
- Josh T Beckham
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Tam HW, Huang YC, Tam MF. A cost-effective device for the rapid transfer of gel-separated proteins onto membranes. Anal Biochem 2009; 386:123-5. [PMID: 19094958 DOI: 10.1016/j.ab.2008.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
We describe here the fabrication of a cost-effective semi-dry blotting apparatus for the transfer of proteins onto membranes. Graphite sheets were used as electrodes. Protein mixtures were separated on NuPAGE 4% to 12% polyacrylamide gradient gels. With a Tris-bicine buffer, we demonstrated that close to 80% of the proteins with apparent molecular mass of 80kDa or less were removed from the gels after 8min of blotting. The process is much faster than the techniques reported previously in the literature.
Collapse
Affiliation(s)
- Hann W Tam
- Institute of Molecular Biology, Academia Sinica, NanKang Taipei, Taiwan, ROC
| | | | | |
Collapse
|
18
|
Singh IS, Shah NG, Almutairy E, Hasday JD. Role of HSF1 in Infectious Disease. HEAT SHOCK PROTEINS 2009. [DOI: 10.1007/978-90-481-2976-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Wilmink GJ, Opalenik SR, Beckham JT, Abraham AA, Nanney LB, Mahadevan-Jansen A, Davidson JM, Jansen ED. Molecular imaging-assisted optimization of hsp70 expression during laser-induced thermal preconditioning for wound repair enhancement. J Invest Dermatol 2008; 129:205-16. [PMID: 18580963 DOI: 10.1038/jid.2008.175] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients at risk for impaired healing may benefit from prophylactic measures aimed at improving wound repair. Several photonic devices claim to enhance repair by thermal and photochemical mechanisms. We hypothesized that laser-induced thermal preconditioning would enhance surgical wound healing that was correlated with hsp70 expression. Using a pulsed diode laser (lambda=1.85 microm, tau(p)=2 ms, 50 Hz, H=7.64 mJ cm(-2)), the skin of transgenic mice that contain an hsp70 promoter-driven luciferase was preconditioned 12 hours before surgical incisions were made. Laser protocols were optimized in vitro and in vivo using temperature, blood flow, and hsp70-mediated bioluminescence measurements as benchmarks. Biomechanical properties and histological parameters of wound healing were evaluated for up to 14 days. Bioluminescent imaging studies indicated that an optimized laser protocol increased hsp70 expression by 10-fold. Under these conditions, laser-preconditioned incisions were two times stronger than control wounds. Our data suggest that this molecular imaging approach provides a quantitative method for optimization of tissue preconditioning and that mild laser-induced heat shock may be a useful therapeutic intervention prior to surgery.
Collapse
Affiliation(s)
- Gerald J Wilmink
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The heat shock (HS) response is a generalized stress response that is characterized by the induced synthesis of a family of proteins referred to as heat shock proteins (HSPs). These proteins protect cells from a myriad of stressful insults in part by functioning as chaperones for denatured proteins. Increasing evidence suggests that the stress response is not limited to the HSP family of genes, but includes numerous other genes that are regulated by HS through the activation of the stress-activated transcription factor, heat shock factor-1 (HSF-1). Based on observations from our own in vivo hyperthermia models, we hypothesized that the CXC chemokine family of neutrophil activators and chemoattractants might be a previously unrecognized class of HS-responsive genes. Analysis of the promoters of the CXC family of chemokines in both human and mouse showed that they share a common promoter organization in which multiple copies of the HSF-1 binding sequence (heat shock response element, HRE) are present in the 5'-upstream flanking region of each of these genes. We have reviewed previous work from our own laboratory and others demonstrating a strong correlation between activation of HSPs and generation of CXC chemokines. Although rigorous experimental evidence is still required to support this hypothesis, this strong and consistent correlation between expression of HSPs and CXC chemokines in vivo and in vitro model systems suggests that the putative HREs present in the CXC chemokine genes are functionally active. We speculate that the activation of the HS response during febrile range hyperthermia, inflammation, infection and injury directly enhances expression of the CXC chemokines, thereby augmenting neutrophil delivery to sites of infection and injury during febrile illnesses.
Collapse
Affiliation(s)
- Ashish Nagarsekar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
21
|
Sonna LA, Sawka MN, Lilly CM. Exertional heat illness and human gene expression. PROGRESS IN BRAIN RESEARCH 2007; 162:321-46. [PMID: 17645926 DOI: 10.1016/s0079-6123(06)62016-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microarray analysis of gene expression at the level of RNA has generated new insights into the relationship between cellular responses to acute heat shock in vitro, exercise, and exertional heat illness. Here we discuss the systemic physiology of exertional hyperthermia and exertional heat illness, and compare the results of several recent microarray studies performed in vitro on human cells subjected to heat shock and in vivo on samples obtained from subjects performing exercise or suffering from exertional heat injury. From these comparisons, a concept of overlapping component responses emerges. Namely, some of the gene expression changes observed in peripheral blood mononuclear cells during exertional heat injury can be accounted for by normal cellular responses to heat, exercise, or both; others appear to be specific to the disease state itself. If confirmed in future studies, these component responses might provide a better understanding of adaptive and pathological responses to exercise and exercise-induced hyperthermia, help find new ways of identifying individuals at risk for exertional heat illness, and perhaps even help find rational molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Larry A Sonna
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
22
|
Walker KP, Schuschereba ST, Edsall PR, Stuck BE, Bowman PD. Production of a uniform cellular injury by raster scanning of cells for the study of laser bioeffects. Am J Physiol Cell Physiol 2006; 292:C1536-42. [PMID: 17122415 DOI: 10.1152/ajpcell.00348.2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Efforts to understand laser bioeffects in cells and tissues have been hindered by a nonuniform cellular response of the specimen, resulting in graded biochemical effects. In addition, the small beam diameters of commonly used lasers limit the number of cells expressing a response to numbers inadequate for the study of biochemical effects. For a limited emission power, expansion of the beam diameter reduces the irradiance, thus requiring longer exposure durations to produce a cellular response. Cultured human retinal epithelial cells were exposed as a single spot ("tophat" exposure) from a carbon dioxide (CO(2)) laser operating at 10.6 microm or scanned with a raster system and compared with thermal injury produced with heated saline for short periods (1-9 s) at relatively high temperature (55-70 degrees C). Cell viability and induction of the 70 kDa heat shock protein were evaluated as indicators of the cellular response. Initial attempts to use a tophat (uniform energy distribution) exposure resulted in a nonuniform cellular response (and nonuniform energy distribution) due to diffraction effects from the 2-mm selection aperture. However, raster scanning for appropriate times with the CO(2) laser yielded uniform cell viability and heat shock protein synthesis that were comparable to dipping cells in heated saline. Because scanning results in a homogeneous exposure of cells, the described scanning technique may be applied to studies of cellular responses to other lasers to evaluate photochemical and photomechanical effects.
Collapse
Affiliation(s)
- K P Walker
- U.S. Army Medical Research Detachment, Brooks City--Base, Texas, USA
| | | | | | | | | |
Collapse
|
23
|
da Rocha AB, Zanoni C, de Freitas GR, André C, Himelfarb S, Schneider RF, Grivicich I, Borges L, Schwartsmann G, Kaufmann M, Regner A. Serum Hsp70 as an Early Predictor of Fatal Outcome after Severe Traumatic Brain Injury in Males. J Neurotrauma 2005; 22:966-77. [PMID: 16156712 DOI: 10.1089/neu.2005.22.966] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Severe traumatic brain injury (TBI) is associated with a 35-70% mortality rate. Biochemical markers of cellular stress/injury have been proposed to indicate outcome after head injury. Therefore, our aim was to determine whether Hsp70 could be detected in the serum of patients after severe TBI and whether serum levels of Hsp70 correlate with primary outcome in severe TBI. Twenty consecutive male patients, victims of severe TBI (GCS 3-8), were enrolled in this prospective study. Clinical outcome variables of severe TBI comprised: survival, time for ICU discharge, and neurological assessment using the Glasgow Outcome Scale (GOS) at the ICU discharge. Venous blood samples were taken at admission in the ICU (study entry), 24 h later, and 7 days later. A control group consisting of eight healthy male volunteers was also included. Serum Hsp70 levels were measured by an enzyme-linked immunosorbent assay. Mean serum Hsp70 concentrations were significantly increased in the TBI (97.6, 48.1, and 39.2 ng/mL, at study entry, 24 h later, and 7 days later, respectively) compared with the control group (12.2 ng/mL). Severe TBI was associated with a 50% mortality rate. On study entry (mean time 10.8 h after injury), a higher proportion of patients with fatal outcome had elevated serum Hsp70 (mean 143.5 ng/mL) concentrations when compared with survivors (mean 51.6 ng/mL). There was a significant correlation between higher initial serum Hsp70 concentrations and fatal outcome. The sensitivity of serum Hsp70 predicting mortality according to the cutoff of 62 ng/mL is 70% within 20 h after injury. Increased serum Hsp70 levels may constitute an early predictor of unfavorable outcome in severe TBI in males.
Collapse
Affiliation(s)
- Adriana Brondani da Rocha
- Laboratório de Marcadores de Estresse Celular, Centro de Pesquisa em Ciências Médicas, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Feezor RJ, Paddock HN, Baker HV, Varela JC, Barreda J, Moldawer LL, Schultz GS, Mozingo DW. Temporal patterns of gene expression in murine cutaneous burn wound healing. Physiol Genomics 2004; 16:341-8. [PMID: 14966252 DOI: 10.1152/physiolgenomics.00101.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The global changes in gene expression in injured murine skin were characterized following a second-degree scald burn. Dorsal skin was harvested from uninjured and from burned mice at 2 h and at 3 and 14 days following immersion in 65 degrees C water for 45 s. Gene expression was surveyed using an Affymetrix U74Av2 GeneChip, and patterns of gene expression were analyzed using hierarchical clustering and supervised analysis. Burn injury produced significant alterations in the expression of a number of genes, with the greatest changes seen 3 and 14 days after the scald burn. Using a supervised analysis with a false discovery rate of 1% or 5%, differences in the expression of 192 or 1,116 genes, respectively, discriminated among the unburned skin and the three time points after the burn injury. Gene expression was primarily a transient and time-dependent upregulation. The expression of only 24 of the 192 discriminating genes was downregulated after the burn injury. No gene exhibited a sustained increase in expression over the entire 14 days following the burn injury. Gene ontologies revealed an integrated upregulation of inflammatory and protease genes at acute time intervals, and a diminution of cytoskeletal and muscle contractile genes at 3 or 14 days after the injury. Following a second-degree scald burn, global patterns of gene expression in the burn wound change dramatically over several weeks in a time-dependent manner, and these changes can be categorized based on the biological relevance of the genes.
Collapse
|
25
|
Dinh HK, Stavchansky S, Schuschereba ST, Stuck BE, Bowman PD. Cytoprotection against thermal injury: evaluation of herbimycin A by cell viability and cDNA arrays. THE PHARMACOGENOMICS JOURNAL 2003; 2:318-26. [PMID: 12439738 DOI: 10.1038/sj.tpj.6500120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2001] [Revised: 04/17/2002] [Accepted: 04/18/2002] [Indexed: 11/08/2022]
Abstract
Herbimycin A (HA), a known inducer of the heat shock response, was investigated for its ability to increase survival of a human cell line following thermal injury. Its effect on transcriptional activity was also assessed with cDNA arrays to provide new targets for cytoprotection. Pretreatment with at least 0.75 microg/ml HA significantly increased the fraction of cells surviving thermal injury by up to 50% (based on 8s exposure) compared to untreated controls. HA also significantly induced transcription of mRNA for HSP90 and HSP70, and protein production for HSP40 and HSP70. Gene expression profiling demonstrated that the most highly elevated genes included growth factors and transcription factors, while prominently suppressed genes included transcription factors and kinases. These results suggest that cytoprotection may be due to the contribution of the products of a significant number of genes in addition to the classic stress response genes, suggesting that modulation of these genes might induce thermotolerance and amelioration of thermal injury.
Collapse
Affiliation(s)
- H K Dinh
- Division of Pharmaceutics, The University of Texas at Austin, Austin, TX, USA
| | | | | | | | | |
Collapse
|
26
|
Sonna LA, Cullivan ML, Sheldon HK, Pratt RE, Lilly CM. Effect of hypoxia on gene expression by human hepatocytes (HepG2). Physiol Genomics 2003; 12:195-207. [PMID: 12464685 DOI: 10.1152/physiolgenomics.00104.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The full extent to which hypoxia produces gene expression changes in human cells is unknown. We used late-generation oligonucleotide arrays to catalog hypoxia-induced changes in gene expression in HepG2 cells. Five paired sets of cultures were subjected to either control (room air-5% CO(2)) or hypoxic (1% O(2)-5% CO(2)) conditions for 24 h, and RNA was analyzed on an Affymetrix cDNA array containing approximately 12,600 sequences. A statistically significant change in expression was shown by 2,908 sequences (1,255 increased and 1,653 decreased). The observed changes were highly concordant with published literature on hypoxic stress but showed relatively little overlap (12-22%) with changes in gene expression that have been reported to occur after heat stress in other systems. Of note, of these 2,908 sequences, only 387 (213 increased and 174 decreased) both exhibited changes in expression of twofold or greater and were highly expressed in at least three of the five experiments. We conclude that the effect of hypoxia on gene expression by HepG2 cells is broad, has a significant component of downregulation, and includes a relatively small number of genes whose response is truly independent of cell and stress type.
Collapse
Affiliation(s)
- Larry A Sonna
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA.
| | | | | | | | | |
Collapse
|
27
|
Sonna LA, Gaffin SL, Pratt RE, Cullivan ML, Angel KC, Lilly CM. Effect of acute heat shock on gene expression by human peripheral blood mononuclear cells. J Appl Physiol (1985) 2002; 92:2208-20. [PMID: 11960976 DOI: 10.1152/japplphysiol.01002.2001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the effect of heat shock on gene expression by normal human cells. Peripheral blood mononuclear cells (PBMCs) were obtained from healthy adults. Paired samples from each subject were subjected to either 20 min of heat shock (43 degrees C) or control (37 degrees C) conditions and then returned to 37 degrees C. RNA was isolated 160 min later, and five representative samples were analyzed on Affymetrix gene chip arrays containing approximately 12,600 probes. A biologically meaningful effect was defined as a statistically significant, twofold or greater difference in expression of sequences that were detected in all five experiments under control (downregulated sequences) or heat shock (upregulated sequences) conditions. Changes occurred in 395 sequences (227 increased by heat shock, 168 decreased), representing 353 Unigene numbers, in every functional category previously implicated in the heat shock response. By RT-PCR, we confirmed the findings for one upregulated sequence (Rad, a G protein) and one downregulated sequence (osteopontin, a cytokine). We conclude that heat shock causes extensive gene expression changes in PBMCs, affecting all functional categories of the heat shock response.
Collapse
Affiliation(s)
- Larry A Sonna
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Sonna LA, Fujita J, Gaffin SL, Lilly CM. Invited review: Effects of heat and cold stress on mammalian gene expression. J Appl Physiol (1985) 2002; 92:1725-42. [PMID: 11896043 DOI: 10.1152/japplphysiol.01143.2001] [Citation(s) in RCA: 417] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review examines the effects of thermal stress on gene expression, with special emphasis on changes in the expression of genes other than heat shock proteins (HSPs). There are approximately 50 genes not traditionally considered to be HSPs that have been shown, by conventional techniques, to change expression as a result of heat stress, and there are <20 genes (including HSPs) that have been shown to be affected by cold. These numbers will likely become much larger as gene chip array and proteomic technologies are applied to the study of the cell stress response. Several mechanisms have been identified by which gene expression may be altered by heat and cold stress. The similarities and differences between the cellular responses to heat and cold may yield key insights into how cells, and by extension tissues and organisms, survive and adapt to stress.
Collapse
Affiliation(s)
- Larry A Sonna
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760, USA.
| | | | | | | |
Collapse
|
29
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2447253 DOI: 10.1002/cfg.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|