1
|
Wang L, Li Y, Liu R, Li H, Wang L, Zeng X. The basic theory and application of the mirror neuron system in dysphagia after stroke. Behav Brain Res 2025; 481:115430. [PMID: 39828090 DOI: 10.1016/j.bbr.2025.115430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/05/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
The discovery of the brain's mirror neuron system enables researchers to gain a deeper understanding of social cognitive activities from the level of neural mechanisms. Mirror neurons are situated in bilateral brain regions, overlapping with the swallowing neural network, and there are complex network pathways connecting the two. Repeatedly inducing the activation of mirror neurons in stroke patients can enhance the brain's ability to relearn its original swallowing function, and then restore the swallowing neural network. With the deepening of related studies, rehabilitation therapies based on the mirror neuron system have been discussed and explored by numerous scholars and applied to the rehabilitation of dysphagia after stroke. In this paper, we review the basic theory of mirror neuron system, its mechanism, its relevance to the swallowing neural network, and the clinical application and research progress of related rehabilitation therapies in stroke dysphagia, with a view to triggering relevant researchers to comprehend and innovate the rehabilitation of dysphagia after stroke.
Collapse
Affiliation(s)
- Le Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yi Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruyao Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Heping Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Liugen Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xi Zeng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
2
|
Errante A, Ciullo G, Ziccarelli S, Piras A, Russo C, Fogassi L. Predicting imitative performance through cortico-cerebellar circuits: A multivariate and effective connectivity study. Neuroimage 2025; 308:121081. [PMID: 39929404 DOI: 10.1016/j.neuroimage.2025.121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/16/2025] Open
Abstract
The ability to accurately imitate actions requires the contribution of the Mirror Neuron System (MNS) and of prefrontal and cerebellar regions. The present study aimed at investigating whether functional interaction between cortical areas and the cerebellum during the observation of complex bimanual actions can predict individual ability to imitate the same actions. Nineteen healthy participants underwent an fMRI task in which they observed complex bimanual action sequences (paper folding) and subsequently imitated the same sequences. Control conditions included passive observation of bimanual actions, observation of reaching movements, observation of actions without intent to imitate, and observation of natural landscapes. Participants' imitation performance was video-recorded and scored for accuracy. Univariate whole-brain regression, multivariate pattern recognition, and generalized psychophysiological interaction analyses were used to assess whether activation patterns during the observation phase could predict subsequent imitation performance. The results showed that: (i) observing actions during the imitation condition activated parietal, premotor, prefrontal cortex, and lateral cerebellum; (ii) activation levels in the left anterior intraparietal sulcus (aIPS), ventral premotor cortex (PMv), dorsolateral prefrontal cortex (DLPFC), and right lateral cerebellum (CB VI) predicted imitation accuracy; (iii) a bilateral distribution pattern involving aIPS, PMv, DLPFC, and CB VI better predicted imitation performance than a whole-brain approach; (iv) increased effective connectivity between the right CB VI, left aIPS, and left DLPFC during observation-to-imitate condition correlated with higher imitation accuracy. These findings underscore the role of the cerebellum within the MNS in simulating observed actions and enabling their accurate reproduction.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Ciullo
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Settimio Ziccarelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Economics and Management, University of Parma, Parma, Italy
| | - Alessandro Piras
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Cristina Russo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
3
|
Guidali G, Arrigoni E, Bolognini N, Pisoni A. M1 large-scale network dynamics support human motor resonance and its plastic reshaping. Neuroimage 2025; 308:121082. [PMID: 39933658 DOI: 10.1016/j.neuroimage.2025.121082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025] Open
Abstract
Motor resonance - the facilitation of corticospinal excitability during action observation - is considered a proxy of Action Observation Network (AON) recruitment in humans, with profound implications for social cognition and action understanding. Despite extensive research, the neural underpinnings supporting motor resonance emergence and rewriting remain unexplored. In this study, we investigated the role of sensorimotor associative learning in neural mechanisms underlying the motor resonance phenomenon. To this aim, we applied cross-systems paired associative stimulation (PAS) to induce novel visuomotor associations in the human brain. This protocol, which repeatedly pairs transcranial magnetic stimulation (TMS) pulses over the primary motor cortex (M1) with visual stimuli of actions, drives the emergence of an atypical, PAS-conditioned motor resonance response. Using TMS and electroencephalography (EEG) co-registration during action observation, we tracked the M1 functional connectivity profile during this process to map the inter-areal connectivity profiles associated with typical and PAS-induced motor resonance phenomena. Besides confirming, at the corticospinal level, the emergence of newly acquired motor resonance responses at the cost of typical ones after PAS administration, our results reveal dissociable aspects of motor resonance in M1 interregional communication. On the one side, typical motor resonance effects acquired through the lifespan are associated with prominent M1 alpha-band and reduced beta-band connectivity, which might facilitate the corticospinal output while integrating visuomotor information. Conversely, the atypical PAS-induced motor resonance is linked to M1 beta-band cortical connectivity modulations, only partially overlapping with interregional communication patterns related to the typical mirroring responses. This evidence suggests that beta-phase synchronization may be the critical mechanism supporting the formation of motor resonance by coordinating the activity of motor regions during action observation, which also involves alpha-band top-down control of frontal areas. These findings provide new insights into the neural dynamics underlying (typical and newly acquired) motor resonance, highlighting the role of large-scale interregional communication in sensorimotor associative learning within the AON.
Collapse
Affiliation(s)
- Giacomo Guidali
- Department of Psychology and Milan Center for Neuroscience-NeuroMI, University of Milano-Bicocca, Milan, Italy.
| | - Eleonora Arrigoni
- Department of Psychology and Milan Center for Neuroscience-NeuroMI, University of Milano-Bicocca, Milan, Italy; PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nadia Bolognini
- Department of Psychology and Milan Center for Neuroscience-NeuroMI, University of Milano-Bicocca, Milan, Italy; Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| | - Alberto Pisoni
- Department of Psychology and Milan Center for Neuroscience-NeuroMI, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
4
|
Gambaretti M, Viganò L, Gallo M, Pratelli G, Sciortino T, Gay L, Conti Nibali M, Gallotti AL, Tariciotti L, Mattioli L, Bello L, Cerri G, Rossi M. From non-human to human primates: a translational approach to enhancing resection, safety, and indications in glioma surgery while preserving sensorimotor abilities. Front Integr Neurosci 2025; 19:1500636. [PMID: 40008262 PMCID: PMC11847902 DOI: 10.3389/fnint.2025.1500636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Since the pivotal studies of neurophysiologists in the early 20th century, research on brain functions in non-human primates has provided valuable insights into the neural mechanisms subserving neurological function. By using data acquired on non-human primates as a reference, important progress in knowledge of the human brain and its functions has been achieved. The translational impact allowed by this scientific effort must be recognized in the implementation of the current surgical techniques particularly in support of the neurosurgical approach to brain tumors. In the surgical treatment of brain tumors, the ability to maximally extend the resection allows an improvement in overall survival, progression-free survival, and quality of life of patients. The main goal, and, at the same time, the main challenge, of oncological neurological surgery is to avoid permanent neurological deficit while reaching maximal resection, particularly when the tumor infiltrates the neural network subserving motor functions. Brain mapping techniques were developed using neurophysiological probes to identify the areas and tracts subserving sensorimotor function, ensuring their preservation during the resection. During the last 20 years, starting from the classical "Penfield" technique, brain mapping has been progressively implemented. Among the major advancements was the introduction of high-frequency direct electrical stimulation. Its refinement, along with the complementary use of low-frequency stimulation, allowed a further refinement of stimulation protocols. In this narrative review, we propose an analysis of the process through which the knowledge acquired through experiments on non-human primates influenced and changed the current approach to neurosurgical procedures. We then describe the main brain mapping techniques used in the resection of tumors located within sensorimotor circuits. We also detail how these techniques allowed the acquisition of new data on the properties of areas and tracts underlying sensorimotor control, in turn fostering the design of new tools to navigate within cortical and subcortical areas, that were before deemed to be "sacred and untouchable."
Collapse
Affiliation(s)
- Matteo Gambaretti
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luca Viganò
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- IRCCS Ospedale Galeazzi-Sant’Ambrogio, Milan, Italy
| | - Matteo Gallo
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Giovanni Pratelli
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Alberto Luigi Gallotti
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Leonardo Tariciotti
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Luca Mattioli
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- IRCCS Ospedale Galeazzi-Sant’Ambrogio, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Florio TM. Emergent Aspects of the Integration of Sensory and Motor Functions. Brain Sci 2025; 15:162. [PMID: 40002495 PMCID: PMC11853489 DOI: 10.3390/brainsci15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
This article delves into the intricate mechanisms underlying sensory integration in the executive control of movement, encompassing ideomotor activity, predictive capabilities, and motor control systems. It examines the interplay between motor and sensory functions, highlighting the role of the cortical and subcortical regions of the central nervous system in enhancing environmental interaction. The acquisition of motor skills, procedural memory, and the representation of actions in the brain are discussed emphasizing the significance of mental imagery and training in motor function. The development of this aspect of sensorimotor integration control can help to advance our understanding of the interactions between executive motor control, cortical mechanisms, and consciousness. Bridging theoretical insights with practical applications, it sets the stage for future innovations in clinical rehabilitation, assistive technology, and education. The ongoing exploration of these domains promises to uncover new pathways for enhancing human capability and well-being.
Collapse
Affiliation(s)
- Tiziana M Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
6
|
Kitamura M, Ishikura T, Kamibayashi K. Corticospinal excitability is not facilitated by observation of asymmetric walking on a split-belt treadmill in humans. Neuroreport 2025; 36:140-144. [PMID: 39708342 PMCID: PMC11781542 DOI: 10.1097/wnr.0000000000002129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
The present study aimed to investigate changes in corticospinal excitability (CSE) by observing unnatural walking patterns on a treadmill with different left and right belt speeds. Fifteen healthy adults watched video clips (10 s each) of walking under the tied condition (left and right treadmill belt speeds are the same), walking during the initial and late periods under the split-belt condition (left and right treadmill belt speeds are different), and the static fixation cross (control condition) in random order. The step lengths of the actor in the walking clips were almost symmetric under the tied condition and during the late period under the split-belt condition but largely asymmetric during the initial period under the split-belt condition. We recorded the motor-evoked potential (MEP) of the left tibialis anterior muscle during the observation of video clips by delivering transcranial magnetic stimulation to the right primary motor cortex. The MEP amplitude was significantly higher when observing walking under the tied condition and walking during the late period under the split-belt condition than the control condition. However, the MEP amplitudes during the observation of walking during the initial period under the split-belt condition and the control condition were not significantly different. These results indicate that observation of symmetric walking, even under the split-belt condition, facilitates CSE, whereas observation of unnatural asymmetric walking does not. Therefore, it is suggested that familiarity with observed movements affects CSE even in the observation of semi-automatic movements such as walking.
Collapse
Affiliation(s)
| | - Tadao Ishikura
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kiyotaka Kamibayashi
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
7
|
Stillesjö S, Hjärtström H, Johansson A, Rudolfsson T, Säfström D, Domellöf E. Action execution and observation in autistic adults: A systematic review of fMRI studies. Autism Res 2025; 18:238-260. [PMID: 39673256 PMCID: PMC11826028 DOI: 10.1002/aur.3291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Motor impairments are common in individuals with autism spectrum disorder (ASD) although less is known about the neural mechanisms related to such difficulties. This review provides an outline of functional magnetic resonance imaging (fMRI) findings associated with execution and observation of naturalistic actions in autistic adults. Summarized outcomes revealed that adults with ASD recruit similar brain regions as neurotypical adults during action execution and during action observation, although with a difference in direction and/or magnitude. For action execution, this included higher and lower activity bilaterally in the precentral cortex, the parietal cortex, the inferior frontal gyrus (IFG), the middle temporal gyrus (MTG), the occipital cortex, and the cerebellum. For action observation, differences mainly concerned both higher and lower activity in bilateral IFG and right precentral gyrus, and lower activity in MTG. Activity overlaps between action execution and observation highlight atypical recruitment of IFG, MTG, precentral, and parieto-occipital regions in ASD. The results show atypical recruitment of brain regions subserving motor planning and/or predictive control in ASD. Atypical brain activations during action observation, and the pattern of activity overlaps, indicate an association with difficulties in understanding others' actions and intentions.
Collapse
Affiliation(s)
- Sara Stillesjö
- Department of PsychologyUmeå UniversityUmeåSweden
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
| | - Hanna Hjärtström
- Department of PsychologyUmeå UniversityUmeåSweden
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
| | - Anna‐Maria Johansson
- Department of PsychologyUmeå UniversityUmeåSweden
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Health, Education and TechnologyLuleå University of TechnologyLuleåSweden
| | - Thomas Rudolfsson
- Department of PsychologyUmeå UniversityUmeåSweden
- Department of Occupational Health, Psychology and Sports SciencesUniversity of GävleGävleSweden
| | - Daniel Säfström
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
| | - Erik Domellöf
- Department of PsychologyUmeå UniversityUmeåSweden
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
| |
Collapse
|
8
|
Benso F, Chiorri C, Ardu E, Venuti P, Pasqualotto A. Beyond modular and non-modular states: theoretical considerations, exemplifications, and practical implications. Front Psychol 2025; 16:1456587. [PMID: 39917736 PMCID: PMC11799256 DOI: 10.3389/fpsyg.2025.1456587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025] Open
Abstract
The concept of modularity in neuropsychology remains a topic of significant debate, especially when considering complex, non-innate, hyper-learned, and adaptable modular systems. This paper critically examines the evolution of cognitive modularity, addressing the challenges of integrating foundational theories with recent empirical and theoretical developments. We begin by analyzing the contributions of Sternberg and Fodor, whose foundational work established the concept of specialized, encapsulated modules within cognitive processes, particularly in the domains of perception and language. Building on this, we explore Carruthers' theory of massive modularity, which extends the modular framework to broader cognitive functions, though we reject its application to central amodal systems, which are overarching and resistant to modularization. We also evaluate recent discoveries, such as mirror neurons and the neural reuse hypothesis, and their implications for traditional modularity models. Furthermore, we investigate the dynamic interactions between the Default Mode Network (DMN), Central Executive Network (CEN), and Salience Network (SN), highlighting their roles in shifting between automatic and controlled states. This exploration refines existing theoretical models, distinguishing innate systems, genetically predisposed ones, and those hyper-learned through working memory, as exemplified by the three-level model of Moscovitch and Umiltà. We address the blurred boundary between domain-specific and domain-general systems, proposing modular versus non-modular states-indexed by automaticity and mandatoriness-as key discriminators. This systematization, supported by empirical literature and our own research, provides a more stable framework for understanding modular systems, avoiding interpretive confusion across varying levels of complexity. These insights advance both theoretical understanding and practical applications in cognitive science.
Collapse
Affiliation(s)
- Francesco Benso
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Carlo Chiorri
- Department of Education Sciences, University of Genoa, Genoa, Italy
| | - Eleonora Ardu
- Associazione Neuroscienze Cognitive Clinica Ricerca Intervento (ANCCRI), Genova, Italy
| | - Paola Venuti
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Angela Pasqualotto
- Faculty of Psychology and Education Sciences (FPSE), University of Geneva, Geneva, Switzerland
- Department of Education and Learning, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| |
Collapse
|
9
|
Kadambi A, Erlikhman G, Johnson M, Monti MM, Iacoboni M, Lu H. Self-Awareness from Whole-Body Movements. J Neurosci 2025; 45:e0478242024. [PMID: 39496486 PMCID: PMC11735670 DOI: 10.1523/jneurosci.0478-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/14/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024] Open
Abstract
Humans can recognize their whole-body movements even when displayed as dynamic dot patterns. The sparse depiction of whole-body movements, coupled with a lack of visual experience watching ourselves in the world, has long implicated nonvisual mechanisms to self-action recognition. Using general linear modeling and multivariate analyses on human brain imaging data from male and female participants, we aimed to identify the neural systems for this ability. First, we found that cortical areas linked to motor processes, including frontoparietal and primary somatomotor cortices, exhibit greater engagement and functional connectivity when recognizing self-generated versus other-generated actions. Next, we show that these regions encode self-identity based on motor familiarity, even after regressing out idiosyncratic visual cues using multiple regression representational similarity analysis. Last, we found the reverse pattern for unfamiliar individuals: encoding localized to occipitotemporal visual regions. These findings suggest that self-awareness from actions emerges from the interplay of motor and visual processes.
Collapse
Affiliation(s)
- Akila Kadambi
- Department of Psychology, University of California Los Angeles, Los Angeles, California 90095
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Gennady Erlikhman
- Department of Psychology, University of California Los Angeles, Los Angeles, California 90095
| | - Micah Johnson
- Department of Psychology, University of California Los Angeles, Los Angeles, California 90095
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, California 90095
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
- Department of Neurosurgery, Brain Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Hongjing Lu
- Department of Psychology, University of California Los Angeles, Los Angeles, California 90095
- Department of Statistics, University of California Los Angeles, Los Angeles, California 90095
| |
Collapse
|
10
|
Giacolini T, Alcaro A, Conversi D, Tarsitani L. Depression in adolescence and young adulthood: the difficulty to integrate motivational/emotional systems. Front Psychol 2025; 15:1391664. [PMID: 39834756 PMCID: PMC11743547 DOI: 10.3389/fpsyg.2024.1391664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
Depression is presented as a multi-factorial bio-psycho-social expression that has evolved primarily as an effect of stressors related to the motivational/emotional systems that regulate the BrainMind in our relationship with conspecifics. These stressors may be caused by two sources of threat, firstly, the loss of bonding with the caregiver and later with a partner and/or group which relates to the SEPARATION (PANIC/GRIEF) system, secondly, social defeat as an expression of the social competition and social dominance. The sexual maturity drives the individual to social competition and social dominance, even if the latter often occurs before sexual maturity, e.g., chickens, dogs, non-human primates, and humans. Depression is an evolutionarily conserved mechanism in mammals to terminate both separation anxiety, so as to protect the vulnerable social brain from the consequences of prolonged separation anxiety, and the stress of social competition when social defeat is predictable. Adolescence and Young adulthood are particularly susceptible to these two types of threat because of human developmental characteristics that are summarized by the term neoteny. This refers to the slowing down of growth and development, resulting in both a prolonged period of dependence on a caring/protective adult and the persistence of juvenile characteristics throughout life. Therefore, neoteny makes the transition from childhood to sexual maturity more dramatic, making the integration of the SEPARATION (PANIC/GRIEF) system with the dynamics of social competition and dominance more stressful and a source of depression. Stress is an expression of the HPA-Hypothalamic-Pituitary-Adrenal axis that articulates with other systems, mainly the autonomic nervous system and the immune-inflammatory system. The latter is believed to be one of the most significant components in the dynamics of depressive processes, connected to the prodromes of its activation in childhood, under the pressure of environmental and relational stressors which can lead to learned helplessness. The recurrence of stressors makes it easier for the immune-inflammatory system to be activated in later life, which could make a significant contribution to the establishment of a depressive disease. The possible contribution of children's identification processes with their parents' depressive personalities through observational learning is considered.
Collapse
Affiliation(s)
- Teodosio Giacolini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Antonio Alcaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - David Conversi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Tarsitani
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Chiappini E, Turrini S, Fiori F, Benassi M, Tessari A, di Pellegrino G, Avenanti A. You Are as Old as the Connectivity You Keep: Distinct Neurophysiological Mechanisms Underlying Age-Related Changes in Hand Dexterity and Strength. Arch Med Res 2025; 56:103031. [PMID: 39567344 DOI: 10.1016/j.arcmed.2024.103031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Aging can lead to a decline in motor control. While age-related motor impairments have been documented, the underlying changes in cortico-cortical interactions remain poorly understood. METHODS We took advantage of the high temporal resolution of dual-site transcranial magnetic stimulation (dsTMS) to investigate how communication between higher-order rostral premotor regions and the primary motor cortex (M1) influences motor control in young and elderly adults. We assessed the dynamics of connectivity from the inferior frontal gyrus (IFG) or pre-supplementary motor area (preSMA) to M1, by testing how conditioning of the IFG/preSMA affected the amplitude of motor evoked potentials (MEPs) induced by M1 stimulation at different temporal intervals. Moreover, we explored how age-related changes in premotor-M1 interactions relate to motor performance. RESULTS Our results show that both young and elderly adults had excitatory IFG-M1 and preSMA-M1 interactions, but the two groups' timing and strength differed. In young adults, IFG-M1 interactions were early and time-specific (8 ms), whereas in older individuals, they were delayed and more prolonged (12-16 ms). PreSMA-M1 interactions emerged early (6 ms) and peaked at 10-12 ms in young individuals but were attenuated in older individuals. Critically, a connectivity profile of the IFG-M1 circuit like that of the young cohort predicted better dexterity in older individuals, while preserved preSMA-M1 interactions predicted greater strength, suggesting that age-related motor decline is associated with specific changes in premotor-motor networks. CONCLUSIONS Preserving youthful motor network connectivity in older individuals is related to maintaining motor performance and providing information for interventions targeting aging effects on behavior.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy; NeXT: Unità di Ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Dipartimento di Medicina, Università Campus Bio-Medico, Rome, Italy
| | - Mariagrazia Benassi
- Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Alessia Tessari
- Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giuseppe di Pellegrino
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca, Chile.
| |
Collapse
|
12
|
Di Luzio P, Brady L, Turrini S, Romei V, Avenanti A, Sel A. Investigating the effects of cortico-cortical paired associative stimulation in the human brain: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 167:105933. [PMID: 39481669 DOI: 10.1016/j.neubiorev.2024.105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Recent decades have witnessed a rapid development of novel neuromodulation techniques that allow direct manipulation of cortical pathways in the human brain. These techniques, known as cortico-cortical paired stimulation (ccPAS), apply magnetic stimulation over two cortical regions altering interregional connectivity. This review evaluates ccPAS's effectiveness to induce plastic changes in cortical pathways in the healthy brain. A systematic database search identified 41 studies investigating the effect of ccPAS on neurophysiological or behavioural measures, and a subsequent multilevel meta-analysis focused on the standardized mean differences to assess ccPAS's efficacy. Most studies report significant neurophysiological and behavioural changes from ccPAS interventions across several brain networks, consistently showing medium effect sizes. Moderator analyses revealed limited influence of experimental manipulations on effect sizes. The multivariate approach and lack of small-study bias suggest reliable effect estimates. ccPAS is a promising tool to manipulate neuroplasticity in cortical pathways, showing reliable effects on brain cortical networks. Important areas for further research on the influence of experimental procedures and the potential of ccPAS for clinical interventions are highlighted.
Collapse
Affiliation(s)
- Paolo Di Luzio
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; Essex ESNEFT Psychological Research Unit for Behaviour, Health and Wellbeing, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | - Laura Brady
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Sonia Turrini
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum-Università di Bologna, Campus di Cesena, Via Rasi e Spinelli 176, Cesena 47521, Italy
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum-Università di Bologna, Campus di Cesena, Via Rasi e Spinelli 176, Cesena 47521, Italy; Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid 28015, Spain
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum-Università di Bologna, Campus di Cesena, Via Rasi e Spinelli 176, Cesena 47521, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca 3460000, Chile
| | - Alejandra Sel
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; Essex ESNEFT Psychological Research Unit for Behaviour, Health and Wellbeing, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
13
|
Sun L, He S, Cheng B, Shen Y, Zhao W, Tu R, Zhang S. White Matter Microstructure Alteration in Patients with Drug-Induced Parkinsonism: A Diffusion Tensor Imaging Study with Tract-Based Spatial Statistics. J Integr Neurosci 2024; 23:202. [PMID: 39613471 DOI: 10.31083/j.jin2311202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 12/01/2024] Open
Abstract
INTRODUCTION This research aimed to investigate the pathophysiological mechanism of how drug-induced parkinsonism (DIP) affects the integrity of the white matter (WM) fiber microstructure as measured by magnetic resonance diffusion tensor image (DTI) fractional anisotropy (FA) and mean diffusivity (MD). METHODS We recruited 17 participants diagnosed with DIP, 20 Parkinson's disease (PD) patients, and 16 normal controls (NCs) with a similar age, gender, and years of education. Subsequently, all participants underwent DTI magnetic resonance imaging scanning. To analyze the data, we utilized the software packages Functional MRI of the Brain Centre (FMRIB) Diffusion Toolbox (FDT), developed by the FMRIB laboratory at Oxford University, and tract-based spatial statistics (TBSS). RESULTS The Argentina Hyposmia Rating Scale (AHRS) scores of patients in DIP group were markedly higher than those in PD patients group. Compared with the NC group, the FA values in the genu and body of the corpus callosum (CC), anterior limb of the right internal capsule, bilateral anterior corona radiata, bilateral superior corona radiata, right external capsule, and right superior fronto-occipital fasciculus (could be a part of the anterior internal capsule) were significantly decreased in the DIP group; however, no significant cluster was found in MD. CONCLUSIONS The present study provides novel insights into the alterations in WM microstructure among DIP patients, suggesting that these methodologies have the potential to aid in the early diagnosis and treatment of DIP.
Collapse
Affiliation(s)
- Ling Sun
- Department of Geriatrics, Nanchong Central Hospital, 637000 Nanchong, Sichuan, China
| | - Shijia He
- Department of Neurology, Meishan People's Hospital, 620010 Meishan, Sichuan, China
| | - Bo Cheng
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Yao Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Wenhao Zhao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Rong Tu
- Department of Neurology, Nanchong Central Hospital, 637000 Nanchong, Sichuan, China
| | - Shushan Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| |
Collapse
|
14
|
Mou H, Liu L, Zhou T, Yan Z, Wang Y. Action expectancy modulates activity in the mirror neuron system and mentalizing system. Neuroimage 2024; 300:120876. [PMID: 39343111 DOI: 10.1016/j.neuroimage.2024.120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/01/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Action understanding involves two distinct processing levels that engage separate neural mechanisms: perception of concrete kinematic information and recognition of abstract action intentions. The mirror neuron system and the mentalizing system have both been linked to concrete action and abstract information processing, but their specific roles remain debatable. Here, we conducted a functional magnetic resonance imaging study with 26 participants who passively observed expected and unexpected actions. We performed whole-brain activation, region of interest, and effective connectivity analyses to investigate the neural correlates of these actions. Whole-brain activation analyses revealed that expected actions were associated with increased activation in the left medial superior frontal gyrus, while unexpected actions were linked to heightened activity in the left supramarginal gyrus, left superior parietal lobule, right inferior temporal gyrus, and left middle frontal gyrus. Region of interest analyses demonstrated that the left ventral premotor cortex exhibited greater activation during the observation of expected actions compared to unexpected actions, while the left inferior frontal gyrus, left superior parietal lobule, and left precuneus showed stronger activation during the observation of unexpected actions. Effective connectivity was observed between the left ventral premotor cortex and the left angular gyrus, left intraparietal sulcus, left dorsal premotor cortex, and left ventromedial prefrontal cortex with the middle frontal gyrus when observing unexpected, but not expected, actions. These findings suggest that expected actions are primarily processed by the mirror neuron system, whereas unexpected actions engage both the mirror neuron system and the mentalizing system, with these systems playing complementary roles in the understanding of unexpected actions.
Collapse
Affiliation(s)
- Hong Mou
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China
| | - Likai Liu
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China
| | - Ting Zhou
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China
| | - Zhurui Yan
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China
| | - Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
15
|
Del Vecchio M, Avanzini P, Gerbella M, Costa S, Zauli FM, d'Orio P, Focacci E, Sartori I, Caruana F. Anatomo-functional basis of emotional and motor resonance elicited by facial expressions. Brain 2024; 147:3018-3031. [PMID: 38365267 DOI: 10.1093/brain/awae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024] Open
Abstract
Simulation theories predict that the observation of other's expressions modulates neural activity in the same centres controlling their production. This hypothesis has been developed by two models, postulating that the visual input is directly projected either to the motor system for action recognition (motor resonance) or to emotional/interoceptive regions for emotional contagion and social synchronization (emotional resonance). Here we investigated the role of frontal/insular regions in the processing of observed emotional expressions by combining intracranial recording, electrical stimulation and effective connectivity. First, we intracranially recorded from prefrontal, premotor or anterior insular regions of 44 patients during the passive observation of emotional expressions, finding widespread modulations in prefrontal/insular regions (anterior cingulate cortex, anterior insula, orbitofrontal cortex and inferior frontal gyrus) and motor territories (Rolandic operculum and inferior frontal junction). Subsequently, we electrically stimulated the activated sites, finding that (i) in the anterior cingulate cortex and anterior insula, the stimulation elicited emotional/interoceptive responses, as predicted by the 'emotional resonance model'; (ii) in the Rolandic operculum it evoked face/mouth sensorimotor responses, in line with the 'motor resonance' model; and (iii) all other regions were unresponsive or revealed functions unrelated to the processing of facial expressions. Finally, we traced the effective connectivity to sketch a network-level description of these regions, finding that the anterior cingulate cortex and the anterior insula are reciprocally interconnected while the Rolandic operculum is part of the parieto-frontal circuits and poorly connected with the former. These results support the hypothesis that the pathways hypothesized by the 'emotional resonance' and the 'motor resonance' models work in parallel, differing in terms of spatio-temporal fingerprints, reactivity to electrical stimulation and connectivity patterns.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Sara Costa
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Flavia Maria Zauli
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Piergiorgio d'Orio
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Elena Focacci
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ivana Sartori
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| |
Collapse
|
16
|
Dastgheib SS, Wang W, Kaufmann JM, Moratti S, Schweinberger SR. Mu-Suppression Neurofeedback Training Targeting the Mirror Neuron System: A Pilot Study. Appl Psychophysiol Biofeedback 2024; 49:457-471. [PMID: 38739182 PMCID: PMC11310260 DOI: 10.1007/s10484-024-09643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Neurofeedback training (NFT) is a promising adjuvant intervention method. The desynchronization of mu rhythm (8-13 Hz) in the electroencephalogram (EEG) over centro-parietal areas is known as a valid indicator of mirror neuron system (MNS) activation, which has been associated with social skills. Still, the effect of neurofeedback training on the MNS requires to be well investigated. The present study examined the possible impact of NFT with a mu suppression training protocol encompassing 15 NFT sessions (45 min each) on 16 healthy neurotypical participants. In separate pre- and post-training sessions, 64-channel EEG was recorded while participants (1) observed videos with various types of movements (including complex goal-directed hand movements and social interaction scenes) and (2) performed the "Reading the Mind in the Eyes Test" (RMET). EEG source reconstruction analysis revealed statistically significant mu suppression during hand movement observation across MNS-attributed fronto-parietal areas after NFT. The frequency analysis showed no significant mu suppression after NFT, despite the fact that numerical mu suppression appeared to be visible in a majority of participants during goal-directed hand movement observation. At the behavioral level, RMET accuracy scores did not suggest an effect of NFT on the ability to interpret subtle emotional expressions, although RMET response times were reduced after NFT. In conclusion, the present study exhibited preliminary and partial evidence that mu suppression NFT can induce mu suppression in MNS-attributed areas. More powerful experimental designs and longer training may be necessary to induce substantial and consistent mu suppression, particularly while observing social scenarios.
Collapse
Affiliation(s)
- Samaneh S Dastgheib
- Department for General Psychology and Cognitive Neuroscience, Institute of Psychology, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany
- Social Potential in Autism Research Unit, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany
- Center for Intervention and Research On Adaptive and Maladaptive Brain Circuits Underlying, Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Wenbo Wang
- Department for General Psychology and Cognitive Neuroscience, Institute of Psychology, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany
- Social Potential in Autism Research Unit, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany
- Center for Intervention and Research On Adaptive and Maladaptive Brain Circuits Underlying, Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Jürgen M Kaufmann
- Department for General Psychology and Cognitive Neuroscience, Institute of Psychology, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany
- Social Potential in Autism Research Unit, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany
| | - Stephan Moratti
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Stefan R Schweinberger
- Department for General Psychology and Cognitive Neuroscience, Institute of Psychology, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany.
- Social Potential in Autism Research Unit, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany.
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
17
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
18
|
Du B, Zhang W, Chen L, Deng X, Li K, Lin F, Jia F, Su S, Tang W. Higher or lower? Interpersonal behavioral and neural synchronization of movement imitation in autistic children. Autism Res 2024; 17:1876-1901. [PMID: 39118396 DOI: 10.1002/aur.3205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
How well autistic children can imitate movements and how their brain activity synchronizes with the person they are imitating have been understudied. The current study adopted functional near-infrared spectroscopy (fNIRS) hyperscanning and employed a task involving real interactions involving meaningful and meaningless movement imitation to explore the fundamental nature of imitation as a dynamic and interactive process. Experiment 1 explored meaningful and meaningless gesture imitation. The results revealed that autistic children exhibited lower imitation accuracy and behavioral synchrony than non-autistic children when imitating both meaningful and meaningless gestures. Specifically, compared to non-autistic children, autistic children displayed significantly higher interpersonal neural synchronization (INS) in the right inferior parietal lobule (r-IPL) (channel 12) when imitating meaningful gestures but lower INS when imitating meaningless gestures. Experiment 2 further investigated the imitation of four types of meaningless movements (orofacial movements, transitive movements, limb movements, and gestures). The results revealed that across all four movement types, autistic children exhibited significantly lower imitation accuracy, behavioral synchrony, and INS in the r-IPL (channel 12) than non-autistic children. This study is the first to identify INS as a biomarker of movement imitation difficulties in autistic individuals. Furthermore, an intra- and interindividual imitation mechanism model was proposed to explain the underlying causes of movement imitation difficulties in autistic individuals.
Collapse
Affiliation(s)
- Bang Du
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Wenjun Zhang
- School of Education and Psychology, University of Jinan, Jinan, China
- Department of Special Education, East China Normal University, Shanghai, China
| | - Liu Chen
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Xiaorui Deng
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Kaiyun Li
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Fengxun Lin
- School of Education and Psychology, University of Jinan, Jinan, China
- School of Education, Qingdao Huanghai University, Qingdao, China
| | - Fanlu Jia
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Shuhua Su
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Wanzhi Tang
- Faculty of Arts, Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
19
|
Errante A, Beccani L, Verzelloni J, Maggi I, Filippi M, Bressi B, Ziccarelli S, Bozzetti F, Costi S, Ferrari A, Fogassi L. Effectiveness of action observation treatment based on pathological model in hemiplegic children: a randomized-controlled trial. Eur J Phys Rehabil Med 2024; 60:643-655. [PMID: 38814197 PMCID: PMC11391395 DOI: 10.23736/s1973-9087.24.08413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
BACKGROUND Action observation treatment (AOT) is an innovative therapeutic approach consisting in the observation of actions followed by their subsequent repetition. The standard version of AOT consists in the observation/imitation of a typically developed individual, which is proposed as model (TDM-AOT). AIM This study aims to compare the effectiveness of AOT based on a pathological ameliorative model (PAM-AOT) versus TDM-AOT in improving upper limb ability in children with unilateral cerebral palsy (UCP). DESIGN The study consists in a prospective randomized controlled, evaluator-blinded trial (RCT), with two active arms, designed to evaluate the effectiveness of AOT based on pathological model (PAM-AOT) as compared to a standard AOT based on TDM (TDM-AOT). SETTING The 3-week AOT program was administered in a clinical setting. For some patients, the treatment was delivered at participant's home with the remote support of the physiotherapist (tele-rehabilitation). POPULATION Twenty-six children with UCP (mean age 10.5±3.09 years; 14 females) participated in the study, with the experimental group observing a pathological model and the control group observing a typically developed model. METHODS Motor assessments included unimanual and bimanual ability measures conducted at T0 (baseline, before the treatment), T1 (3 weeks after T0), T2 (8-12 weeks after treatment) and T3 (24-28 weeks after treatment); a subset of 16 patients also underwent fMRI motor assessment. Generalized Estimating Equations models were used for statistical analysis. RESULTS Both groups showed significant improvement in bimanual function (GEE, Wald 106.16; P<0.001) at T1 (P<0.001), T2 (P<0.001), and T3 (P<0.001). Noteworthy, the experimental group showed greater improvement than the control group immediately after treatment (P<0.013). Both groups exhibited similar improvement in unimanual ability (GEE, Wald 25.49; P<0.001). The fMRI assessments revealed increased activation of ventral premotor cortex after treatment in the experimental compared with control group (GEE, Wald 6.26; P<0.012). CONCLUSIONS Overall, this study highlights the effectiveness of PAM-AOT in achieving short-term improvement of upper limb ability in children with UCP. CLINICAL REHABILITATION IMPACT These findings have significant implications for rehabilitative interventions based on AOT in hemiplegic children, by proposing a non-traditional approach focused on the most functional improvement achievable by imitating a pathological model.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Beccani
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Jessica Verzelloni
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Irene Maggi
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mariacristina Filippi
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Barbara Bressi
- Physical Medicine and Rehabilitation Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | | | - Stefania Costi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Adriano Ferrari
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy -
| |
Collapse
|
20
|
Faccioli S, Sassi S, Pagliano E, Maghini C, Perazza S, Siani MF, Sgherri G, Farella GM, Foscan M, Viganò M, Sghedoni S, Bai AV, Borelli G, Ferrari A. Care Pathways in Rehabilitation for Children and Adolescents with Cerebral Palsy: Distinctiveness of the Adaptation to the Italian Context. CHILDREN (BASEL, SWITZERLAND) 2024; 11:852. [PMID: 39062302 PMCID: PMC11275177 DOI: 10.3390/children11070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND In 2020, a multiprofessional panel was set up in collaboration with the Italian FightTheStroke Foundation family association to produce evidence-based recommendations for the management and neuromotor rehabilitation of persons with cerebral palsy aged 2-18 years to implement in clinical practice in Italy. METHODS The recommendations of these care pathways were developed according to the American Academy for Cerebral Palsy and Developmental Medicine guidelines for Care Pathways Development and the Grading of Recommendations Assessment Development and Evaluation working group for adoption, adaptation, or de novo development of recommendations from high-quality guidelines (GRADE-ADOLOPMENT). RESULTS Four strong positive recommendations were developed regarding comprehensive management, and twenty-four addressed neuromotor treatment. CONCLUSIONS A holistic, individualized approach was affirmed in terms of both multidimensional patient profile and interdisciplinary management in a network with the school where children and adolescents are integrated. It was defined that all motor rehabilitation approaches must be individually tailored considering age and developmentally appropriate activities as interventions and goals, in light of the reference curves addressing prognosis for Gross Motor Function and Manual Ability Classification Systems. Intervention must be structured with adaptations of the task and/or of the context (objects and environment) based on the analysis of the child's skills to support motivation and avoid frustration.
Collapse
Affiliation(s)
- Silvia Faccioli
- Paediatric Rehabilitation Unit, Azienda Unità Sanitaria Locale IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (S.S.); (S.P.); (S.S.); (G.B.); (A.F.)
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Silvia Sassi
- Paediatric Rehabilitation Unit, Azienda Unità Sanitaria Locale IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (S.S.); (S.P.); (S.S.); (G.B.); (A.F.)
| | - Emanuela Pagliano
- Neurodevelopmental Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.P.); (M.F.); (M.V.)
| | - Cristina Maghini
- Functional Rehabilitation Unit, IRCCS E. Medea, Associazione La Nostra Famiglia, 23842 Bosisio Parini, Italy;
| | - Silvia Perazza
- Paediatric Rehabilitation Unit, Azienda Unità Sanitaria Locale IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (S.S.); (S.P.); (S.S.); (G.B.); (A.F.)
| | - Maria Francesca Siani
- Physical Medicine and Rehabilitation Unit, S. Maria delle Croci Hospital, Azienda Unità Sanitaria Locale Romagna, 48121 Ravenna, Italy;
| | - Giada Sgherri
- Developmental Neuroscience Clinical Department, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (G.S.); (A.V.B.)
| | | | - Maria Foscan
- Neurodevelopmental Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.P.); (M.F.); (M.V.)
| | - Marta Viganò
- Neurodevelopmental Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.P.); (M.F.); (M.V.)
| | - Silvia Sghedoni
- Paediatric Rehabilitation Unit, Azienda Unità Sanitaria Locale IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (S.S.); (S.P.); (S.S.); (G.B.); (A.F.)
| | - Arianna Valeria Bai
- Developmental Neuroscience Clinical Department, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (G.S.); (A.V.B.)
| | - Giulia Borelli
- Paediatric Rehabilitation Unit, Azienda Unità Sanitaria Locale IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (S.S.); (S.P.); (S.S.); (G.B.); (A.F.)
| | - Adriano Ferrari
- Paediatric Rehabilitation Unit, Azienda Unità Sanitaria Locale IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (S.S.); (S.P.); (S.S.); (G.B.); (A.F.)
| |
Collapse
|
21
|
Turrini S, Fiori F, Bevacqua N, Saracini C, Lucero B, Candidi M, Avenanti A. Spike-timing-dependent plasticity induction reveals dissociable supplementary- and premotor-motor pathways to automatic imitation. Proc Natl Acad Sci U S A 2024; 121:e2404925121. [PMID: 38917006 PMCID: PMC11228524 DOI: 10.1073/pnas.2404925121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024] Open
Abstract
Humans tend to spontaneously imitate others' behavior, even when detrimental to the task at hand. The action observation network (AON) is consistently recruited during imitative tasks. However, whether automatic imitation is mediated by cortico-cortical projections from AON regions to the primary motor cortex (M1) remains speculative. Similarly, the potentially dissociable role of AON-to-M1 pathways involving the ventral premotor cortex (PMv) or supplementary motor area (SMA) in automatic imitation is unclear. Here, we used cortico-cortical paired associative stimulation (ccPAS) to enhance or hinder effective connectivity in PMv-to-M1 and SMA-to-M1 pathways via Hebbian spike-timing-dependent plasticity (STDP) to test their functional relevance to automatic and voluntary motor imitation. ccPAS affected behavior under competition between task rules and prepotent visuomotor associations underpinning automatic imitation. Critically, we found dissociable effects of manipulating the strength of the two pathways. While strengthening PMv-to-M1 projections enhanced automatic imitation, weakening them hindered it. On the other hand, strengthening SMA-to-M1 projections reduced automatic imitation but also reduced interference from task-irrelevant cues during voluntary imitation. Our study demonstrates that driving Hebbian STDP in AON-to-M1 projections induces opposite effects on automatic imitation that depend on the targeted pathway. Our results provide direct causal evidence of the functional role of PMv-to-M1 projections for automatic imitation, seemingly involved in spontaneously mirroring observed actions and facilitating the tendency to imitate them. Moreover, our findings support the notion that SMA exerts an opposite gating function, controlling M1 to prevent overt motor behavior when inadequate to the context.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521Cesena, Italy
| | - Francesca Fiori
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521Cesena, Italy
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, 00128Roma, Italy
| | - Naomi Bevacqua
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521Cesena, Italy
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185Roma, Italy
| | - Chiara Saracini
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, 3460000Talca, Chile
| | - Boris Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, 3460000Talca, Chile
| | - Matteo Candidi
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185Roma, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, 3460000Talca, Chile
| |
Collapse
|
22
|
Maimaitiaili D, Shi J, Shan C, Jin L, Gu Y, Li Y, Shu J. Action observation therapy impact on mirror neurons combined with acupuncture for upper limb motor impairment rehabilitation in stroke patients. Brain Circ 2024; 10:265-272. [PMID: 39526101 PMCID: PMC11542755 DOI: 10.4103/bc.bc_13_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Upper limb (UL) dysfunction rehabilitation in stroke patients is complicated in the clinic. Action observation therapy's (AOT) impact on mirror neurons (MNs) has been observed and made applications in related brain disease treatment. Acupuncture mentioned in the present study mainly stimulates peripheral nerves for neuronal plasticity. However, the clinical effect of AOT impact on MNs and acupuncture irritate afferent nerve fibers in combination for UL motor impairment rehabilitation after stroke is still unclear. In the present study, we investigate the central and peripheral neural stimulation meanwhile for UL recovery with stroke patients. METHODS In this clinical study, 82 stroke patients recruited with impaired UL were randomly assigned to three groups. Twenty-four cases were in the AOT group, 28 cases were in the AOT combined acupuncture treatment group, and 30 cases were in the acupuncture treatment group. All volunteers were scored for limb function through the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE), the Action Research Arm Test, and the modified Barthel Index (BI) before and after a systematic treatment according to the groups. Meanwhile, conventional physical therapy was also implemented for all cases. RESULTS Before the specific intervention, the scores of FMA-UE, FMA-UE, and BI with all stroke patients have no significant statistical difference (P > 0.05). After the corresponding treatment, we assessed UL function again at 4 and 8 weeks. At 4 weeks, the patients with AOT showed a significant increase in BI scores compared to the acupuncture group (P < 0.05). At 8 weeks, the FMA-UE scores of the patients with AOT combined with acupuncture were significantly increased than acupuncture alone (P < 0.05). We also observed that the BI scores of the combination and the AOT group both were improved compared to the acupuncture group with significant statistical analysis (P < 0.05). CONCLUSIONS Based on the MNs theory, we adopted AOT impact on MNs which would be a promising rehabilitation technique, especially combined with acupuncture treatment in UL recovery of stroke. Mirror therapy seems to be effective for central neuronal plasticity, but for action or AOT, there is still insufficient evidence to recommend its optimal strategy and neuromodulation mechanism. Here, research on the MNs-based AOT technique with acupuncture in UL dysfunction with stroke patients is recommended.TRIAL REGISTRATION: http://www.chictr.org.cn (identifier: ChiCTR2300077010).
Collapse
Affiliation(s)
- Dilinuer Maimaitiaili
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Shi
- Department of Geriatric Rehabilitation, Shibei Hospital of Jing’an District, Shanghai, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Li Jin
- Department of Geriatric Rehabilitation, Shibei Hospital of Jing’an District, Shanghai, China
| | - Yiwen Gu
- Department of Geriatric Rehabilitation, Shibei Hospital of Jing’an District, Shanghai, China
| | - Yuanli Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jin Shu
- Department of Geriatric Rehabilitation, Shibei Hospital of Jing’an District, Shanghai, China
| |
Collapse
|
23
|
Domellöf E, Hjärtström H, Johansson AM, Rudolfsson T, Stillesjö S, Säfström D. Brain activations during execution and observation of visually guided sequential manual movements in autism and in typical development: A study protocol. PLoS One 2024; 19:e0296225. [PMID: 38913636 PMCID: PMC11195952 DOI: 10.1371/journal.pone.0296225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Motor issues are frequently observed accompanying core deficits in autism spectrum disorder (ASD). Impaired motor behavior has also been linked to cognitive and social abnormalities, and problems with predictive ability have been suggested to play an important, possibly shared, part across all these domains. Brain imaging of sensory-motor behavior is a promising method for characterizing the neurobiological foundation for this proposed key trait. The present functional magnetic resonance imaging (fMRI) developmental study, involving children/youth with ASD, typically developing (TD) children/youth, and neurotypical adults, will investigate brain activations during execution and observation of a visually guided, goal-directed sequential (two-step) manual task. Neural processing related to both execution and observation of the task, as well as activation patterns during the preparation stage before execution/observation will be investigated. Main regions of interest include frontoparietal and occipitotemporal cortical areas, the human mirror neuron system (MNS), and the cerebellum.
Collapse
Affiliation(s)
- Erik Domellöf
- Department of Psychology, Umeå University, Umeå, Sweden
| | | | - Anna-Maria Johansson
- Department of Psychology, Umeå University, Umeå, Sweden
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Thomas Rudolfsson
- Department of Psychology, Umeå University, Umeå, Sweden
- Department of Occupational Health, Psychology and Sports Sciences, University of Gävle, Gävle, Sweden
| | | | - Daniel Säfström
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Woelk SP, Garfinkel SN. Dissociative Symptoms and Interoceptive Integration. Curr Top Behav Neurosci 2024. [PMID: 38755513 DOI: 10.1007/7854_2024_480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Dissociative symptoms and disorders of dissociation are characterised by disturbances in the experience of the self and the surrounding world, manifesting as a breakdown in the normal integration of consciousness, memory, identity, emotion, and perception. This paper aims to provide insights into dissociative symptoms from the perspective of interoception, the sense of the body's internal physiological state, adopting a transdiagnostic framework.Dissociative symptoms are associated with a blunting of autonomic reactivity and a reduction in interoceptive precision. In addition to the central function of interoception in homeostasis, afferent visceral signals and their neural and mental representation have been shown to shape emotional feeling states, support memory encoding, and contribute to self-representation. Changes in interoceptive processing and disrupted integration of interoceptive signals into wider cognition may contribute to detachment from the body and the world, blunted emotional experience, and altered subjective recall, as experienced by individuals who suffer from dissociation.A better understanding of the role of altered interoceptive integration across the symptom areas of dissociation could thus provide insights into the neurophysiological mechanisms underlying dissociative disorders. As new therapeutic approaches targeting interoceptive processing emerge, recognising the significance of interoceptive mechanisms in dissociation holds potential implications for future treatment targets.
Collapse
Affiliation(s)
- Sascha P Woelk
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Sarah N Garfinkel
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
25
|
Adamo P, Longhi G, Temporiti F, Marino G, Scalona E, Fabbri-Destro M, Avanzini P, Gatti R. Effects of Action Observation Plus Motor Imagery Administered by Immersive Virtual Reality on Hand Dexterity in Healthy Subjects. Bioengineering (Basel) 2024; 11:398. [PMID: 38671819 PMCID: PMC11048356 DOI: 10.3390/bioengineering11040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Action observation and motor imagery (AOMI) are commonly delivered through a laptop screen. Immersive virtual reality (VR) may enhance the observer's embodiment, a factor that may boost AOMI effects. The study aimed to investigate the effects on manual dexterity of AOMI delivered through immersive VR compared to AOMI administered through a laptop. To evaluate whether VR can enhance the effects of AOMI, forty-five young volunteers were enrolled and randomly assigned to the VR-AOMI group, who underwent AOMI through immersive VR, the AOMI group, who underwent AOMI through a laptop screen, or the control group, who observed landscape video clips. All participants underwent a 5-day treatment, consisting of 12 min per day. We investigated between and within-group differences after treatments relative to functional manual dexterity tasks using the Purdue Pegboard Test (PPT). This test included right hand (R), left hand (L), both hands (B), R + L + B, and assembly tasks. Additionally, we analyzed kinematics parameters including total and sub-phase duration, peak and mean velocity, and normalized jerk, during the Nine-Hole Peg Test to examine whether changes in functional scores may also occur through specific kinematic patterns. Participants were assessed at baseline (T0), after the first training session (T1), and at the end of training (T2). A significant time by group interaction and time effects were found for PPT, where both VR-AOMI and AOMI groups improved at the end of training. Larger PPT-L task improvements were found in the VR-AOMI group (d: 0.84, CI95: 0.09-1.58) compared to the AOMI group from T0 to T1. Immersive VR used for the delivery of AOMI speeded up hand dexterity improvements.
Collapse
Affiliation(s)
- Paola Adamo
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Gianluca Longhi
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Federico Temporiti
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Giorgia Marino
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Emilia Scalona
- Dipartimento di Scienze Medico Chirurgiche, Scienze Radiologiche e Sanità Pubblica (DSMC), Università Degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Brescia, Italy
| | - Maddalena Fabbri-Destro
- Consiglio Nazionale Delle Ricerche, Istituto di Neuroscienze, Via Volturno, 39-E, 43125 Parma, Parma, Italy
| | - Pietro Avanzini
- Consiglio Nazionale Delle Ricerche, Istituto di Neuroscienze, Via Volturno, 39-E, 43125 Parma, Parma, Italy
| | - Roberto Gatti
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| |
Collapse
|
26
|
Li Z, Wu L, Su K, Wu W, Jing Y, Wu T, Duan W, Yue X, Tong X, Han Y. Coordination as inference in multi-agent reinforcement learning. Neural Netw 2024; 172:106101. [PMID: 38232426 DOI: 10.1016/j.neunet.2024.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
The Centralized Training and Decentralized Execution (CTDE) paradigm, where a centralized critic is allowed to access global information during the training phase while maintaining the learned policies executed with only local information in a decentralized way, has achieved great progress in recent years. Despite the progress, CTDE may suffer from the issue of Centralized-Decentralized Mismatch (CDM): the suboptimality of one agent's policy can exacerbate policy learning of other agents through the centralized joint critic. In contrast to centralized learning, the cooperative model that most closely resembles the way humans cooperate in nature is fully decentralized, i.e. Independent Learning (IL). However, there are still two issues that need to be addressed before agents coordinate through IL: (1) how agents are aware of the presence of other agents, and (2) how to coordinate with other agents to improve joint policy under IL. In this paper, we propose an inference-based coordinated MARL method: Deep Motor System (DMS). DMS first presents the idea of individual intention inference where agents are allowed to disentangle other agents from their environment. Secondly, causal inference was introduced to enhance coordination by reasoning each agent's effect on others' behavior. The proposed model was extensively experimented on a series of Multi-Agent MuJoCo and StarCraftII tasks. Results show that the proposed method outperforms independent learning algorithms and the coordination behavior among agents can be learned even without the CTDE paradigm compared to the state-of-the-art baselines including IPPO and HAPPO.
Collapse
Affiliation(s)
- Zhiyuan Li
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Lijun Wu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Kaile Su
- School of Information and Communication Technology, Griffith University, Brisbane, Australia.
| | - Wei Wu
- School of Computer Science and Engineering, Central South University, Changsha, China; Xiangjiang Laboratory, Changsha, China.
| | - Yulin Jing
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Tong Wu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Weiwei Duan
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xiaofeng Yue
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xiyi Tong
- Pittsburgh Institute, Sichuan University, Chengdu, China.
| | - Yizhou Han
- Glasgow International College, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
27
|
Herring EZ, Graczyk EL, Memberg WD, Adams R, Fernandez Baca-Vaca G, Hutchison BC, Krall JT, Alexander BJ, Conlan EC, Alfaro KE, Bhat P, Ketting-Olivier AB, Haddix CA, Taylor DM, Tyler DJ, Sweet JA, Kirsch RF, Ajiboye AB, Miller JP. Reconnecting the Hand and Arm to the Brain: Efficacy of Neural Interfaces for Sensorimotor Restoration After Tetraplegia. Neurosurgery 2024; 94:864-874. [PMID: 37982637 DOI: 10.1227/neu.0000000000002769] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/01/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Paralysis after spinal cord injury involves damage to pathways that connect neurons in the brain to peripheral nerves in the limbs. Re-establishing this communication using neural interfaces has the potential to bridge the gap and restore upper extremity function to people with high tetraplegia. We report a novel approach for restoring upper extremity function using selective peripheral nerve stimulation controlled by intracortical microelectrode recordings from sensorimotor networks, along with restoration of tactile sensation of the hand using intracortical microstimulation. METHODS A 27-year-old right-handed man with AIS-B (motor-complete, sensory-incomplete) C3-C4 tetraplegia was enrolled into the clinical trial. Six 64-channel intracortical microelectrode arrays were implanted into left hemisphere regions involved in upper extremity function, including primary motor and sensory cortices, inferior frontal gyrus, and anterior intraparietal area. Nine 16-channel extraneural peripheral nerve electrodes were implanted to allow targeted stimulation of right median, ulnar (2), radial, axillary, musculocutaneous, suprascapular, lateral pectoral, and long thoracic nerves, to produce selective muscle contractions on demand. Proof-of-concept studies were performed to demonstrate feasibility of using a brain-machine interface to read from and write to the brain for restoring motor and sensory functions of the participant's own arm and hand. RESULTS Multiunit neural activity that correlated with intended motor action was successfully recorded from intracortical arrays. Microstimulation of electrodes in somatosensory cortex produced repeatable sensory percepts of individual fingers for restoration of touch sensation. Selective electrical activation of peripheral nerves produced antigravity muscle contractions, resulting in functional movements that the participant was able to command under brain control to perform virtual and actual arm and hand movements. The system was well tolerated with no operative complications. CONCLUSION The combination of implanted cortical electrodes and nerve cuff electrodes has the potential to create bidirectional restoration of motor and sensory functions of the arm and hand after neurological injury.
Collapse
Affiliation(s)
- Eric Z Herring
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
| | - Emily L Graczyk
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
| | - William D Memberg
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
| | - Robert Adams
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
| | - Gaudalupe Fernandez Baca-Vaca
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
| | - Brianna C Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - John T Krall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - Benjamin J Alexander
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - Emily C Conlan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - Kenya E Alfaro
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - Preethisiri Bhat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - Aaron B Ketting-Olivier
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - Chase A Haddix
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neuroscience, The Cleveland Clinic, Cleveland , Ohio , USA
| | - Dawn M Taylor
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
- Department of Neuroscience, The Cleveland Clinic, Cleveland , Ohio , USA
| | - Dustin J Tyler
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
| | - Jennifer A Sweet
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
| | - Robert F Kirsch
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
| | - A Bolu Ajiboye
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
| | - Jonathan P Miller
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
| |
Collapse
|
28
|
Takeuchi N. A dual-brain therapeutic approach using noninvasive brain stimulation based on two-person neuroscience: A perspective review. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5118-5137. [PMID: 38872529 DOI: 10.3934/mbe.2024226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Our actions and decisions in everyday life are heavily influenced by social interactions, which are dynamic feedback loops involving actions, reactions, and internal cognitive processes between individual agents. Social interactions induce interpersonal synchrony, which occurs at different biobehavioral levels and comprises behavioral, physiological, and neurological activities. Hyperscanning-a neuroimaging technique that simultaneously measures the activity of multiple brain regions-has provided a powerful second-person neuroscience tool for investigating the phase alignment of neural processes during interactive social behavior. Neural synchronization, revealed by hyperscanning, is a phenomenon called inter-brain synchrony- a process that purportedly facilitates social interactions by prompting appropriate anticipation of and responses to each other's social behaviors during ongoing shared interactions. In this review, I explored the therapeutic dual-brain approach using noninvasive brain stimulation to target inter-brain synchrony based on second-person neuroscience to modulate social interaction. Artificially inducing synchrony between the brains is a potential adjunct technique to physiotherapy, psychotherapy, and pain treatment- which are strongly influenced by the social interaction between the therapist and patient. Dual-brain approaches to personalize stimulation parameters must consider temporal, spatial, and oscillatory factors. Multiple data fusion analysis, the assessment of inter-brain plasticity, a closed-loop system, and a brain-to-brain interface can support personalized stimulation.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
29
|
Chiappini E, Turrini S, Zanon M, Marangon M, Borgomaneri S, Avenanti A. Driving Hebbian plasticity over ventral premotor-motor projections transiently enhances motor resonance. Brain Stimul 2024; 17:211-220. [PMID: 38387557 DOI: 10.1016/j.brs.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Making sense of others' actions relies on the activation of an action observation network (AON), which maps visual information about observed actions onto the observer's motor system. This motor resonance process manifests in the primary motor cortex (M1) as increased corticospinal excitability finely tuned to the muscles engaged in the observed action. Motor resonance in M1 is facilitated by projections from higher-order AON regions. However, whether manipulating the strength of AON-to-M1 connectivity affects motor resonance remains unclear. METHODS We used transcranial magnetic stimulation (TMS) in 48 healthy humans. Cortico-cortical paired associative stimulation (ccPAS) was administered over M1 and the ventral premotor cortex (PMv), a key AON node, to induce spike-timing-dependent plasticity (STDP) in the pathway connecting them. Single-pulse TMS assessed motor resonance during action observation. RESULTS Before ccPAS, action observation increased corticospinal excitability in the muscles corresponding to the observed movements, reflecting motor resonance in M1. Notably, ccPAS aimed at strengthening projections from PMv to M1 (PMv→M1) induced short-term enhancement of motor resonance. The enhancement specifically occurred with the ccPAS configuration consistent with forward PMv→M1 projections and dissipated 20 min post-stimulation; ccPAS administered in the reverse order (M1→PMv) and sham stimulation did not affect motor resonance. CONCLUSIONS These findings provide the first evidence that inducing STDP to strengthen PMv input to M1 neurons causally enhances muscle-specific motor resonance in M1. Our study sheds light on the plastic mechanisms that shape AON functionality and demonstrates that exogenous manipulation of AON connectivity can influence basic mirror mechanisms that underlie social perception.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Clinical and Health Psychology, University of Vienna, 1010, Vienna, Austria; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany.
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, United States
| | - Marco Zanon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Neuroscience Area, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Mattia Marangon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Dipartimento di Neuroscienze, Biomedicina e Scienze del Movimento, Sezione di Fisiologia e Psicologia, Università di Verona, 37124, Verona, Italy
| | - Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, 346000, Talca, Chile.
| |
Collapse
|
30
|
Errante A, Ferraro S, Demichelis G, Pinardi C, Stanziano M, Sattin D, Rossi Sebastiano D, Rozzi S, D’Incerti L, Catricalà E, Leonardi M, Bruzzone MG, Fogassi L, Nigri A. Brain activation during processing of mouth actions in patients with disorders of consciousness. Brain Commun 2024; 6:fcae045. [PMID: 38434219 PMCID: PMC10907975 DOI: 10.1093/braincomms/fcae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
In the past 2 decades, several attempts have been made to promote a correct diagnosis and possible restorative interventions in patients suffering from disorders of consciousness. Sensory stimulation has been proved to be useful in sustaining the level of arousal/awareness and to improve behavioural responsiveness with a significant effect on oro-motor functions. Recently, action observation has been proposed as a stimulation strategy in patients with disorders of consciousness, based on neurophysiological evidence that the motor cortex can be activated not only during action execution but also when actions are merely observed in the absence of motor output, or during listening to action sounds and speech. This mechanism is provided by the activity of mirror neurons. In the present study, a group of patients with disorders of consciousness (11 males, 4 females; median age: 55 years; age range: 19-74 years) underwent task-based functional MRI in which they had, in one condition, to observe and listen to the sound of mouth actions, and in another condition, to listen to verbs with motor or abstract content. In order to verify the presence of residual activation of the mirror neuron system, the brain activations of patients were compared with that of a group of healthy individuals (seven males, eight females; median age: 33.4 years; age range: 24-65 years) performing the same tasks. The results show that brain activations were lower in patients with disorders of consciousness compared with controls, except for primary auditory areas. During the audiovisual task, 5 out of 15 patients with disorders of consciousness showed only residual activation of low-level visual and auditory areas. Activation of high-level parieto-premotor areas was present in six patients. During the listening task, three patients showed only low-level activations, and six patients activated also high-level areas. Interestingly, in both tasks, one patient with a clinical diagnosis of vegetative state showed activations of high-level areas. Region of interest analysis on blood oxygen level dependent signal change in temporal, parietal and premotor cortex revealed a significant linear relation with the level of clinical functioning, assessed with coma recovery scale-revised. We propose a classification of the patient's response based on the presence of low-level and high-level activations, combined with the patient's functional level. These findings support the use of action observation and listening as possible stimulation strategies in patients with disorders of consciousness and highlight the relevance of combined methods based on functional assessment and brain imaging to provide more detailed neuroanatomical specificity about residual activated areas at both cortical and subcortical levels.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Stefania Ferraro
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Greta Demichelis
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Pinardi
- Health Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Mario Stanziano
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Neurosciences Department ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
| | - Davide Sattin
- Istituti Clinici Scientifici Maugeri IRCCS, 20138 Milan, Italy
| | - Davide Rossi Sebastiano
- Neurophysiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Stefano Rozzi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ludovico D’Incerti
- Neuroradiology Unit, Children’s Hospital A. Meyer—University of Florence, 50139 Florence, Italy
| | - Eleonora Catricalà
- ICoN Cognitive Neuroscience Center, IUSS, Institute for Advances Studies, 27100 Pavia, Italy
| | - Matilde Leonardi
- Disability Unit and Coma Research Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Anna Nigri
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
31
|
Tariciotti L, Mattioli L, Viganò L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery. Front Integr Neurosci 2024; 18:1324581. [PMID: 38425673 PMCID: PMC10902498 DOI: 10.3389/fnint.2024.1324581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The sensorimotor integrations subserving object-oriented manipulative actions have been extensively investigated in non-human primates via direct approaches, as intracortical micro-stimulation (ICMS), cytoarchitectonic analysis and anatomical tracers. However, the understanding of the mechanisms underlying complex motor behaviors is yet to be fully integrated in brain mapping paradigms and the consistency of these findings with intraoperative data obtained during awake neurosurgical procedures for brain tumor removal is still largely unexplored. Accordingly, there is a paucity of systematic studies reviewing the cross-species analogies in neural activities during object-oriented hand motor tasks in primates and investigating the concordance with intraoperative findings during brain mapping. The current systematic review was designed to summarize the cortical and subcortical neural correlates of object-oriented fine hand actions, as revealed by fMRI and PET studies, in non-human and human primates and how those were translated into neurosurgical studies testing dexterous hand-movements during intraoperative brain mapping. Methods A systematic literature review was conducted following the PRISMA guidelines. PubMed, EMBASE and Web of Science databases were searched. Original articles were included if they: (1) investigated cortical activation sites on fMRI and/or PET during grasping task; (2) included humans or non-human primates. A second query was designed on the databases above to collect studies reporting motor, hand manipulation and dexterity tasks for intraoperative brain mapping in patients undergoing awake brain surgery for any condition. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed more appropriate. Results We provided an updated overview of the current state of the art in translational neuroscience about the extended frontoparietal grasping-praxis network with a specific focus on the comparative functioning in non-human primates, healthy humans and how the latter knowledge has been implemented in the neurosurgical operating room during brain tumor resection. Discussion The anatomical and functional correlates we reviewed confirmed the evolutionary continuum from monkeys to humans, allowing a cautious but practical adoption of such evidence in intraoperative brain mapping protocols. Integrating the previous results in the surgical practice helps preserve complex motor abilities, prevent long-term disability and poor quality of life and allow the maximal safe resection of intrinsic brain tumors.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Mattioli
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gallo
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gambaretti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Gallotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
32
|
Holmes NP, Di Chiaro NV, Crowe EM, Marson B, Göbel K, Gaigalas D, Jay T, Lockett AV, Powell ES, Zeni S, Reader AT. Transcranial magnetic stimulation over supramarginal gyrus stimulates primary motor cortex directly and impairs manual dexterity: implications for TMS focality. J Neurophysiol 2024; 131:360-378. [PMID: 38197162 PMCID: PMC11551002 DOI: 10.1152/jn.00369.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024] Open
Abstract
Based on human motor cortex, the effective spatial resolution of transcranial magnetic stimulation (TMS) is often described as 5-20 mm, because small changes in TMS coil position can have large effects on motor-evoked potentials (MEPs). MEPs are often studied at rest, with muscles relaxed. During muscle contraction and movement, corticospinal excitability is higher, thresholds for effective stimulation are lower, and MEPs can be evoked from larger regions of scalp, so the effective spatial resolution of TMS is larger. We found that TMS over the supramarginal gyrus (SMG) impaired manual dexterity in the grooved pegboard task. It also resulted in short-latency MEPs in hand muscles, despite the coil being 55 mm away from the motor cortex hand area (M1). MEPs might be evoked by either a specific corticospinal connection from SMG or a remote but direct electromagnetic stimulation of M1. To distinguish these alternatives, we mapped MEPs across the scalp during rest, isotonic contraction, and manual dexterity tasks and ran electric field simulations to model the expected M1 activation from 27 scalp locations and four coil orientations. We also systematically reviewed studies using TMS during movement. Across five experiments, TMS over SMG reliably evoked MEPs during hand movement. These MEPs were consistent with direct M1 stimulation and substantially decreased corticospinal thresholds during natural movement. Systematic review suggested that 54 published experiments may have suffered from similar motor activation confounds. Our results have implications for the assumed spatial resolution of TMS, and especially when TMS is presented within 55 mm of the motor cortex.NEW & NOTEWORTHY Transcranial magnetic stimulation (TMS) is often described as having an effective spatial resolution of ∼10 mm, because of the limited area of the scalp on which TMS produces motor-evoked potentials (MEPs) in resting muscles. We find that during natural hand movement TMS evokes MEPs from a much larger scalp area, in particular when stimulating over the supramarginal gyrus 55 mm away. Our results show that TMS can be effective at much larger distances than generally assumed.
Collapse
Affiliation(s)
- Nicholas P Holmes
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | | | - Emily M Crowe
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Ben Marson
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Karen Göbel
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Dominykas Gaigalas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Talia Jay
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Abigail V Lockett
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Eleanor S Powell
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Silvia Zeni
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Arran T Reader
- Department of Psychology, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
33
|
Bonato B, Castiello U, Guerra S, Wang Q. Motor cognition in plants: from thought to real experiments. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2024; 36:423-437. [PMID: 39132627 PMCID: PMC7616355 DOI: 10.1007/s40626-023-00304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 08/13/2024]
Abstract
Motor cognition involves the process of planning and executing goal-directed movements and recognizing, anticipating, and interpreting others' actions. Motor cognitive functions are generally associated with the presence of a brain and are ascribed only to humans and other animal species. A growing body of evidence suggests that aneural organisms, like climbing plants, exhibit behaviors driven by the intention to achieve goals, challenging our understanding of cognition. Here, we propose an inclusive perspective under motor cognition to explain climbing plants' behavior. We will first review our empirical research based on kinematical analysis to understand movement in pea plants. Then, we situate this empirical research within the current theoretical debate aimed at extending the principles of cognition to aneural organisms. A novel comparative perspective that considers the perception-action cycle, involving transforming perceived environmental elements into intended movement patterns, is provided.
Collapse
Affiliation(s)
- Bianca Bonato
- Department of General Psychology (DPG), University of Padova, Padua, Italy
| | - Umberto Castiello
- Department of General Psychology (DPG), University of Padova, Padua, Italy
| | - Silvia Guerra
- Department of General Psychology (DPG), University of Padova, Padua, Italy
| | - Qiuran Wang
- Department of General Psychology (DPG), University of Padova, Padua, Italy
| |
Collapse
|
34
|
Dobrynina LA, Gadzhieva ZS, Dobrushina OR, Morozova SN, Kremneva EI, Volik AV, Krotenkova MV. [Identifying the neurostimulation target for treatment of cognitive impairment in aging and early cerebral small vessel disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:34-41. [PMID: 38529861 DOI: 10.17116/jnevro202412403134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
OBJECTIVE To develop individualized approaches to the use of neuromodulation as a non-pharmacological treatment of cognitive impairment (CI) based on the assessment of compensatory brain reserves in functional MRI (fMRI). MATERIAL AND METHODS Twenty-one adults over 45 years of age, representing a continuum from healthy norm to mild cognitive impairment due to aging and early cerebral small vessel disease, were studied. All participants underwent fMRI while performing two executive tasks - a modified Stroop task and selective counting. To assess the ability to compensate for CI in real life, functional activation and connectivity were analyzed using the BRIEF-MoCA score as a covariate, which is the difference in ratings between the Behavior Rating Inventory of Executive Function (BRIEF) and the Montreal Cognitive Assessment Scale (MoCA). RESULTS Both fMRI tasks were associated with activation of areas of the frontoparietal control network, as well as supplementary motor area (SMA) and the pre-SMA, the lateral premotor cortex, and the cerebellum. An increase in pre- SMA connectivity was observed during the tasks. The BRIEF-MoCA score correlated firstly with connectivity of the left dorsolateral prefrontal cortex (DLPFC) and secondly with involvement of the occipital cortex during the counting task. CONCLUSIONS The developed technique allows identification of the functionally relevant target within the left DLPFC in patients with CI in aging and early cerebral microangiopathy.
Collapse
Affiliation(s)
| | | | | | | | | | - A V Volik
- Research Center of Neurology, Moscow, Russia
| | | |
Collapse
|
35
|
Agnelli M, Libeccio B, Frisoni MC, Bolzoni F, Temporiti F, Gatti R. Action observation plus motor imagery and somatosensory discrimination training are effective non-motor approaches to improve manual dexterity. J Hand Ther 2024; 37:94-100. [PMID: 37580196 DOI: 10.1016/j.jht.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/22/2023] [Accepted: 05/01/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Action observation plus motor imagery (AOMI) and somatosensory discrimination training (SSDT) represent sensory input-based approaches to train the motor system without necessarily asking subjects to perform active movements. PURPOSE To investigate AOMI and SSDT effects compared to no intervention on manual dexterity in healthy subjects. STUDY DESIGN Randomized controlled study. METHODS Sixty healthy right-handed participants were randomized into AOMI, SSDT or Control (CTRL) groups. AOMI observed video-clips including right-hand dexterity tasks and concurrently performed motor imagery, SSDT performed surfaces recognition and 2-point distance discrimination tasks with the right hand, whereas CTRL underwent no intervention. A blinded physiotherapist assessed participants for manual dexterity using the Purdue Pegboard Test (Right hand-R, Left hand-L, Both hands-B, R+L+B and assembly tasks) at baseline (T0) and training end (T1). A mixed-design Analysis of Variance with Time as within-subject factor and Group as between-subject factor was used to investigate between-group differences over time. RESULTS A Time by Group interaction and Time effect were found for R task, which increased from T0 to T1 in all groups with very large effect sizes for SSDT (d = 1.8, CI95 2.4-1.0, P < .001) and AOMI (d = 1.7, CI95 2.5-1.0, P < .001) and medium effect size for CTRL (d = 0.6, CI95 1.2-0.2, P < .001). Between-group post-hoc comparison for deltas (T1-T0) showed large effect size (d = 1.0, CI95 1.6-0.3, P = .003) in favor of SSDT and medium effect size (d = 0.7, CI95 1.4-0.1, P = .026) in favor of AOMI compared to CTRL. Time effects were found for L, B, R + L + B and assembly tasks (P < .001). CONCLUSIONS AOMI and SSDT induced greater manual dexterity improvements than no intervention. These findings supported the role of visual and somatosensory stimuli in building a motor plan and enhancing the accuracy of hand movements. These non-motor approaches may enhance motor performance in job or hobbies requiring marked manual dexterity.
Collapse
Affiliation(s)
- Miriana Agnelli
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Benedetta Libeccio
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Maria Chiara Frisoni
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Francesco Bolzoni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Federico Temporiti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberto Gatti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| |
Collapse
|
36
|
Bufacchi RJ, Battaglia-Mayer A, Iannetti GD, Caminiti R. Cortico-spinal modularity in the parieto-frontal system: A new perspective on action control. Prog Neurobiol 2023; 231:102537. [PMID: 37832714 DOI: 10.1016/j.pneurobio.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, China
| | - A Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
37
|
Casartelli L, Maronati C, Cavallo A. From neural noise to co-adaptability: Rethinking the multifaceted architecture of motor variability. Phys Life Rev 2023; 47:245-263. [PMID: 37976727 DOI: 10.1016/j.plrev.2023.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In the last decade, the source and the functional meaning of motor variability have attracted considerable attention in behavioral and brain sciences. This construct classically combined different levels of description, variable internal robustness or coherence, and multifaceted operational meanings. We provide here a comprehensive review of the literature with the primary aim of building a precise lexicon that goes beyond the generic and monolithic use of motor variability. In the pars destruens of the work, we model three domains of motor variability related to peculiar computational elements that influence fluctuations in motor outputs. Each domain is in turn characterized by multiple sub-domains. We begin with the domains of noise and differentiation. However, the main contribution of our model concerns the domain of adaptability, which refers to variation within the same exact motor representation. In particular, we use the terms learning and (social)fitting to specify the portions of motor variability that depend on our propensity to learn and on our largely constitutive propensity to be influenced by external factors. A particular focus is on motor variability in the context of the sub-domain named co-adaptability. Further groundbreaking challenges arise in the modeling of motor variability. Therefore, in a separate pars construens, we attempt to characterize these challenges, addressing both theoretical and experimental aspects as well as potential clinical implications for neurorehabilitation. All in all, our work suggests that motor variability is neither simply detrimental nor beneficial, and that studying its fluctuations can provide meaningful insights for future research.
Collapse
Affiliation(s)
- Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E. MEDEA, Italy
| | - Camilla Maronati
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy
| | - Andrea Cavallo
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy; C'MoN Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
38
|
Vannuscorps G, Caramazza A. Effector-specific motor simulation supplements core action recognition processes in adverse conditions. Soc Cogn Affect Neurosci 2023; 18:nsad046. [PMID: 37688518 PMCID: PMC10576201 DOI: 10.1093/scan/nsad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023] Open
Abstract
Observing other people acting activates imitative motor plans in the observer. Whether, and if so when and how, such 'effector-specific motor simulation' contributes to action recognition remains unclear. We report that individuals born without upper limbs (IDs)-who cannot covertly imitate upper-limb movements-are significantly less accurate at recognizing degraded (but not intact) upper-limb than lower-limb actions (i.e. point-light animations). This finding emphasizes the need to reframe the current controversy regarding the role of effector-specific motor simulation in action recognition: instead of focusing on the dichotomy between motor and non-motor theories, the field would benefit from new hypotheses specifying when and how effector-specific motor simulation may supplement core action recognition processes to accommodate the full variety of action stimuli that humans can recognize.
Collapse
Affiliation(s)
- Gilles Vannuscorps
- Psychological Sciences Research Institute, Université catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Avenue E. Mounier 53, Brussels 1200, Belgium
- Department of Psychology, Harvard University, Kirkland Street 33, Cambridge, MA 02138, USA
| | - Alfonso Caramazza
- Department of Psychology, Harvard University, Kirkland Street 33, Cambridge, MA 02138, USA
- CIMEC (Center for Mind-Brain Sciences), University of Trento, Via delle Regole 101, Mattarello TN 38123, Italy
| |
Collapse
|
39
|
Tagliaferri M, Giampiccolo D, Parmigiani S, Avesani P, Cattaneo L. Connectivity by the Frontal Aslant Tract (FAT) Explains Local Functional Specialization of the Superior and Inferior Frontal Gyri in Humans When Choosing Predictive over Reactive Strategies: A Tractography-Guided TMS Study. J Neurosci 2023; 43:6920-6929. [PMID: 37657931 PMCID: PMC10573747 DOI: 10.1523/jneurosci.0406-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/03/2023] Open
Abstract
Predictive and reactive behaviors represent two mutually exclusive strategies in a sensorimotor task. Predictive behavior consists in internally estimating timing and features of a target stimulus and relies on a cortical medial frontal system [superior frontal gyrus (SFG)]. Reactive behavior consists in waiting for actual perception of the target stimulus and relies on the lateral frontal cortex [inferior frontal gyrus (IFG)]. We investigated whether SFG-IFG connections by the frontal aslant tract (FAT) can mediate predictive/reactive interactions. In 19 healthy human volunteers, we applied online transcranial magnetic stimulation (TMS) to six spots along the medial and lateral terminations of the FAT, during the set period of a delayed reaction task. Such scenario can be solved using either predictive or reactive strategies. TMS increased the propensity toward reactive behavior if applied to a specific portion of the IFG and increased predictive behavior when applied to a specific SFG spot. The two active spots in the SFG and IFG were directly connected by a sub-bundle of FAT fibers as indicated by diffusion-weighted imaging (DWI) tractography. Since FAT connectivity identifies two distant cortical nodes with opposite functions, we propose that the FAT mediates mutually inhibitory interactions between SFG and IFG to implement a "winner takes all" decisional process. We hypothesize such role of the FAT to be domain-general, whenever competition occurs between internal predictive and external reactive behaviors. Finally, we also show that anatomic connectivity is a powerful factor to explain and predict the spatial distribution of brain stimulation effects.SIGNIFICANCE STATEMENT We interact with sensory cues adopting two main mutually-exclusive strategies: (1) trying to anticipate the occurrence of the cue or (2) waiting for the GO-signal to be manifest and react to it. Here, we showed, by using noninvasive brain stimulation [transcranial magnetic stimulation (TMS)], that two specific cortical regions in the superior frontal gyrus (SFG) and the inferior frontal gyrus (IFG) have opposite roles in facilitating a predictive or a reactive strategy. Importantly these two very distant regions but with highly interconnected functions are specifically connected by a small white matter bundle, which mediates the direct competition and exclusiveness between predictive and reactive strategies. More generally, implementing anatomic connectivity in TMS studies strongly reduces spatial noise.
Collapse
Affiliation(s)
- Marco Tagliaferri
- Centro Interdipartimentale Mente e Cervello (CIMeC), University of Trento, Rovereto 38068, Italy
| | - Davide Giampiccolo
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona 37124, Italy
| | - Sara Parmigiani
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco," Università degli Studi di Milano, Milano 20157, Italy
| | - Paolo Avesani
- Centro Interdipartimentale Mente e Cervello (CIMeC), University of Trento, Rovereto 38068, Italy
- Center for Digital Health & Well Being, Neuroinformatics Laboratory, Fondazione Bruno Kessler, Trento 38123, Italy
| | - Luigi Cattaneo
- Centro Interdipartimentale Mente e Cervello (CIMeC), University of Trento, Rovereto 38068, Italy
- Centro Interdipartimentale di Scienze Mediche (CISMed), University of Trento, Trento 38122, Italy
| |
Collapse
|
40
|
Bertacchini F, Demarco F, Scuro C, Pantano P, Bilotta E. A social robot connected with chatGPT to improve cognitive functioning in ASD subjects. Front Psychol 2023; 14:1232177. [PMID: 37868599 PMCID: PMC10585023 DOI: 10.3389/fpsyg.2023.1232177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Neurodevelopmental Disorders (NDDs) represent a significant healthcare and economic burden for families and society. Technology, including AI and digital technologies, offers potential solutions for the assessment, monitoring, and treatment of NDDs. However, further research is needed to determine the effectiveness, feasibility, and acceptability of these technologies in NDDs, and to address the challenges associated with their implementation. In this work, we present the application of social robotics using a Pepper robot connected to the OpenAI system (Chat-GPT) for real-time dialogue initiation with the robot. After describing the general architecture of the system, we present two possible simulated interaction scenarios of a subject with Autism Spectrum Disorder in two different situations. Limitations and future implementations are also provided to provide an overview of the potential developments of interconnected systems that could greatly contribute to technological advancements for Neurodevelopmental Disorders (NDD).
Collapse
Affiliation(s)
- Francesca Bertacchini
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
- Laboratory of Cognitive Psychology and Mathematical Modelling, University of Calabria, Rende, Italy
| | - Francesco Demarco
- Laboratory of Cognitive Psychology and Mathematical Modelling, University of Calabria, Rende, Italy
- Department of Physics, University of Calabria, Rende, Italy
| | - Carmelo Scuro
- Laboratory of Cognitive Psychology and Mathematical Modelling, University of Calabria, Rende, Italy
- Department of Physics, University of Calabria, Rende, Italy
| | - Pietro Pantano
- Laboratory of Cognitive Psychology and Mathematical Modelling, University of Calabria, Rende, Italy
- Department of Physics, University of Calabria, Rende, Italy
| | - Eleonora Bilotta
- Laboratory of Cognitive Psychology and Mathematical Modelling, University of Calabria, Rende, Italy
- Department of Physics, University of Calabria, Rende, Italy
| |
Collapse
|
41
|
Rozzi S, Gravante A, Basile C, Cappellaro G, Gerbella M, Fogassi L. Ventrolateral prefrontal neurons of the monkey encode instructions in the 'pragmatic' format of the associated behavioral outcomes. Prog Neurobiol 2023; 229:102499. [PMID: 37429374 DOI: 10.1016/j.pneurobio.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
The prefrontal cortex plays an important role in coding rules and producing context-appropriate behaviors. These processes necessarily require the generation of goals based on current context. Indeed, instructing stimuli are prospectively encoded in prefrontal cortex in relation to behavioral demands, but the coding format of this neural representation is, to date, largely unknown. In order to study how instructions and behaviors are encoded in prefrontal cortex, we recorded the activity of monkeys (Macaca mulatta) ventrolateral prefrontal neurons in a task requiring to perform (Action condition) or withhold (Inaction condition) grasping actions on real objects. Our data show that there are neurons responding in different task phases, and that the neuronal population discharge is stronger in the Inaction condition when the instructing cue is presented, and in the Action condition in the subsequent phases, from object presentation to action execution. Decoding analyses performed on neuronal populations showed that the neural activity recorded during the initial phases of the task shares the same type of format with that recorded during the final phases. We propose that this format has a pragmatic nature, that is instructions and goals are encoded by prefrontal neurons as predictions of the behavioral outcome.
Collapse
Affiliation(s)
- Stefano Rozzi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | - Alfonso Gravante
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Claudio Basile
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Giorgio Cappellaro
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| |
Collapse
|
42
|
Li G, Jiang S, Meng J, Wu Z, Jiang H, Fan Z, Hu J, Sheng X, Zhang D, Schalk G, Chen L, Zhu X. Spatio-temporal evolution of human neural activity during visually cued hand movements. Cereb Cortex 2023; 33:9764-9777. [PMID: 37464883 DOI: 10.1093/cercor/bhad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Making hand movements in response to visual cues is common in daily life. It has been well known that this process activates multiple areas in the brain, but how these neural activations progress across space and time remains largely unknown. Taking advantage of intracranial electroencephalographic (iEEG) recordings using depth and subdural electrodes from 36 human subjects using the same task, we applied single-trial and cross-trial analyses to high-frequency iEEG activity. The results show that the neural activation was widely distributed across the human brain both within and on the surface of the brain, and focused specifically on certain areas in the parietal, frontal, and occipital lobes, where parietal lobes present significant left lateralization on the activation. We also demonstrate temporal differences across these brain regions. Finally, we evaluated the degree to which the timing of activity within these regions was related to sensory or motor function. The findings of this study promote the understanding of task-related neural processing of the human brain, and may provide important insights for translational applications.
Collapse
Affiliation(s)
- Guangye Li
- Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shize Jiang
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jianjun Meng
- Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zehan Wu
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haiteng Jiang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Zhen Fan
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Hu
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinjun Sheng
- Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dingguo Zhang
- Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Gerwin Schalk
- Chen Frontier Lab for Applied Neurotechnology, Tianqiao and Chrissy Chen Institute, Shanghai 200052, China
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liang Chen
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiangyang Zhu
- Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
43
|
Lonardo L, Völter CJ, Lamm C, Huber L. Dogs Rely On Visual Cues Rather Than On Effector-Specific Movement Representations to Predict Human Action Targets. Open Mind (Camb) 2023; 7:588-607. [PMID: 37840756 PMCID: PMC10575556 DOI: 10.1162/opmi_a_00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/18/2023] [Indexed: 10/17/2023] Open
Abstract
The ability to predict others' actions is one of the main pillars of social cognition. We investigated the processes underlying this ability by pitting motor representations of the observed movements against visual familiarity. In two pre-registered eye-tracking experiments, we measured the gaze arrival times of 16 dogs (Canis familiaris) who observed videos of a human or a conspecific executing the same goal-directed actions. On the first trial, when the human agent performed human-typical movements outside dogs' specific motor repertoire, dogs' gaze arrived at the target object anticipatorily (i.e., before the human touched the target object). When the agent was a conspecific, dogs' gaze arrived to the target object reactively (i.e., upon or after touch). When the human agent performed unusual movements more closely related to the dogs' motor possibilities (e.g., crawling instead of walking), dogs' gaze arrival times were intermediate between the other two conditions. In a replication experiment, with slightly different stimuli, dogs' looks to the target object were neither significantly predictive nor reactive, irrespective of the agent. However, when including looks at the target object that were not preceded by looks to the agents, on average dogs looked anticipatorily and sooner at the human agent's action target than at the conspecific's. Looking times and pupil size analyses suggest that the dogs' attention was captured more by the dog agent. These results suggest that visual familiarity with the observed action and saliency of the agent had a stronger influence on the dogs' looking behaviour than effector-specific movement representations in anticipating action targets.
Collapse
Affiliation(s)
- Lucrezia Lonardo
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine of Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Christoph J. Völter
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine of Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ludwig Huber
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine of Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| |
Collapse
|
44
|
Zhang C, Li X, Wang H. Application of action observation therapy in stroke rehabilitation: A systematic review. Brain Behav 2023; 13:e3157. [PMID: 37480161 PMCID: PMC10454263 DOI: 10.1002/brb3.3157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Numerous studies have described the positive effects of action observation therapy (AOT) on motor recovery among patients with stroke. However, there is no standardized procedure for when and how to intervene with AOT. OBJECTIVES Thus, we reviewed and analyzed previous studies to provide a guideline for the application of AOT in stroke rehabilitation. METHOD We searched PubMed, Cochrane Library, and EMBASE from inception to October 31 2022, using title and abstract search terms of "action observation" and "stroke" or "hemiplegia." Of 4108 potential articles, 29 articles (sample size = 429 in AOT groups; sample size = 423 in control groups) that met inclusion criteria were included in final analyses. RESULTS The results suggested starting adjuvant AOT > 23 days after stroke onset and conducting 30-40 min/session, 3-5 times/week for at least 4 weeks. CONCLUSION Based on our results, many factors will impact the effect of AOT on stroke rehabilitation, when to apply (timing) and how to apply (frequency, single, and total duration) should be fully considered when applying AOT as adjuvant therapy in stroke rehabilitation.
Collapse
Affiliation(s)
- Chenping Zhang
- Department of Physical EducationShanghai University of Medicine & Health SciencesShanghaiChina
| | - Xiawen Li
- Department of Physical EducationShanghai University of Medicine & Health SciencesShanghaiChina
| | - Hongbiao Wang
- Department of Physical EducationShanghai University of Medicine & Health SciencesShanghaiChina
| |
Collapse
|
45
|
Lacerenza M, Frabasile L, Buttafava M, Spinelli L, Bassani E, Micheloni F, Amendola C, Torricelli A, Contini D. Motor cortex hemodynamic response to goal-oriented and non-goal-oriented tasks in healthy subjects. Front Neurosci 2023; 17:1202705. [PMID: 37539388 PMCID: PMC10394236 DOI: 10.3389/fnins.2023.1202705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/16/2023] [Indexed: 08/05/2023] Open
Abstract
Background Motor disorders are one of the world's major scourges, and neuromotor rehabilitation is paramount for prevention and monitoring plans. In this scenario, exercises and motor tasks to be performed by patients are crucial to follow and assess treatments' progression and efficacy. Nowadays, in clinical environments, quantitative assessment of motor cortex activities during task execution is rare, due to the bulkiness of instrumentation and the need for immobility during measurements [e.g., functional magnetic resonance imaging (MRI)]. Functional near-infrared spectroscopy (fNIRS) can contribute to a better understanding of how neuromotor processes work by measuring motor cortex activity non-invasively in freely moving subjects. Aim Exploit fNIRS to measure functional activation of the motor cortex area during arm-raising actions. Design All subjects performed three different upper limbs motor tasks: arm raising (non-goal-oriented), arm raising and grasping (goal oriented), and assisted arm raising (passive task). Each task was repeated ten times. The block design for each task was divided into 5 seconds of baseline, 5 seconds of activity, and 15 seconds of recovery. Population Sixteen healthy subjects (11 males and 5 females) with an average (+/- standard deviation) of 37.9 (+/- 13.0) years old. Methods Cerebral hemodynamic responses have been recorded in two locations, motor cortex (activation area) and prefrontal cortex (control location) exploiting commercial time-domain fNIRS devices. Haemodynamic signals were analyzed, separating the brain cortex hemodynamic response from extracerebral hemodynamic variations. Results The hemodynamic response was recorded in the cortical motor area for goal-oriented and not-goaloriented tasks, while no response was noticed in the control location (prefrontal cortex position). Conclusions This study provides a basis for canonical upper limb motor cortex activations that can be potentially compared to pathological cerebral responses in patients. It also highlights the potential use of TD-fNIRS to study goal-oriented versus non-goaloriented motor tasks. Impact: the findings of this study may have implications for clinical rehabilitation by providing a better understanding of the neural mechanisms underlying goal-oriented versus non-goal-oriented motor tasks. This may lead to more effective rehabilitation strategies for individuals with motor disorders and a more effective diagnosis of motor dysfunction supported by objective and quantitative neurophysiological readings.
Collapse
Affiliation(s)
- Michele Lacerenza
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- PIONIRS s.r.l., Milano, Italy
| | | | | | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Elisa Bassani
- Scuola Universitaria Professionale della Svizzera Italiana, Manno, Switzerland
- Centro Studi Riabilitazione Neurologica, Neuropsicologia e Neuropsicoterapia, Milano, Italy
| | - Francesco Micheloni
- Centro Studi Riabilitazione Neurologica, Neuropsicologia e Neuropsicoterapia, Milano, Italy
| | | | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| |
Collapse
|
46
|
Zucchini E, Borzelli D, Casile A. Representational momentum of biological motion in full-body, point-light and single-dot displays. Sci Rep 2023; 13:10488. [PMID: 37380666 DOI: 10.1038/s41598-023-36870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Observing the actions of others triggers, in our brain, an internal and automatic simulation of its unfolding in time. Here, we investigated whether the instantaneous internal representation of an observed action is modulated by the point of view under which an action is observed and the stimulus type. To this end, we motion captured the elliptical arm movement of a human actor and used these trajectories to animate a photorealistic avatar, a point-light stimulus or a single dot rendered either from an egocentric or an allocentric point of view. Crucially, the underlying physical characteristics of the movement were the same in all conditions. In a representational momentum paradigm, we then asked subjects to report the perceived last position of an observed movement at the moment in which the stimulus was randomly stopped. In all conditions, subjects tended to misremember the last configuration of the observed stimulus as being further forward than the veridical last showed position. This misrepresentation was however significantly smaller for full-body stimuli compared to point-light and single dot displays and it was not modulated by the point of view. It was also smaller when first-person full body stimuli were compared with a stimulus consisting of a solid shape moving with the same physical motion. We interpret these findings as evidence that full-body stimuli elicit a simulation process that is closer to the instantaneous veridical configuration of the observed movements while impoverished displays (both point-light and single-dot) elicit a prediction that is further forward in time. This simulation process seems to be independent from the point of view under which the actions are observed.
Collapse
Affiliation(s)
- Elena Zucchini
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Istituto Italiano di Tecnologia (IIT), Ferrara, Italy
| | - Daniele Borzelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonino Casile
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Istituto Italiano di Tecnologia (IIT), Ferrara, Italy.
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
47
|
Bazzini MC, Nuara A, Branchini G, De Marco D, Ferrari L, Lanini MC, Paolini S, Scalona E, Avanzini P, Fabbri-Destro M. The capacity of action observation to drag the trainees' motor pattern toward the observed model. Sci Rep 2023; 13:9107. [PMID: 37277395 DOI: 10.1038/s41598-023-35664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Action Observation Training (AOT) promotes the acquisition of motor abilities. However, while the cortical modulations associated with the AOT efficacy are well known, few studies investigated the AOT peripheral neural correlates and whether their dynamics move towards the observed model during the training. We administered seventy-two participants (randomized into AOT and Control groups) with training for learning to grasp marbles with chopsticks. Execution practice was preceded by an observation session, in which AOT participants observed an expert performing the task, whereas controls observed landscape videos. Behavioral indices were measured, and three hand muscles' electromyographic (EMG) activity was recorded and compared with the expert. Behaviorally, both groups improved during the training, with AOT outperforming controls. The EMG trainee-model similarity also increased during the training, but only for the AOT group. When combining behavioral and EMG similarity findings, no global relationship emerged; however, behavioral improvements were "locally" predicted by the similarity gain in muscles and action phases more related to the specific motor act. These findings reveal that AOT plays a magnetic role in motor learning, attracting the trainee's motor pattern toward the observed model and paving the way for developing online monitoring tools and neurofeedback protocols.
Collapse
Affiliation(s)
- Maria Chiara Bazzini
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Arturo Nuara
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Giulio Branchini
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Doriana De Marco
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Laura Ferrari
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
- School of Advanced Studies, Università di Camerino, Camerino, Italy
| | - Maria Chiara Lanini
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Simone Paolini
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Emilia Scalona
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
- Dipartimento Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica (DSMC), Università degli Studi di Brescia, Brescia, Italy
| | - Pietro Avanzini
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
- Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Milan, Italy
| | | |
Collapse
|
48
|
Turrini S, Bevacqua N, Cataneo A, Chiappini E, Fiori F, Battaglia S, Romei V, Avenanti A. Neurophysiological Markers of Premotor-Motor Network Plasticity Predict Motor Performance in Young and Older Adults. Biomedicines 2023; 11:biomedicines11051464. [PMID: 37239135 DOI: 10.3390/biomedicines11051464] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Aging is commonly associated with a decline in motor control and neural plasticity. Tuning cortico-cortical interactions between premotor and motor areas is essential for controlling fine manual movements. However, whether plasticity in premotor-motor circuits predicts hand motor abilities in young and elderly humans remains unclear. Here, we administered transcranial magnetic stimulation (TMS) over the ventral premotor cortex (PMv) and primary motor cortex (M1) using the cortico-cortical paired-associative stimulation (ccPAS) protocol to manipulate the strength of PMv-to-M1 connectivity in 14 young and 14 elderly healthy adults. We assessed changes in motor-evoked potentials (MEPs) during ccPAS as an index of PMv-M1 network plasticity. We tested whether the magnitude of MEP changes might predict interindividual differences in performance in two motor tasks that rely on premotor-motor circuits, i.e., the nine-hole pegboard test and a choice reaction task. Results show lower motor performance and decreased PMv-M1 network plasticity in elderly adults. Critically, the slope of MEP changes during ccPAS accurately predicted performance at the two tasks across age groups, with larger slopes (i.e., MEP increase) predicting better motor performance at baseline in both young and elderly participants. These findings suggest that physiological indices of PMv-M1 plasticity could provide a neurophysiological marker of fine motor control across age-groups.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Naomi Bevacqua
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185 Rome, Italy
| | - Antonio Cataneo
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Emilio Chiappini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Institut für Klinische und Gesundheitspsychologie, Universität Wien, 1010 Vienna, Austria
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- NeXT: Unità di Ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Dipartimento di Medicina, Università Campus Bio-Medico, 00128 Rome, Italy
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca 346000, Chile
| |
Collapse
|
49
|
Errante A, Gerbella M, Mingolla GP, Fogassi L. Activation of Cerebellum, Basal Ganglia and Thalamus During Observation and Execution of Mouth, hand, and foot Actions. Brain Topogr 2023:10.1007/s10548-023-00960-1. [PMID: 37133782 DOI: 10.1007/s10548-023-00960-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Humans and monkey studies showed that specific sectors of cerebellum and basal ganglia activate not only during execution but also during observation of hand actions. However, it is unknown whether, and how, these structures are engaged during the observation of actions performed by effectors different from the hand. To address this issue, in the present fMRI study, healthy human participants were required to execute or to observe grasping acts performed with different effectors, namely mouth, hand, and foot. As control, participants executed and observed simple movements performed with the same effectors. The results show that: (1) execution of goal-directed actions elicited somatotopically organized activations not only in the cerebral cortex but also in the cerebellum, basal ganglia, and thalamus; (2) action observation evoked cortical, cerebellar and subcortical activations, lacking a clear somatotopic organization; (3) in the territories displaying shared activations between execution and observation, a rough somatotopy could be revealed in both cortical, cerebellar and subcortical structures. The present study confirms previous findings that action observation, beyond the cerebral cortex, also activates specific sectors of cerebellum and subcortical structures and it shows, for the first time, that these latter are engaged not only during hand actions observation but also during the observation of mouth and foot actions. We suggest that each of the activated structures processes specific aspects of the observed action, such as performing internal simulation (cerebellum) or recruiting/inhibiting the overt execution of the observed action (basal ganglia and sensory-motor thalamus).
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
- Department of Diagnostics, Neuroradiology unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Gloria P Mingolla
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124, Verona, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
| |
Collapse
|
50
|
Turrini S, Fiori F, Chiappini E, Lucero B, Santarnecchi E, Avenanti A. Cortico-cortical paired associative stimulation (ccPAS) over premotor-motor areas affects local circuitries in the human motor cortex via Hebbian plasticity. Neuroimage 2023; 271:120027. [PMID: 36925088 DOI: 10.1016/j.neuroimage.2023.120027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) studies have shown that cortico-cortical paired associative stimulation (ccPAS) can strengthen connectivity between the ventral premotor cortex (PMv) and the primary motor cortex (M1) by modulating convergent input over M1 via Hebbian spike-timing-dependent plasticity (STDP). However, whether ccPAS locally affects M1 activity remains unclear. We tested 60 right-handed young healthy humans in two studies, using a combination of dual coil TMS and ccPAS over the left PMv and M1 to probe and manipulate PMv-to-M1 connectivity, and single- and paired-pulse TMS to assess neural activity within M1. We provide convergent evidence that ccPAS, relying on repeated activations of excitatory PMv-to-M1 connections, acts locally over M1. During ccPAS, motor-evoked potentials (MEPs) induced by paired PMv-M1 stimulation gradually increased. Following ccPAS, the threshold for inducing MEPs of different amplitudes decreased, and the input-output curve (IO) slope increased, highlighting increased M1 corticospinal excitability. Moreover, ccPAS reduced the magnitude of short-interval intracortical inhibition (SICI), reflecting suppression of GABA-ergic interneuronal mechanisms within M1, without affecting intracortical facilitation (ICF). These changes were specific to ccPAS Hebbian strengthening of PMv-to-M1 connectivity, as no modulations were observed when reversing the order of the PMv-M1 stimulation during a control ccPAS protocol. These findings expand prior ccPAS research that focused on the malleability of cortico-cortical connectivity at the network-level, and highlight local changes in the area of convergent activation (i.e., M1) during plasticity induction. These findings provide new mechanistic insights into the physiological basis of ccPAS that are relevant for protocol optimization.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States.
| | - Francesca Fiori
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; NeXT: Neurophysiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome 00128, Italy
| | - Emilio Chiappini
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Institut für Klinische und Gesundheitspsychologie, Universität Wien, Vienna 1010, Austria
| | - Boris Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, Talca 346000, Chile
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States
| | - Alessio Avenanti
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, Talca 346000, Chile.
| |
Collapse
|