1
|
Perricone C, Triggianese P, Bartoloni E, Cafaro G, Bonifacio AF, Bursi R, Perricone R, Gerli R. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19. J Autoimmun 2020; 111:102468. [PMID: 32317220 PMCID: PMC7164894 DOI: 10.1016/j.jaut.2020.102468] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed the world at a pandemic risk. Coronavirus-19 disease (COVID-19) is an infectious disease caused by SARS-CoV-2, which causes pneumonia, requires intensive care unit hospitalization in about 10% of cases and can lead to a fatal outcome. Several efforts are currently made to find a treatment for COVID-19 patients. So far, several anti-viral and immunosuppressive or immunomodulating drugs have demonstrated some efficacy on COVID-19 both in vitro and in animal models as well as in cases series. In COVID-19 patients a pro-inflammatory status with high levels of interleukin (IL)-1B, IL-1 receptor (R)A and tumor necrosis factor (TNF)-α has been demonstrated. Moreover, high levels of IL-6 and TNF-α have been observed in patients requiring intensive-care-unit hospitalization. This provided rationale for the use of anti-rheumatic drugs as potential treatments for this severe viral infection. Other agents, such as hydroxychloroquine and chloroquine might have a direct anti-viral effect. The anti-viral aspect of immunosuppressants towards a variety of viruses has been known since long time and it is herein discussed in the view of searching for a potential treatment for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Angelo F Bonifacio
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy.
| |
Collapse
|
2
|
Uematsu J, Sakai-Sugino K, Kihira-Nakanishi S, Yamamoto H, Hirai K, Kawano M, Nishio M, Tsurudome M, O'Brien M, Komada H. Inhibitions of human parainfluenza virus type 2 replication by ribavirin and mycophenolate mofetil are restored by guanosine and S-(4-nitrobenzyl)-6-thioinosine. Drug Discov Ther 2020; 13:314-321. [PMID: 31956229 DOI: 10.5582/ddt.2019.01084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The antiviral activities of a nucleoside analog antiviral drug (ribavirin) and a non-nucleoside drug (mycophenolate mofetil) against human parainfluenza virus type 2 (hPIV-2) were investigated, and the restoration of the inhibition by guanosine and S-(4-nitrobenzyl)-6-thioinosine (NBTI: equilibrative nucleoside transporter 1 inhibitor) were also investigated. Ribavirin (RBV) and mycophenolate mofetil (MMF) inhibited cell fusion induced by hPIV-2. Both RBV and MMF considerably reduced the number of viruses released from the cells. Virus genome synthesis was inhibited by RBV and MMF as determined by polymerase chain reaction (PCR) and real time PCR. mRNA syntheses were also reduced. An indirect immunofluorescence study showed that RBV and MMF largely inhibited viral protein syntheses. Using a recombinant green fluorescence protein (GFP)-expressing hPIV-2 without matrix protein (rhPIV-2ΔMGFP), it was found that virus entry into the cells and multinucleated giant cell formation were almost completely blocked by RBV and MMF. RBV and MMF did not disrupt actin microfilaments or microtubules. Both guanosine and NBTI completely or partially reversed the inhibition by RBV and MMF in the viral replication, syntheses of genome RNA, mRNA and protein, and multinucleated giant cell formation. NBTI caused a little damage in actin microfilaments, but had no effect on microtubules. Both RBV and MMF inhibited the replication of hPIV-2, mainly by inhibiting viral genome RNA, mRNA and protein syntheses. The inhibition was almost completely recovered by guanosine. These results indicate that the major mechanism of the inhibition is the depletion of intracellular GTP pools.
Collapse
Affiliation(s)
- Jun Uematsu
- Microbiology and Immunology Section, Department of Clinical Nutrition, Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Kae Sakai-Sugino
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Sahoko Kihira-Nakanishi
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Hidetaka Yamamoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Kazuyuki Hirai
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Mitsuo Kawano
- Department of Microbiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Miwako Nishio
- Department of Microbiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masato Tsurudome
- Department of Microbiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Myles O'Brien
- Graduate School of Mie Prefectural College of Nursing, Tsu, Mie, Japan
| | - Hiroshi Komada
- Microbiology and Immunology Section, Department of Clinical Nutrition, Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| |
Collapse
|