1
|
Effects of Cu2+ on conformational change and aggregation of hPrP180-192 with a V180I mutation of the prion protein. Biochem Biophys Res Commun 2019; 514:798-802. [DOI: 10.1016/j.bbrc.2019.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 01/04/2023]
|
2
|
Araman C, Thompson RE, Wang S, Hackl S, Payne RJ, Becker CFW. Semisynthetic prion protein (PrP) variants carrying glycan mimics at position 181 and 197 do not form fibrils. Chem Sci 2017; 8:6626-6632. [PMID: 28989689 PMCID: PMC5625290 DOI: 10.1039/c7sc02719b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
Semisynthesis and characterization of homogeneously mono- and di-PEGylated full length PrP variants to study the impact of PEGylation (as N-glycan mimics) on protein folding and aggregation.
The prion protein (PrP) is an N-glycosylated protein attached to the outer leaflet of eukaryotic cell membranes via a glycosylphosphatidylinositol (GPI) anchor. Different prion strains have distinct glycosylation patterns and the extent of glycosylation of potentially pathogenic misfolded prion protein (PrPSc) has a major impact on several prion-related diseases (transmissible spongiform encephalopathies, TSEs). Based on these findings it is hypothesized that posttranslational modifications (PTMs) of PrP influence conversion of cellular prion protein (PrPC) into PrPSc and, as such, modified PrP variants are critical tools needed to investigate the impact of PTMs on the pathogenesis of TSEs. Here we report a semisynthetic approach to generate PrP variants modified with monodisperse polyethyleneglycol (PEG) units as mimics of N-glycans. Incorporating PEG at glycosylation sites 181 and 197 in PrP induced only small changes to the secondary structure when compared to unmodified, wildtype PrP. More importantly, in vitro aggregation was abrogated for all PEGylated PrP variants under conditions at which wildtype PrP aggregated. Furthermore, the addition of PEGylated PrP as low as 10 mol% to wildtype PrP completely blocked aggregation. A similar effect was observed for synthetic PEGylated PrP segments comprising amino acids 179–231 alone if these were added to wildtype PrP in aggregation assays. This behavior raises the question if large N-glycans interfere with aggregation in vivo and if PEGylated PrP peptides could serve as potential therapeutics.
Collapse
Affiliation(s)
- Can Araman
- Institute of Biological Chemistry , Department of Chemistry , University of Vienna , Waehringer Strasse 38 , 1090 , Vienna-AT , Austria .
| | - Robert E Thompson
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Siyao Wang
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Stefanie Hackl
- Institute of Biological Chemistry , Department of Chemistry , University of Vienna , Waehringer Strasse 38 , 1090 , Vienna-AT , Austria .
| | - Richard J Payne
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Christian F W Becker
- Institute of Biological Chemistry , Department of Chemistry , University of Vienna , Waehringer Strasse 38 , 1090 , Vienna-AT , Austria .
| |
Collapse
|
3
|
Khrustalev VV, Khrustaleva TA, Szpotkowski K, Poboinev VV, Kakhanouskaya KY. The part of a long beta hairpin from the scrapie form of the human prion protein is reconstructed in the synthetic CC36 protein. Proteins 2016; 84:1462-79. [DOI: 10.1002/prot.25090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 11/12/2022]
Affiliation(s)
| | - Tatyana Aleksandrovna Khrustaleva
- Laboratory of Cellular Technologies; Institute of Physiology of the National Academy of Sciences of Belarus; Academicheskaya, 28 Minsk Belarus
| | - Kamil Szpotkowski
- Department of Crystallography Center of Biocrystallographic Research; Institute of Bioorganic Chemistry, Polish Academy of Sciences; Z. Noskowskiego, 12/14 Poznan Poland
| | | | | |
Collapse
|
4
|
Kojima A, Konishi M, Akizawa T. Prion fragment peptides are digested with membrane type matrix metalloproteinases and acquire enzyme resistance through Cu²⁺-binding. Biomolecules 2014; 4:510-26. [PMID: 24970228 PMCID: PMC4101495 DOI: 10.3390/biom4020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 11/16/2022] Open
Abstract
Prions are the cause of neurodegenerative disease in humans and other mammals. The structural conversion of the prion protein (PrP) from a normal cellular protein (PrPC) to a protease-resistant isoform (PrPSc) is thought to relate to Cu2+ binding to histidine residues. In this study, we focused on the membrane-type matrix metalloproteinases (MT-MMPs) such as MT1-MMP and MT3-MMP, which are expressed in the brain as PrPC-degrading proteases. We synthesized 21 prion fragment peptides. Each purified peptide was individually incubated with recombinant MT1-MMP or MT3-MMP in the presence or absence of Cu2+ and the cleavage sites determined by LC-ESI-MS analysis. Recombinant MMP-7 and human serum (HS) were also tested as control. hPrP61-90, from the octapeptide-repeat region, was cleaved by HS but not by the MMPs tested here. On the other hand, hPrP92-168 from the central region was cleaved by MT1-MMP and MT3-MMP at various sites. These cleavages were inhibited by treatment with Cu2+. The C-terminal peptides had higher resistance than the central region. The data obtained from this study suggest that MT-MMPs expressed in the brain might possess PrPC-degrading activity.
Collapse
Affiliation(s)
- Aya Kojima
- Analytical Chemistry, Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Motomi Konishi
- Analytical Chemistry, Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Toshifumi Akizawa
- Analytical Chemistry, Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| |
Collapse
|
5
|
Inayathullah M, Satheeshkumar KS, Malkovskiy AV, Carre AL, Sivanesan S, Hardesty JO, Rajadas J. Solvent microenvironments and copper binding alters the conformation and toxicity of a prion fragment. PLoS One 2013; 8:e85160. [PMID: 24386462 PMCID: PMC3874036 DOI: 10.1371/journal.pone.0085160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
The secondary structures of amyloidogenic proteins are largely influenced by various intra and extra cellular microenvironments and metal ions that govern cytotoxicity. The secondary structure of a prion fragment, PrP(111-126), was determined using circular dichroism (CD) spectroscopy in various microenvironments. The conformational preferences of the prion peptide fragment were examined by changing solvent conditions and pH, and by introducing external stress (sonication). These physical and chemical environments simulate various cellular components at the water-membrane interface, namely differing aqueous environments and metal chelating ions. The results show that PrP(111-126) adopts different conformations in assembled and non-assembled forms. Aging studies on the PrP(111-126) peptide fragment in aqueous buffer demonstrated a structural transition from random coil to a stable β-sheet structure. A similar, but significantly accelerated structural transition was observed upon sonication in aqueous environment. With increasing TFE concentrations, the helical content of PrP(111-126) increased persistently during the structural transition process from random coil. In aqueous SDS solution, PrP(111-126) exhibited β-sheet conformation with greater α-helical content. No significant conformational changes were observed under various pH conditions. Addition of Cu2+ ions inhibited the structural transition and fibril formation of the peptide in a cell free in vitro system. The fact that Cu2+ supplementation attenuates the fibrillar assemblies and cytotoxicity of PrP(111-126) was witnessed through structural morphology studies using AFM as well as cytotoxicity using MTT measurements. We observed negligible effects during both physical and chemical stimulation on conformation of the prion fragment in the presence of Cu2+ ions. The toxicity of PrP(111-126) to cultured astrocytes was reduced following the addition of Cu2+ ions, owing to binding affinity of copper towards histidine moiety present in the peptide.
Collapse
Affiliation(s)
- Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California, United States of America
| | - K. S. Satheeshkumar
- Bioorganic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, India
| | - Andrey V. Malkovskiy
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California, United States of America
| | - Antoine L. Carre
- Department of Surgery, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Senthilkumar Sivanesan
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jasper O. Hardesty
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, California, United States of America
- Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- *
| |
Collapse
|
6
|
Palladino P, Ronga L, Benedetti E, Rossi F, Ragone R. Peptide Fragment Approach to Prion Misfolding: The Alpha-2 Domain. Int J Pept Res Ther 2009. [DOI: 10.1007/s10989-009-9171-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|