1
|
Shumski EJ, Schmidt JD, Lynall RC. Cognition Uniquely Influences Dual-Task Tandem Gait Performance Among Athletes With a Concussion History. Sports Health 2024; 16:542-550. [PMID: 37377161 PMCID: PMC11195850 DOI: 10.1177/19417381231183413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND After a concussion, there are unique associations between static balance and landing with cognition. Previous research has explored these unique correlations, but the factor of time, dual-task, and different motor tasks leave gaps within the literature. The purpose of this study was to determine the associations between cognition and tandem gait performance. HYPOTHESIS We hypothesized that athletes with a concussion history would display stronger associations compared with athletes without a concussion history between cognition and tandem gait. STUDY DESIGN Cross-sectional. LEVEL OF EVIDENCE Level 3. METHODS A total of 126 athletes without (56.3% female; age, 18.8 ± 1.3 years; height, 176.7 ± 12.3 cm; mass, 74.8 ± 19.0 kg) and 42 athletes with (40.5% female; age, 18.8 ± 1.3 years; height, 179.3 ± 11.9 cm; mass, 81.0 ± 25.1 kg) concussion history participated. Cognitive performance was assessed with CNS Vital Signs. Tandem gait was performed on a 3-meter walkway. Dual-task tandem gait included a concurrent cognitive task of serial subtraction, reciting months backward, or spelling words backward. RESULTS Athletes with a concussion history exhibited a larger number of significant correlations compared with athletes without a concussion history for cognition and dual-task gait time (4 significant correlations: rho-range, -0.377 to 0.358 vs 2 significant correlations: rho, -0.233 to 0.179) and dual-task cost gait time (4 correlations: rho range, -0.344 to 0.392 vs 1 correlation: rho, -0.315). The time between concussion and testing did significantly moderate any associations (P = 0.11-0.63). Athletes with a concussion history displayed better dual-task cost response rate (P = 0.01). There were no other group differences for any cognitive (P = 0.13-0.97) or tandem gait (P = 0.20-0.92) outcomes. CONCLUSION Athletes with a concussion history display unique correlations between tandem gait and cognition. These correlations are unaffected by the time since concussion. CLINICAL RELEVANCE These unique correlations may represent shared neural resources between cognition and movement that are only present for athletes with a concussion history. Time does not influence these outcomes, indicating the moderating effect of concussion on the correlations persists long-term after the initial injury.
Collapse
Affiliation(s)
- Eric J. Shumski
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens, Georgia
| | - Julianne D. Schmidt
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens, Georgia
| | - Robert C. Lynall
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens, Georgia
| |
Collapse
|
2
|
Chen WG, Iversen JR, Kao MH, Loui P, Patel AD, Zatorre RJ, Edwards E. Music and Brain Circuitry: Strategies for Strengthening Evidence-Based Research for Music-Based Interventions. J Neurosci 2022; 42:8498-8507. [PMID: 36351825 PMCID: PMC9665917 DOI: 10.1523/jneurosci.1135-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
The neuroscience of music and music-based interventions (MBIs) is a fascinating but challenging research field. While music is a ubiquitous component of every human society, MBIs may encompass listening to music, performing music, music-based movement, undergoing music education and training, or receiving treatment from music therapists. Unraveling the brain circuits activated and influenced by MBIs may help us gain better understanding of the therapeutic and educational values of MBIs by gathering strong research evidence. However, the complexity and variety of MBIs impose unique research challenges. This article reviews the recent endeavor led by the National Institutes of Health to support evidence-based research of MBIs and their impact on health and diseases. It also highlights fundamental challenges and strategies of MBI research with emphases on the utilization of animal models, human brain imaging and stimulation technologies, behavior and motion capturing tools, and computational approaches. It concludes with suggestions of basic requirements when studying MBIs and promising future directions to further strengthen evidence-based research on MBIs in connections with brain circuitry.SIGNIFICANCE STATEMENT Music and music-based interventions (MBI) engage a wide range of brain circuits and hold promising therapeutic potentials for a variety of health conditions. Comparative studies using animal models have helped in uncovering brain circuit activities involved in rhythm perception, while human imaging, brain stimulation, and motion capture technologies have enabled neural circuit analysis underlying the effects of MBIs on motor, affective/reward, and cognitive function. Combining computational analysis, such as prediction method, with mechanistic studies in animal models and humans may unravel the complexity of MBIs and their effects on health and disease.
Collapse
Affiliation(s)
- Wen Grace Chen
- Division of Extramural Research, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland, 20892
| | | | - Mimi H Kao
- Tufts University, Medford, Massachusetts 02155
| | - Psyche Loui
- Northeastern University, Boston, Massachusetts 02115
| | | | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A2B4, Canada
| | - Emmeline Edwards
- Division of Extramural Research, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
3
|
Li Y, Sekino H, Sato-Shimokawara E, Yamaguchi T. The Influence of Robot’s Expressions on Self-Efficacy in Erroneous Situations. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS 2022. [DOI: 10.20965/jaciii.2022.p0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Social robots are increasingly being adopted as companions in educational scenarios. Self-efficacy, a viable construct for comprehending performance, particularly on academic tasks, has lately received great attention. In this study, participants completed four sections of the Wisconsin Card-Sorting Task (WCST) with a social robot Kebbi. The robot performed four kinds of expressions consisting of different combinations of Laban-theory-based motion with a positive voice designed to point out the mistakes the participant made. The impressions of the robot were reported in the post-experimental questionnaires while the bio-signals of the participant including heart rate and brainwave were collected by wearable devices. The results demonstrated that the participants tended to find the robot with the designed motion more likable, and they were less likely to feel frustrated and experienced lower levels of stress when the robot communicated with motion and voice simultaneously.
Collapse
|
4
|
Asgharian Asl F, Vaghef L. The effectiveness of high-frequency left DLPFC-rTMS on depression, response inhibition, and cognitive flexibility in female subjects with major depressive disorder. J Psychiatr Res 2022; 149:287-292. [PMID: 35313201 DOI: 10.1016/j.jpsychires.2022.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND The purpose of the present study was to investigate the effect of high-frequency repetitive transcranial magnetic stimulation on depression severity, response inhibition, and cognitive flexibility in subjects with major depressive disorder. METHODS Twenty-eight female subjects with major depressive disorder were randomly divided into experimental and control groups. High frequency (20 Hz) rTMS stimulation at 85% of the MT consisted of 25 trains of 5 s duration, a total of 2500 pulses/session or sham stimulation was applied over the left DLPFC for five consecutive days per week, for two weeks. Depression severity, response inhibition, and cognitive flexibility of subjects were assessed by Beck Depression Inventory, Go/NoGo, and Wisconsin sort cards (WCST) tests, respectively, pre- and post-TMS intervention. RESULTS rTMS over the left DLPFC significantly decreased the depression severity at the Beck Depression Inventory, enhanced accuracy, and decreased reaction time at the Go/NoGo task. In the Wisconsin Card Sort Test, perseverative and non-perseverative errors and failure to maintain a set index significantly decreased following rTMS treatment. CONCLUSIONS Findings indicate that 20-Hz rTMS treatment on the left DLPFC has a positive effect on depression severity, response inhibition, and cognitive flexibility in depressed subjects.
Collapse
Affiliation(s)
- Fatemeh Asgharian Asl
- Department of Psychology, Faculty of Education & Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Ladan Vaghef
- Department of Psychology, Faculty of Education & Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
5
|
Payne AM, Palmer JA, McKay JL, Ting LH. Lower Cognitive Set Shifting Ability Is Associated With Stiffer Balance Recovery Behavior and Larger Perturbation-Evoked Cortical Responses in Older Adults. Front Aging Neurosci 2021; 13:742243. [PMID: 34938171 PMCID: PMC8685437 DOI: 10.3389/fnagi.2021.742243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
The mechanisms underlying associations between cognitive set shifting impairments and balance dysfunction are unclear. Cognitive set shifting refers to the ability to flexibly adjust behavior to changes in task rules or contexts, which could be involved in flexibly adjusting balance recovery behavior to different contexts, such as the direction the body is falling. Prior studies found associations between cognitive set shifting impairments and severe balance dysfunction in populations experiencing frequent falls. The objective of this study was to test whether cognitive set shifting ability is expressed in successful balance recovery behavior in older adults with high clinical balance ability (N = 19, 71 ± 7 years, 6 female). We measured cognitive set shifting ability using the Trail Making Test and clinical balance ability using the miniBESTest. For most participants, cognitive set shifting performance (Trail Making Test B-A = 37 ± 20 s) was faster than normative averages (46 s for comparable age and education levels), and balance ability scores (miniBESTest = 25 ± 2/28) were above the threshold for fall risk (23 for people between 70 and 80 years). Reactive balance recovery in response to support-surface translations in anterior and posterior directions was assessed in terms of body motion, muscle activity, and brain activity. Across participants, lower cognitive set shifting ability was associated with smaller peak center of mass displacement during balance recovery, lower directional specificity of late phase balance-correcting muscle activity (i.e., greater antagonist muscle activity 200-300 ms after perturbation onset), and larger cortical N1 responses (100-200 ms). None of these measures were associated with clinical balance ability. Our results suggest that cognitive set shifting ability is expressed in balance recovery behavior even in the absence of profound clinical balance disability. Specifically, our results suggest that lower flexibility in cognitive task performance is associated with lower ability to incorporate the directional context into the cortically mediated later phase of the motor response. The resulting antagonist activity and stiffer balance behavior may help explain associations between cognitive set shifting impairments and frequent falls.
Collapse
Affiliation(s)
- Aiden M. Payne
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Jacqueline A. Palmer
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - J. Lucas McKay
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, United States,Jean and Paul Amos PD and Movement Disorders Program, Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Lena H. Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States,Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States,*Correspondence: Lena H. Ting,
| |
Collapse
|
6
|
Güleken MD, Akbaş T, Erden SÇ, Akansel V, Al ZC, Özer ÖA. The effect of bilateral high frequency repetitive transcranial magnetic stimulation on cognitive functions in schizophrenia. SCHIZOPHRENIA RESEARCH-COGNITION 2020; 22:100183. [PMID: 32714846 PMCID: PMC7371913 DOI: 10.1016/j.scog.2020.100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/30/2022]
Abstract
Despite their major effects on positive symptoms, antipsychotics do not have a significant effect on cognition in schizophrenia Bilateral high frequency rTMS targeting dorsolateral prefrontal cortices has been effective on working memory Bilateral 20 Hz rTMS improved attention and verbal working memory in schizophrenia patients, It also improved the competence of switching the perceptional set up under a disruptive effect towards new instructions, in this study
Collapse
Affiliation(s)
- Mehmet Diyaddin Güleken
- Department of Psychiatry, Gazi Yaşargil Training and Research Hospital, Sağlık Bilimleri Üniversitesi, Diyarbakır, Turkey
| | - Taner Akbaş
- Department of Psychiatry, Şişli Hamidiye Etfal Training and Research Hospital, Sağlık Bilimleri Üniversitesi, İstanbul, Turkey
| | - Selime Çelik Erden
- Department of Psychiatry, Şişli Hamidiye Etfal Training and Research Hospital, Sağlık Bilimleri Üniversitesi, İstanbul, Turkey
| | - Veysel Akansel
- Department of Psychiatry, Kanuni Sultan Süleyman Training and Research Hospital, İstanbul, Turkey
| | - Zeliha Cengiz Al
- Department of Psychiatry, Dr. Cevdet Aykan Psychiatry Hospital, Tokat, Turkey
| | - Ömer Akil Özer
- Department of Psychiatry, Şişli Hamidiye Etfal Training and Research Hospital, Sağlık Bilimleri Üniversitesi, İstanbul, Turkey
| |
Collapse
|
7
|
Beynel L, Appelbaum LG, Luber B, Crowell CA, Hilbig SA, Lim W, Nguyen D, Chrapliwy NA, Davis SW, Cabeza R, Lisanby SH, Deng ZD. Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: A meta-analysis and recommendations for future studies. Neurosci Biobehav Rev 2019; 107:47-58. [PMID: 31473301 PMCID: PMC7654714 DOI: 10.1016/j.neubiorev.2019.08.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 01/03/2023]
Abstract
Online repetitive transcranial magnetic stimulation (rTMS), applied while subjects are performing a task, is widely used to disrupt brain regions underlying cognition. However, online rTMS has also induced "paradoxical enhancement". Given the rapid proliferation of this approach, it is crucial to develop a better understanding of how online stimulation influences cognition, and the optimal parameters to achieve desired effects. To accomplish this goal, a quantitative meta-analysis was performed with random-effects models fitted to reaction time (RT) and accuracy data. The final dataset included 126 studies published between 1998 and 2016, with 244 total effects for reaction times, and 202 for accuracy. Meta-analytically, rTMS at 10 Hz and 20 Hz disrupted accuracy for attention, executive, language, memory, motor, and perception domains, while no effects were found with 1 Hz or 5 Hz. Stimulation applied at and 10 and 20 Hz slowed down RTs in attention and perception tasks. No performance enhancement was found. Meta-regression analysis showed that fMRI-guided targeting and short inter-trial intervals are associated with increased disruptive effects with rTMS.
Collapse
Affiliation(s)
- Lysianne Beynel
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Lawrence G Appelbaum
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Courtney A Crowell
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Susan A Hilbig
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Wesley Lim
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Duy Nguyen
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Nicolas A Chrapliwy
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Simon W Davis
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States
| | - Sarah H Lisanby
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Zhi-De Deng
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
8
|
Albein-Urios N, Chase H, Clark L, Kirkovski M, Davies C, Enticott PG. Increased perseverative errors following high-definition transcranial direct current stimulation over the ventrolateral cortex during probabilistic reversal learning. Brain Stimul 2019; 12:959-966. [PMID: 30833215 DOI: 10.1016/j.brs.2019.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The prefrontal cortex regulates behavioural adaptation in response to feedback. However, the causal role of different prefrontal regions remains unclear, based on indirect evidence derived from functional neuroimaging. Neuroimaging studies show dorsomedial prefrontal activation during feedback monitoring, whereas the ventrolateral prefrontal cortex engages during behavioural adaptation (shifting). OBJECTIVE We used high-definition transcranial direct current stimulation (HD-tDCS) to elucidate the roles of the ventrolateral prefrontal cortex (vlPFC) and the dorsomedial prefrontal cortex (dmPFC) in behaviour change, using a probabilistic reversal learning task (PRLT). METHOD Fifty-two healthy adults were randomly assigned to receive cathodal HD-tDCS to inhibit the vlPFC or the dmPFC versus sham stimulation, prior to completing the PRLT. The outcome measures were the number of perseverative errors and the electroencephalography (EEG) signals of feedback-related negativity (FRN) in the PRLT. We hypothesised that inhibition of the vlPFC would be specifically associated with more perseverative errors and weaker FRNs. RESULTS We found that vlPFC inhibition was associated with higher perseverative errors compared to sham and dmPFC stimulation conditions. Although there were no statistically significant differences in FRN amplitudes, the effect sizes indicate an association between inhibition of the vlPFC and lower FRN amplitudes. CONCLUSION Our findings support a causal role of the vlPFC on feedback-based behavioural adaptation, which is critical for adaptive goal-driven behaviour.
Collapse
Affiliation(s)
- Natalia Albein-Urios
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia.
| | - Henry Chase
- Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Luke Clark
- Centre for Gambling Research at UBC, Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Charlotte Davies
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
9
|
Dayan E, Herszage J, Laor-Maayany R, Sharon H, Censor N. Neuromodulation of reinforced skill learning reveals the causal function of prefrontal cortex. Hum Brain Mapp 2018; 39:4724-4732. [PMID: 30043536 DOI: 10.1002/hbm.24317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/19/2018] [Accepted: 07/06/2018] [Indexed: 01/23/2023] Open
Abstract
Accumulating evidence has suggested functional interactions between prefrontal cortex (PFC) and dissociable large-scale networks. However, how these networks interact in the human brain to enable complex behaviors is not well-understood. Here, using a combination of behavioral, brain stimulation and neuroimaging paradigms, we tested the hypothesis that human PFC is required for successful reinforced skill formation. We additionally tested the extent to which PFC-dependent skill formation is related to intrinsic functional communication with this region. We report that inhibitory noninvasive transcranial magnetic stimulation over lateral PFC, a hub region with a diverse connectivity profile, causally modulated effective reinforcement-based motor skill acquisition. Furthermore, PFC-dependent skill formation was strongly related to the strength of functional connectivity between the PFC and regions in the sensorimotor network. These results point to the involvement of lateral PFC in the neural architecture that underlies the acquisition of complex skills, and suggest that, in relation to skill acquisition, this region may be involved in functional interactions with sensorimotor networks.
Collapse
Affiliation(s)
- Eran Dayan
- Department of Radiology, Biomedical Research Imaging Center and Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jasmine Herszage
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rony Laor-Maayany
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Haggai Sharon
- Center for Brain Functions and Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Shayganfard M, Jahangard L, Nazaribadie M, Haghighi M, Ahmadpanah M, Sadeghi Bahmani D, Bajoghli H, Holsboer-Trachsler E, Brand S. Repetitive Transcranial Magnetic Stimulation Improved Symptoms of Obsessive-Compulsive Disorders but Not Executive Functions: Results from a Randomized Clinical Trial with Crossover Design and Sham Condition. Neuropsychobiology 2017; 74:115-124. [PMID: 28334708 DOI: 10.1159/000457128] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/18/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Whereas there is growing evidence that repetitive transcranial magnetic stimulation (rTMS) favorably impacts on symptoms of obsessive-compulsive disorders (OCD), less is known regarding the influence of rTMS on cognitive performance of patients with OCD. Here, we tested the hypothesis that rTMS has a positive impact both on symptom severity and executive functions in such patients. METHODS We assessed 10 patients diagnosed with OCD (mean age: 33.5 years) and treated with a standard medication; they were randomly assigned either to a treatment-first or to a sham-first condition. Symptom severity (experts' ratings) and executive functions (Wisconsin Card Sorting Test) were assessed by independent raters unaware of the patients' group assignments at baseline, after 2 and 4 weeks. After 2 weeks, treatment switched to sham condition, and sham condition switched to treatment condition. RESULTS Under treatment but not under sham conditions, symptom severity decreased. Performance on the executive function test increased continuously with every new assessment and was unrelated to rTMS treatment. CONCLUSION Whereas the present study confirmed previous research suggesting that rTMS improved symptoms of OCD, rTMS did not improve executive functions to a greater degree than sham treatment. More research is needed to investigate the effect of rTMS on executive functions in patients with OCD.
Collapse
Affiliation(s)
- Mehran Shayganfard
- Research Center for Behavioral Disorders and Substance Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Boschin EA, Mars RB, Buckley MJ. Transcranial magnetic stimulation to dorsolateral prefrontal cortex affects conflict-induced behavioural adaptation in a Wisconsin Card Sorting Test analogue. Neuropsychologia 2016; 94:36-43. [PMID: 27889392 PMCID: PMC5226064 DOI: 10.1016/j.neuropsychologia.2016.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/26/2016] [Accepted: 11/17/2016] [Indexed: 11/09/2022]
Abstract
A substantial body of literature has proposed a role for dorsolateral prefrontal cortex (dlPFC) in supporting behavioural adaptation during conflict tasks. The vast majority of the evidence in support of this interpretation comes from neuroimaging studies. However, in order to unequivocally ascribe such a role to dlPFC, it is important to determine whether or not it is essential for this mechanism, and this can only be achieved by lesioning the area or interfering with its activity. In this study, we investigated the effects of repeated Transcranial Magnetic Stimulation (rTMS) to dlPFC on performance on a conflict version of a Wisconsin Card Sorting Test analogue (used previously in circumscribed lesion studies in monkeys) in neurologically healthy human participants. Our results supported the view of dlPFC as a fundamental structure for optimal conflict-induced behavioural adaptation, as stimulation cancelled out the adaptation effect normally observed on control trials. We show that there is some indication of differential modulation of trial types by stimulation and we hypothesize that this might suggest a role for dlPFC in conflict-induced adaptation that is more specifically concerned with the maintenance of conflict-history information online across trials. Dorsolateral prefrontal cortex stimulation abolishes conflict-induced adaptation. Adaptation is abolished via differential modulation of trial types. Dorsolateral prefrontal areas may aid adaptation via conflict history maintenance.
Collapse
Affiliation(s)
- Erica A Boschin
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, The Netherlands and Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mark J Buckley
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Brown MJ, Staines WR. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input. Neuroimage 2016; 127:97-109. [DOI: 10.1016/j.neuroimage.2015.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
|
13
|
Michou E, Raginis-Zborowska A, Watanabe M, Lodhi T, Hamdy S. Repetitive Transcranial Magnetic Stimulation: a Novel Approach for Treating Oropharyngeal Dysphagia. Curr Gastroenterol Rep 2016; 18:10. [PMID: 26897756 PMCID: PMC4761363 DOI: 10.1007/s11894-015-0483-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, repetitive transcranial magnetic stimulation, a technique used to produce human central neurostimulation, has attracted increased interest and been applied experimentally in the treatment of dysphagia. This review presents a synopsis of the current research for the application of repetitive transcranial magnetic stimulation (rTMS) on dysphagia. Here, we review the mechanisms underlying the effects of rTMS and the results from studies on both healthy volunteers and dysphagic patients. The clinical studies on dysphagia have primarily focussed on dysphagia post-stroke. We discuss why it is difficult to draw conclusions for the efficacy of this neurostimulation technique, given the major differences between studies. The intention here is to stimulate potential research questions not yet investigated for the application of rTMS on dysphagic patients prior to their translation into clinical practice for dysphagia rehabilitation.
Collapse
Affiliation(s)
- Emilia Michou
- Centre for Gastrointestinal Sciences, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Clinical Sciences Building, Salford Royal Hospital (part of the Manchester Academic Health Sciences Centre (MAHSC)), Eccles Old Road, Salford, M6 8HD, UK
| | - Alicja Raginis-Zborowska
- Centre for Gastrointestinal Sciences, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Clinical Sciences Building, Salford Royal Hospital (part of the Manchester Academic Health Sciences Centre (MAHSC)), Eccles Old Road, Salford, M6 8HD, UK
| | - Masahiro Watanabe
- Centre for Gastrointestinal Sciences, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Clinical Sciences Building, Salford Royal Hospital (part of the Manchester Academic Health Sciences Centre (MAHSC)), Eccles Old Road, Salford, M6 8HD, UK
| | - Taha Lodhi
- Centre for Gastrointestinal Sciences, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Clinical Sciences Building, Salford Royal Hospital (part of the Manchester Academic Health Sciences Centre (MAHSC)), Eccles Old Road, Salford, M6 8HD, UK
| | - Shaheen Hamdy
- Centre for Gastrointestinal Sciences, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Clinical Sciences Building, Salford Royal Hospital (part of the Manchester Academic Health Sciences Centre (MAHSC)), Eccles Old Road, Salford, M6 8HD, UK.
| |
Collapse
|
14
|
Blanco NJ, Maddox WT, Gonzalez-Lima F. Improving executive function using transcranial infrared laser stimulation. J Neuropsychol 2015; 11:14-25. [PMID: 26017772 DOI: 10.1111/jnp.12074] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/28/2015] [Indexed: 01/16/2023]
Abstract
Transcranial infrared laser stimulation is a new non-invasive form of low-level light therapy that may have a wide range of neuropsychological applications. It entails using low-power and high-energy-density infrared light from lasers to increase metabolic energy. Preclinical work showed that this intervention can increase cortical metabolic energy, thereby improving frontal cortex-based memory function in rats. Barrett and Gonzalez-Lima (2013, Neuroscience, 230, 13) discovered that transcranial laser stimulation can enhance sustained attention and short-term memory in humans. We extend this line of work to executive function. Specifically, we ask whether transcranial laser stimulation enhances performance in the Wisconsin Card Sorting Task that is considered the gold standard of executive function and is compromised in normal ageing and a number of neuropsychological disorders. We used a laser of a specific wavelength (1,064 nm) that photostimulates cytochrome oxidase - the enzyme catalysing oxygen consumption for metabolic energy production. Increased cytochrome oxidase activity is considered the primary mechanism of action of this intervention. Participants who received laser treatment made fewer errors and showed improved set-shifting ability relative to placebo controls. These results suggest that transcranial laser stimulation improves executive function and may have exciting potential for treating or preventing deficits resulting from neuropsychological disorders or normal ageing.
Collapse
Affiliation(s)
- Nathaniel J Blanco
- Department of Psychology, The University of Texas at Austin, Texas, USA.,Institute for Mental Health Research, The University of Texas at Austin, Texas, USA
| | - W Todd Maddox
- Department of Psychology, The University of Texas at Austin, Texas, USA.,Institute for Mental Health Research, The University of Texas at Austin, Texas, USA.,Institute for Neuroscience, The University of Texas at Austin, Texas, USA.,Center for Perceptual Systems, The University of Texas at Austin, Texas, USA
| | - Francisco Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, Texas, USA.,Institute for Neuroscience, The University of Texas at Austin, Texas, USA.,Division of Pharmacology and Toxicology, The University of Texas at Austin, Texas, USA
| |
Collapse
|
15
|
Rodríguez Villegas AL, Salvador Cruz J. Executive Functioning and Adaptive Coping in Healthy Adults. APPLIED NEUROPSYCHOLOGY-ADULT 2014; 22:124-31. [DOI: 10.1080/23279095.2013.864972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Judith Salvador Cruz
- Zaragoza School of Advanced Studies, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
16
|
Abstract
The use of functional brain imaging techniques, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI), has allowed for monitoring neuronal and neurochemical activities in the living human brain and identifying abnormal changes in various neurological and psychiatric diseases. Combining these methods with techniques such as deep brain stimulation (DBS) and transcranial magnetic stimulation (TMS) has greatly advanced our understanding of the effects of such treatment on brain activity at targeted regions as well as specific disease-related networks. Indeed, recent network-level analysis focusing on inter-regional covarying activities in data interpretation has unveiled several key mechanisms underlying the therapeutic effects of brain stimulation. However, non-negligible discrepancies have been reported in the literature, attributable in part to the heterogeneity of both imaging and brain stimulation techniques. This chapter summarizes recent studies that combine brain imaging and brain stimulation, and includes discussion of future direction in these lines of research.
Collapse
|
17
|
Tanaka M, Ishii A, Watanabe Y. Regulatory mechanism of performance in chronic cognitive fatigue. Med Hypotheses 2014; 82:567-71. [PMID: 24594236 DOI: 10.1016/j.mehy.2014.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/15/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
Chronic cognitive fatigue is characterized by a sensation of long-lasting fatigue that impairs cognitive functions. Facilitation and inhibition systems in the central nervous system play primary roles in determining the output to the peripheral system, that is, performance. Sensory input from the peripheral system to the central nervous system activates the inhibition system to limit performance, whereas motivational input activates the facilitation system to enhance performance. The dysfunction of the facilitation system and central sensitization and classical conditioning of the inhibition system play important roles in the pathophysiology of chronic cognitive fatigue. Because the dorsolateral prefrontal cortex receives input from both the facilitation and inhibition systems to determine performance, metabolic, functional, and structural impairments of the dorsolateral prefrontal cortex induced by repetitive and prolonged overwork, stress, and stress responses contribute to the impaired functioning and cognitive performance that occur in people with chronic cognitive fatigue. This hypothesis of the regulatory mechanism of performance provides a new perspective on the neural mechanisms underlying chronic cognitive fatigue.
Collapse
Affiliation(s)
- Masaaki Tanaka
- Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | - Akira Ishii
- Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Yasuyoshi Watanabe
- Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Hyogo 650-0047, Japan
| |
Collapse
|
18
|
Ko JH, Antonelli F, Monchi O, Ray N, Rusjan P, Houle S, Lang AE, Christopher L, Strafella AP. Prefrontal dopaminergic receptor abnormalities and executive functions in Parkinson's disease. Hum Brain Mapp 2012; 34:1591-604. [PMID: 22331665 DOI: 10.1002/hbm.22006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/15/2011] [Accepted: 11/15/2011] [Indexed: 11/06/2022] Open
Abstract
The main pattern of cognitive impairments seen in early to moderate stages of Parkinson's disease (PD) includes deficits of executive functions. These nonmotor complications have a significant impact on the quality of life and day-to-day activities of PD patients and are not effectively managed by current therapies, a problem which is almost certainly due to the fact that the disease extends beyond the nigrostriatal system. To investigate the role of extrastriatal dopamine in executive function in PD, PD patients and a control group were studied with positron-emission-tomography using a high-affinity dopamine D2/D3 receptor tracer, [(11) C]FLB-457. All participants were scanned twice while performing an executive task and a control task. Patients were off medication for at least 12 h. The imaging analysis revealed that parkinsonian patients had lower [(11) C]FLB-457 binding than control group independently of task conditions across different brain regions. Cognitive assessment measures were positively correlated with [(11) C]FLB-457 binding in the bilateral dorsolateral prefrontal cortex and anterior cingulate cortex only in control group, but not in PD patients. Within the control group, during the executive task (as compared to control task), there was evidence of reduced [(11) C]FLB-457 binding (indicative of increased dopamine release) in the right orbitofrontal cortex. In contrast, PD patients did not show any reduction in binding during the executive task (as compared with control task). These findings suggest that PD patients present significant abnormalities in extrastriatal dopamine associated with executive processing. These observations provide important insights on the pathophysiology of cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Ji Hyun Ko
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
van den Heuvel OA, Van Gorsel HC, Veltman DJ, Van Der Werf YD. Impairment of executive performance after transcranial magnetic modulation of the left dorsal frontal-striatal circuit. Hum Brain Mapp 2011; 34:347-55. [PMID: 22076808 DOI: 10.1002/hbm.21443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/05/2011] [Accepted: 07/25/2011] [Indexed: 11/12/2022] Open
Abstract
The dorsal frontal-striatal circuit is implicated in executive functions, such as planning. The Tower of London task, a planning task, in combination with off-line low-frequency repetitive transcranial magnetic stimulation (rTMS), was used to investigate whether interfering with dorsolateral prefrontal function would modulate executive performance, mimicking dorsal frontal-striatal dysfunction as found in neuropsychiatric disorders. Eleven healthy controls (seven females; mean age 25.5 years) were entered in a cross-over design: two single-session treatments of low-frequency (1 Hz) rTMS (vs. sham rTMS) for 20 min on the left dorsolateral prefrontal cortex (DLPFC). Directly following the off-line rTMS treatment, the Tower of London task was performed during MRI measurements. The low-frequency rTMS treatment impaired performance, but only when the subjects had not performed the task before: we found a TMS condition-by-order effect, such that real TMS treatment in the first session led to significantly more errors (P = 0.032), whereas this TMS effect was not present in subjects who received real TMS in the second session. At the neural level, rTMS resulted in decreased activation during the rTMS versus sham condition in prefrontal brain regions (i.e., premotor, dorsolateral prefrontal and anterior prefrontal cortices) and visuospatial brain regions (i.e., precuneus/cuneus and inferior parietal cortex). The results show that low-frequency off-line rTMS on the DLPFC resulted in decreased task-related activations in the frontal and visuospatial regions during the performance of the Tower of London task, with a behavioral effect only when task experience is limited.
Collapse
|
20
|
Burzynska AZ, Nagel IE, Preuschhof C, Gluth S, Bäckman L, Li SC, Lindenberger U, Heekeren HR. Cortical thickness is linked to executive functioning in adulthood and aging. Hum Brain Mapp 2011; 33:1607-20. [PMID: 21739526 DOI: 10.1002/hbm.21311] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 11/15/2010] [Accepted: 02/18/2011] [Indexed: 11/09/2022] Open
Abstract
Executive functions that are dependent upon the frontal-parietal network decline considerably during the course of normal aging. To delineate neuroanatomical correlates of age-related executive impairment, we investigated the relation between cortical thickness and executive functioning in 73 younger (20-32 years) and 56 older (60-71 years) healthy adults. Executive functioning was assessed using the Wisconsin Card Sorting Test (WCST). Cortical thickness was measured at each location of the cortical mantle using surface-based segmentation procedures on high-resolution T1-weighted magnetic resonance images. For regions involved in WCST performance, such as the lateral prefrontal and parietal cortices, we found that thicker cortex was related to higher accuracy. Follow-up ROI-based analyses revealed that these associations were stronger in older than in younger adults. Moreover, among older adults, high and low performers differed in cortical thickness within regions generally linked to WCST performance. Our results indicate that the structural cortical correlates of executive functioning largely overlap with previously identified functional patterns. We conclude that structural preservation of relevant brain regions is associated with higher levels of executive performance in old age, and underscore the need to consider the heterogeneity of brain aging in relation to cognitive functioning.
Collapse
Affiliation(s)
- Agnieszka Z Burzynska
- The Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ko JH, Strafella AP. Dopaminergic neurotransmission in the human brain: new lessons from perturbation and imaging. Neuroscientist 2011; 18:149-68. [PMID: 21536838 DOI: 10.1177/1073858411401413] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dopamine plays an important role in several brain functions and is involved in the pathogenesis of several psychiatric and neurological disorders. Neuroimaging techniques such as positron emission tomography allow us to quantify dopaminergic activity in the living human brain. Combining these with brain stimulation techniques offers us the unique opportunity to tackle questions regarding region-specific neurochemical activity. Such studies may aid clinicians and scientists to disentangle neural circuitries within the human brain and thereby help them to understand the underlying mechanisms of a given function in relation to brain diseases. Furthermore, it may also aid the development of alternative treatment approaches for various neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Ji Hyun Ko
- PET Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
van der Werf YD, Sanz-Arigita EJ, Menning S, van den Heuvel OA. Modulating spontaneous brain activity using repetitive transcranial magnetic stimulation. BMC Neurosci 2010; 11:145. [PMID: 21067612 PMCID: PMC2993720 DOI: 10.1186/1471-2202-11-145] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 11/10/2010] [Indexed: 11/30/2022] Open
Abstract
Background When no specific stimulus or task is presented, spontaneous fluctuations in brain activity occur. Brain regions showing such coherent fluctuations are thought to form organized networks known as 'resting-state' networks, a main representation of which is the default mode network. Spontaneous brain activity shows abnormalities in several neurological and psychiatric diseases that may reflect disturbances of ongoing thought processes. Information about the degree to which such spontaneous brain activity can be modulated may prove helpful in the development of treatment options. We investigated the effect of offline low-frequency rTMS on spontaneous neural activity, as measured with fMRI, using a sequential independent-component-analysis and regression approach to investigate local changes within the default mode network. Results We show that rTMS applied over the left dorsolateral prefrontal cortex results in distal changes of neural activity, relative to the site of stimulation, and that these changes depend on the patterns of brain network activity during 'resting-state'. Conclusions Whereas the proximal changes may reflect the off-line effect of direct stimulation of neural elements, the distal changes likely reflect modulation of functional connectivity.
Collapse
Affiliation(s)
- Ysbrand D van der Werf
- Sleep and Cognition, Netherlands Institute for Neurosciences, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Simard F, Joanette Y, Petrides M, Jubault T, Madjar C, Monchi O. Fronto-striatal Contribution to Lexical Set-Shifting. Cereb Cortex 2010; 21:1084-93. [DOI: 10.1093/cercor/bhq182] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Impaired awareness of movement disorders in Parkinson’s disease. Brain Cogn 2010; 72:337-46. [DOI: 10.1016/j.bandc.2009.10.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 11/19/2022]
|
25
|
Anokhin AP, Golosheykin S, Grant JD, Heath AC. Developmental and genetic influences on prefrontal function in adolescents: a longitudinal twin study of WCST performance. Neurosci Lett 2010; 472:119-22. [PMID: 20132870 DOI: 10.1016/j.neulet.2010.01.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 12/09/2009] [Accepted: 01/26/2010] [Indexed: 01/13/2023]
Abstract
Adolescence is characterized by a relative immaturity of the prefrontal cortex and associated cognitive control functions, which is hypothesized to be a major contributing factor to high-risk behaviors. However, little is known about the role of genetic and environmental factors in frontal brain development during adolescence. Here we examined heritability of performance on the Wisconsin Card Sorting Test (WCST), an established neuropsychological measure of prefrontally mediated executive functioning, in a longitudinal sample of adolescent twins (n=747) tested at ages 12 and 14. WSCT performance significant improved with age as indicated by a decrease in the number of perseverative errors (p<0.001), which was paralleled by an increase in heritability in females (19% at age 12 and 49% at age 14) and shared environmental influences in males (non-significant at age 12 and 34% at age 14). The results suggest increasing influence of familial factors on frontal executive functioning during adolescence, as well as gender differences in the relative role of genetic and environmental factors.
Collapse
Affiliation(s)
- Andrey P Anokhin
- Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
26
|
Leh SE, Petrides M, Strafella AP. The neural circuitry of executive functions in healthy subjects and Parkinson's disease. Neuropsychopharmacology 2010; 35:70-85. [PMID: 19657332 PMCID: PMC3055448 DOI: 10.1038/npp.2009.88] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In our constantly changing environment, we are frequently faced with altered circumstances requiring generation and monitoring of appropriate strategies, when novel plans of action must be formulated and conducted. The abilities that we call upon to respond accurately to novel situations are referred to as 'executive functions', and are frequently engaged to deal with conditions in which routine activation of behavior would not be sufficient for optimal performance. Here, we summarize important findings that may help us understand executive functions and their underlying neuronal correlates. We focus particularly on observations from imaging technology, such as functional magnetic resonance imaging, position emission tomography, diffusion tensor imaging, and transcranial magnetic stimulation, which in the past few years have provided the bulk of information on the neurobiological underpinnings of the executive functions. Further, emphasis will be placed on recent insights from Parkinson's disease (PD), in which the underlying dopaminergic abnormalities have provided new exciting information into basic molecular mechanisms of executive dysfunction, and which may help to disentangle the cortical/subcortical networks involved in executive processes.
Collapse
Affiliation(s)
- Sandra E Leh
- Division of Brain Imaging and Behaviour—Systems Neuroscience, Toronto Western Research Institute (TWRI), UHN, University of Toronto, Toronto, ON, Canada
| | - Michael Petrides
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Antonio P Strafella
- Division of Brain Imaging and Behaviour—Systems Neuroscience, Toronto Western Research Institute (TWRI), UHN, University of Toronto, Toronto, ON, Canada,Division of Neurology, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada,PET Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, ON, Canada,Division of Neurology, CAMH-PET imaging center, Toronto Western Hospital/Research Institute, University of Toronto, Toronto, ON, Canada M5T2S8. Tel: +416 603 5706, Fax: +416 603 5004, E-mail: or
| |
Collapse
|