1
|
Asif K, Adeel M, Rahman MM, Sfriso AA, Bartoletti M, Canzonieri V, Rizzolio F, Caligiuri I. Silver nitroprusside as an efficient chemodynamic therapeutic agent and a peroxynitrite nanogenerator for targeted cancer therapies. J Adv Res 2024; 56:43-56. [PMID: 36958586 PMCID: PMC10834793 DOI: 10.1016/j.jare.2023.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
INTRODUCTION Chemodynamic therapy (CDT) holds great promise in achieving cancer therapy through Fenton and Fenton-like reactions, which generate highly toxic reactive species. However, CDT is limited by the lower amount of catalyst ions that can decompose already existing intracellular H2O2 and produce reactive oxygen species (ROS) to attain a therapeutic outcome. OBJECTIVES To overcome these limitations, a tailored approach, which utilizes dual metals cations (Ag+, Fe2+) based silver pentacyanonitrosylferrate or silver nitroprusside (AgNP) were developed for Fenton like reactions that can specifically kill cancer cells by taking advantage of tumor acidic environment without used of any external stimuli. METHODS A simple solution mixing procedure was used to synthesize AgNP as CDT agent. AgNP were structurally and morphologically characterized, and it was observed that a minimal dose of AgNP is required to destroy cancer cells with limited effects on normal cells. Moreover, comprehensive in vitro studies were conducted to evaluate antitumoral mechanism. RESULTS AgNP have an effective ability to decompose endogenous H2O2 in cells. The decomposed endogenous H2O2 generates several different types of reactive species (•OH, O2•-) including peroxynitrite (ONOO-) species as apoptotic inducers that kill cancer cells, specifically. Cellular internalization data demonstrated that in short time, AgNP enters in lysosomes, avoid degradation and due to the acidic pH of lysosomes significantly generate high ROS levels. These data are further confirmed by the activation of different oxidative genes. Additionally, we demonstrated the biocompatibility of AgNP on mouse liver and ovarian organoids as an ex vivo model while AgNP showed the therapeutic efficacy on patient derived tumor organoids (PDTO). CONCLUSION This work demonstrates the therapeutic application of silver nitroprusside as a multiple ROS generator utilizing Fenton like reaction. Thereby, our study exhibits a potential application of CDT against HGSOC (High Grade Serous Ovarian Cancer), a deadly cancer through altering the redox homeostasis.
Collapse
Affiliation(s)
- Kanwal Asif
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy
| | - Muhammad Adeel
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.
| | - Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju 27478, Republic of Korea
| | | | - Michele Bartoletti
- Department of Medicine (DAME), University of Udine, Udine, Italy; Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, PN, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
2
|
Dutta S, Mahalanobish S, Saha S, Mandal M, Begam S, Sadhukhan P, Ghosh S, Brahmachari G, Sil PC. Biological evaluation of the novel 3,3'-((4-nitrophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) derivative as potential anticancer agents via the selective induction of reactive oxygen species-mediated apoptosis. Cell Signal 2023; 111:110876. [PMID: 37640193 DOI: 10.1016/j.cellsig.2023.110876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Selective initiation of programmed cell death in cancer cells than normal cells is reflected as an attractive chemotherapeutic strategy. In the current study, a series of synthetic bis-coumarin derivatives were synthesized possessing reactive oxygen species (ROS) modulating functional groups and examined in four cancerous and two normal cell lines for their cytotoxic ability using MTT assay. Among these compounds, 3 l emerged as the most promising derivative in persuading apoptosis in human renal carcinoma cells (SKRC-45) among diverse cancer cell lines. 3 l causes significantly less cytotoxicity to normal kidney cells compared to cisplatin. This compound was able to induce apoptosis and cell-cycle arrest by modulating the p53 mediated apoptotic pathways via the generation of ROS, decreasing mitochondrial membrane potential, and causing DNA fragmentation. Unlike cisplatin, the 3 l derivative was found to inhibit the nuclear localisation of NF-κB in SKRC-45 cells. It was also found to reduce the proliferation, survival and migration ability of SKRC-45 cells by downregulating COX-2/ PTGES2 cascade and MMP-2. In an in vivo tumor model, 3 l showed an anticancer effect by reducing the mean tumor mass, volume and inducing caspase-3 activation, without affecting kidney function. Further studies are needed to establish 3 l as a promising anti-cancer drug candidate.
Collapse
Affiliation(s)
- Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Mullicka Mandal
- Laboratory of Natural Products and Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Sanchari Begam
- Laboratory of Natural Products and Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Pritam Sadhukhan
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Goutam Brahmachari
- Laboratory of Natural Products and Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
3
|
Adhikari S, Bhattacharya A, Adhikary S, Singh V, Gadad S, Roy S, Das C. The paradigm of drug resistance in cancer: an epigenetic perspective. Biosci Rep 2022; 42:BSR20211812. [PMID: 35438143 PMCID: PMC9069444 DOI: 10.1042/bsr20211812] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Innate and acquired resistance towards the conventional therapeutic regimen imposes a significant challenge for the successful management of cancer for decades. In patients with advanced carcinomas, acquisition of drug resistance often leads to tumor recurrence and poor prognosis after the first therapeutic cycle. In this context, cancer stem cells (CSCs) are considered as the prime drivers of therapy resistance in cancer due to their 'non-targetable' nature. Drug resistance in cancer is immensely influenced by different properties of CSCs such as epithelial-to-mesenchymal transition (EMT), a profound expression of drug efflux pump genes, detoxification genes, quiescence, and evasion of apoptosis, has been highlighted in this review article. The crucial epigenetic alterations that are intricately associated with regulating different mechanisms of drug resistance, have been discussed thoroughly. Additionally, special attention is drawn towards the epigenetic mechanisms behind the interaction between the cancer cells and their microenvironment which assists in tumor progression and therapy resistance. Finally, we have provided a cumulative overview of the alternative treatment strategies and epigenome-modifying therapies that show the potential of sensitizing the resistant cells towards the conventional treatment strategies. Thus, this review summarizes the epigenetic and molecular background behind therapy resistance, the prime hindrance of present day anti-cancer therapies, and provides an account of the novel complementary epi-drug-based therapeutic strategies to combat drug resistance.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Shrikanth S. Gadad
- Department of Molecular and Translational Medicine, Center of Emphasis in Cancer, Texas Tech University Health Sciences Center El Paso, El Paso, TX, U.S.A
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, U.S.A
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
4
|
Ahmadzadeh H, Ahmadi M, Golchin A, Malakoti F, Maleki M, Alemi F, Bazavar M, Yousefi B. The Effect of TQ and Cis in OS. Drug Res (Stuttg) 2022; 72:171-176. [PMID: 35255515 DOI: 10.1055/a-1700-4258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Osteosarcoma (OS) is a primary bone sarcoma with a high recurrence rate and poorer prognosis. The application of natural agents in combinational therapies can increase the efficacy of treatment and decrease the side effects. Herein, we aimed to evaluate the effects of Thymoquinone (TQ) combined with Cisplatin on apoptosis and its underlying mechanisms in the Saos-2 cells. METHODS The effects of TQ and Cisplatin on Saos-2 cell viability were measured using an MTT assay. Western blotting was applied for the measurement of γH2AX protein expression. The expression levels of 8-Hydroxy-2'-deoxyguanosine (8-oxo-dG) were evaluated by enzyme-linked immunosorbent assay (ELISA). DCFH-DA fluorescence dye was used to detect reactive oxygen species (ROS) formation. For evaluation of apoptosis, flow cytometry was employed. RESULTS TQ dramatically promotes the cytotoxic effects of Cisplatin. TQ considerably enhanced the expression levels of 8-oxo-dG and γ-H2AX in Saos-2 cells. After TQ treatment, ROS levels were increased; furthermore, TQ treatment resulted in the potentiation of Cisplatin-induced apoptosis in Saos-2 cells compared to either TQ or Cisplatin treated cells. CONCLUSION In general, TQ plus Cisplatin resulted in potentiated cellular cytotoxicity by increasing ROS level and inducing oxidative DNA damage, leading to the potent induction of apoptosis in tumor cells.
Collapse
Affiliation(s)
- Homa Ahmadzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Ahmadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asal Golchin
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Bazavar
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Wang X, Zhao J. Targeted Cancer Therapy Based on Acetylation and Deacetylation of Key Proteins Involved in Double-Strand Break Repair. Cancer Manag Res 2022; 14:259-271. [PMID: 35115826 PMCID: PMC8800007 DOI: 10.2147/cmar.s346052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022] Open
Abstract
DNA double-strand breaks (DSBs) play an important role in promoting genomic instability and cell death. The precise repair of DSBs is essential for maintaining genome integrity during cancer progression, and inducing genomic instability or blocking DNA repair is an important mechanism through which chemo/radiotherapies exert killing effects on cancer cells. The two main pathways that facilitate the repair of DSBs in cancer cells are homologous recombination (HR) and non-homologous end-joining (NHEJ). Accumulating data suggest that the acetylation and deacetylation of DSB repair proteins regulate the initiation and progression of the cellular response to DNA DSBs, which may further affect the chemosensitivity or radiosensitivity of cancer cells. Here, we focus on the role of acetylation/deacetylation in the regulation of ataxia-telangiectasia mutated, Rad51, and 53BP1 in the HR pathway, as well as the relevant roles of PARP1 and Ku70 in NHEJ. Notably, several histone deacetylase (HDAC) inhibitors targeting HR or NHEJ have been demonstrated to enhance chemo/radiosensitivity in preclinical studies. This review highlights the essential role of acetylation/deacetylation in the regulation of DSB repair proteins, suggesting that HDAC inhibitors targeting the HR or NHEJ pathways that downregulate DNA DSB repair genes may be worthwhile cancer therapeutic agents.
Collapse
Affiliation(s)
- Xiwen Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| | - Jungang Zhao
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
- Correspondence: Jungang Zhao, Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China, Tel/Fax +86 13889311066, Email
| |
Collapse
|
6
|
Utilizing Patient-Derived Epithelial Ovarian Cancer Tumor Organoids to Predict Carboplatin Resistance. Biomedicines 2021; 9:biomedicines9081021. [PMID: 34440225 PMCID: PMC8394135 DOI: 10.3390/biomedicines9081021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The development of patient-derived tumor organoids (TOs) from an epithelial ovarian cancer tumor obtained at the time of primary or interval debulking surgery has the potential to play an important role in precision medicine. Here, we utilized TOs to test front-line chemotherapy sensitivity and to investigate genomic drivers of carboplatin resistance. We developed six high-grade, serous epithelial ovarian cancer tumor organoid lines from tissue obtained during debulking surgery (two neoadjuvant-carboplatin-exposed and four chemo-naïve). Each organoid line was screened for sensitivity to carboplatin at four different doses (100, 10, 1, and 0.1 µM). Cell viability curves and resultant EC50 values were determined. One organoid line, UK1254, was predicted to be resistant to carboplatin based on its EC50 value (50.2 µM) being above clinically achievable Cmax. UK1254 had a significantly shorter PFS than the rest of the subjects (p = 0.0253) and was treated as a platinum-resistant recurrence. Subsequent gene expression analysis revealed extensively interconnected, differentially expressed pathways related to NF-kB, cellular differentiation (PRDM6 activation), and the linkage of B-cell receptor signaling to the PI3K-Akt signaling pathway (PI3KAP1 activation). This study demonstrates that patient-derived tumor organoids can be developed from patients at the time of primary or interval debulking surgery and may be used to predict clinical platinum sensitivity status or to investigate drivers of carboplatin resistance.
Collapse
|
7
|
A highly annotated database of genes associated with platinum resistance in cancer. Oncogene 2021; 40:6395-6405. [PMID: 34645978 PMCID: PMC8602037 DOI: 10.1038/s41388-021-02055-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
Platinum-based chemotherapy, including cisplatin, carboplatin, and oxaliplatin, is prescribed to 10-20% of all cancer patients. Unfortunately, platinum resistance develops in a significant number of patients and is a determinant of clinical outcome. Extensive research has been conducted to understand and overcome platinum resistance, and mechanisms of resistance can be categorized into several broad biological processes, including (1) regulation of drug entry, exit, accumulation, sequestration, and detoxification, (2) enhanced repair and tolerance of platinum-induced DNA damage, (3) alterations in cell survival pathways, (4) alterations in pleiotropic processes and pathways, and (5) changes in the tumor microenvironment. As a resource to the cancer research community, we provide a comprehensive overview accompanied by a manually curated database of the >900 genes/proteins that have been associated with platinum resistance over the last 30 years of literature. The database is annotated with possible pathways through which the curated genes are related to platinum resistance, types of evidence, and hyperlinks to literature sources. The searchable, downloadable database is available online at http://ptrc-ddr.cptac-data-view.org .
Collapse
|
8
|
Cross-resistance of cisplatin selected cells to anti-microtubule agents: Role of general survival mechanisms. Transl Oncol 2020; 14:100917. [PMID: 33129114 PMCID: PMC7586247 DOI: 10.1016/j.tranon.2020.100917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Although the first line of therapy for epithelial ovarian cancer typically consists of taxane-platinum combination therapy, many patients develop a platinum-resistant tumor within a year. Several previous studies have looked at this cross-resistance between cisplatin and anti-microtubule drugs, but their findings have been somewhat conflicting. Here, we developed cisplatin-resistant cell lines that are resistant to low and high levels of cisplatin and explored the effects of three anti-microtubule drugs (paclitaxel, vincristine, and colchicine) on the parental and cisplatin-resistant cells. We found that cells resistant to lower levels of cisplatin were no more resistant to anti-microtubule drugs than parental cells, while cells that were resistant to higher levels of cisplatin had a subpopulation of cells that were cross-resistant to anti-microtubule drugs, clarifying discrepancies within the field. We then isolated this subpopulation by applying selective pressure with anti-microtubule drugs and performed RNA sequencing and gene set enrichment analysis to identify resistance mechanisms. This subpopulation was found to express increased levels of pro-survival TNF/NFκB signaling, among other enriched pathways, suggesting that cross-resistance was due to more general survival mechanisms found in the cisplatin-selected cells.
Collapse
|
9
|
Wang B, Jing T, Jin W, Chen J, Wu C, Wang M, Liu Y. KIAA1522 potentiates TNFα-NFκB signaling to antagonize platinum-based chemotherapy in lung adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:170. [PMID: 32854746 PMCID: PMC7450600 DOI: 10.1186/s13046-020-01684-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
Background The platinum-based chemotherapy is the first-line regimen for the treatment of Non-small cell lung cancer (NSCLC). However, the therapeutic efficiency is largely limited by tenacious chemo-insensitivity that results in inferior prognosis in a cohort of patients. It has been known that KIAA1522 is aberrantly expressed and implicated in several types of solid tumors including NSCLC. Nowadays, knowledge about this gene is quite limited. Here, we aimed to identify the role of KIAA1522 in lung adenocarcinomas, and the molecular events that underlie KIAA1522-mediated chemoresistance to the platinum. Methods Immunohistochemistry were used to detect KIAA1522 expression in clinical NSCLC samples. Then, the survival analyses were performed to assess the link between KIAA1522 expression and overall survival or therapeutic outcome. In vivo depletion of KIAA1522 in adenocarcinoma cells were achieved by adeno-associated virus-mediated sgRNA/Cre delivery into the conditional KrasG12D/Cas9 expressed mice, which were designated to identify the roles of KIAA1522 in tumorigenesis and/or chemotherapy responses. The effects of KIAA1522 and downstream molecular events were studied by pharmacology in mice model and assays using in vitro cultured cells. The clinical relevance of our findings was examined by data-mining of online datasets from multiple cohorts. Results The clinical evidences reveal that KIAA1522 independently predicts both the overall survival and the outcome of platinum-based chemotherapy in lung adenocarcinomas. By using a KrasG12D-driven murine lung adenocarcinoma model and performing in vitro assays, we demonstrated that KIAA1522 is a critical positive regulator of lung adenocarcinoma and a modulator of cisplatin response. KIAA1522 potentiates the TNFα-TNFR2-NFκB signaling which in turn intensifies recalcitrance to cisplatin treatment. These results were further manifested by integrative bioinformatic analyses of independent datasets, in which KIAA1522 is tightly associated with the activity of TNFα-NFκB pathway and the cisplatin-resistant gene signatures. More strikingly, overexpression of KIAA1522 counteracts the cisplatin-induced tumor growth arrest in vivo, and this effect can be remarkably diminished by the disruption of NFκB activity. Conclusion High expression of KIAA1522 is turned out to be an indicator of dismal effectiveness of platinum-based therapy in lung adenocarcinomas. KIAA1522 hyperactivates TNFα-NFκB signaling to facilitate resistance to platinum reagents. Targeting NFκB signaling through small molecule inhibitors may be a rational strategy to conquer chemoresistance and synergize platinum-based chemotherapy in KIAA1522 overexpressed lung adenocarcinomas.
Collapse
Affiliation(s)
- Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Tiantian Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Jinnan Chen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Chengsi Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Cruz-Galvez CC, Ortiz-Lazareno PC, Pedraza-Brindis EJ, Villasenor-Garcia MM, Reyes-Uribe E, Bravo-Hernandez A, Solis-Martinez RA, Cancino-Marentes M, Rodriguez-Padilla C, Bravo-Cuellar A, Hernandez-Flores G. Pentoxifylline Enhances the Apoptotic Effect of Carboplatin in Y79 Retinoblastoma Cells. In Vivo 2019; 33:401-412. [PMID: 30804118 DOI: 10.21873/invivo.11487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM Retinoblastoma (RB) is the most common primary intraocular malignancy. Carboplatin (CPt) is a DNA damage-inducing agent that is widely used for the treatment of RB. Unfortunately, this drug also activates the transcription factor nuclear factor-kappa B (NF-ĸB), leading to promotion of tumor survival. Pentoxifylline (PTX) is a drug that inhibits the phosphorylation of I kappa B-alpha (IĸBα) in serines 32 and 36, and this disrupts NF-ĸB activity that promotes tumor survival. The goal of this study was to evaluate the effect of the PTX on the antitumor activity of CPt. MATERIALS AND METHODS Y79 RB cells were treated with CPt, PTX, or both. Cell viability, apoptosis, loss of mitochondrial membrane potential, the activity of caspase-9, -8, and -3, cytochrome c release, cell-cycle progression, p53, and phosphorylation of IĸBα, and pro- and anti-apoptotic genes were evaluated. RESULTS Both drugs significantly affected the viability of the Y79 RB cells in a time- and dose-dependent manner. The PTX+CPt combination exhibited the highest rate of apoptosis, a decrease in cell viability and significant caspase activation, as well as loss of mitochondrial membrane potential, release of cytochrome c, and increased p53 protein levels. Cells treated with PTX alone displayed decreased I kappa B-alpha phosphorylation, compared to the CPt treated group. In addition, the PTX+CPt combination treatment induced up-regulation of the proapoptotic genes Bax, Bad, Bak, and caspases- 3, -8, and -9, compared to the CPt and PTX individual treated groups. CONCLUSION PTX induces apoptosis per se and increases the CPt-induced apoptosis, augmenting its antitumor effectiveness.
Collapse
Affiliation(s)
- Claudia Carolina Cruz-Galvez
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico.,Doctoral Program in Pharmacology, Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| | - Eliza Julia Pedraza-Brindis
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| | - Maria Martha Villasenor-Garcia
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| | - Emmanuel Reyes-Uribe
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico.,University Center of the Cienega (CUCIENEGA), University of Guadalajara, Ocotlan, Mexico
| | | | - Raul Antonio Solis-Martinez
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| | - Martha Cancino-Marentes
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico.,Doctoral Program in Pharmacology, Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Mexico
| | - Cristina Rodriguez-Padilla
- Department of Immunology and Virology, College of Biomedical Science, Autonomous University of Nuevo León (UANL), San Nicolás de los Garza, Mexico
| | - Alejandro Bravo-Cuellar
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico .,Department of Health Science, University Center of the Altos (CUALTOS), University of Guadalajara, Tepatitlan de Morelos, Mexico
| | - Georgina Hernandez-Flores
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| |
Collapse
|
11
|
Jang SK, Yoon BH, Kang SM, Yoon YG, Kim SY, Kim W. CDRgator: An Integrative Navigator of Cancer Drug Resistance Gene Signatures. Mol Cells 2019; 42:237-244. [PMID: 30759968 PMCID: PMC6449719 DOI: 10.14348/molcells.2018.0413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/26/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms of cancer drug resistance is a critical challenge in cancer therapy. For many cancer drugs, various resistance mechanisms have been identified such as target alteration, alternative signaling pathways, epithelial-mesenchymal transition, and epigenetic modulation. Resistance may arise via multiple mechanisms even for a single drug, making it necessary to investigate multiple independent models for comprehensive understanding and therapeutic application. In particular, we hypothesize that different resistance processes result in distinct gene expression changes. Here, we present a web-based database, CDRgator (Cancer Drug Resistance navigator) for comparative analysis of gene expression signatures of cancer drug resistance. Resistance signatures were extracted from two different types of datasets. First, resistance signatures were extracted from transcriptomic profiles of cancer cells or patient samples and their resistance-induced counterparts for >30 cancer drugs. Second, drug resistance group signatures were also extracted from two large-scale drug sensitivity datasets representing ~1,000 cancer cell lines. All the datasets are available for download, and are conveniently accessible based on drug class and cancer type, along with analytic features such as clustering analysis, multidimensional scaling, and pathway analysis. CDRgator allows meta-analysis of independent resistance models for more comprehensive understanding of drug-resistance mechanisms that is difficult to accomplish with individual datasets alone (database URL: http://cdrgator.ewha.ac.kr).
Collapse
Affiliation(s)
- Su-Kyeong Jang
- Ewha Research Center for Systems Biology, Department of Life Science, Division of Molecular & Life Sciences, Ewha Womans University, Seoul 03760,
Korea
| | - Byung-Ha Yoon
- Gene Editing Research Center, KRIBB, Daejeon 34141,
Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113,
Korea
| | - Seung Min Kang
- Ewha Research Center for Systems Biology, Department of Life Science, Division of Molecular & Life Sciences, Ewha Womans University, Seoul 03760,
Korea
| | - Yeo-Gha Yoon
- Ewha Research Center for Systems Biology, Department of Life Science, Division of Molecular & Life Sciences, Ewha Womans University, Seoul 03760,
Korea
| | - Seon-Young Kim
- Gene Editing Research Center, KRIBB, Daejeon 34141,
Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113,
Korea
| | - Wankyu Kim
- Ewha Research Center for Systems Biology, Department of Life Science, Division of Molecular & Life Sciences, Ewha Womans University, Seoul 03760,
Korea
| |
Collapse
|
12
|
Nikolova T, Kiweler N, Krämer OH. Interstrand Crosslink Repair as a Target for HDAC Inhibition. Trends Pharmacol Sci 2017; 38:822-836. [PMID: 28687272 DOI: 10.1016/j.tips.2017.05.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022]
Abstract
DNA interstrand crosslinks (ICLs) covalently connect complementary DNA strands. Consequently, DNA replication and transcription are hampered, DNA damage responses (DDR) are initiated, and cell death is triggered. Therefore, drugs inducing ICLs are effective against rapidly growing cancer cells. However, tumors engage a complicated enzymatic machinery to repair and survive ICLs. Several factors, including the post-translational acetylation/deacetylation of lysine residues within proteins, control this network. Histone deacetylases (HDACs) modulate the expression and functions of DNA repair proteins which remove ICLs and control the accessibility of chromatin. Accordingly, histone deacetylase inhibitors (HDACi) are small, pharmacologically and clinically relevant molecules that sensitize cancer cells to ICL inducers. We discuss the mechanism of ICL repair and targets of HDACi within this pathway.
Collapse
Affiliation(s)
- Teodora Nikolova
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.
| | - Nicole Kiweler
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.
| |
Collapse
|
13
|
Kumar A, Huo S, Zhang X, Liu J, Tan A, Li S, Jin S, Xue X, Zhao Y, Ji T, Han L, Liu H, Zhang X, Zhang J, Zou G, Wang T, Tang S, Liang XJ. Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. ACS NANO 2014; 8:4205-4220. [PMID: 24730557 DOI: 10.1021/nn500152u] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Platinum-based anticancer drugs such as cisplatin, oxaliplatin, and carboplatin are some of the most potent chemotherapeutic agents but have limited applications due to severe dose-limiting side effects and a tendency for cancer cells to rapidly develop resistance. The therapeutic index can be improved through use of nanocarrier systems to target cancer cells efficiently. We developed a unique strategy to deliver a platinum(IV) drug to prostate cancer cells by constructing glutathione-stabilized (Au@GSH) gold nanoparticles. Glutathione (GSH) has well-known antioxidant properties, which lead to cancer regression. Here, we exploit the advantages of both the antioxidant properties and high surface-area-to-volume ratio of Au@GSH NPs to demonstrate their potential for delivery of a platinum(IV) drug by targeting the neuropilin-1 receptor (Nrp-1). A lethal dose of a platinum(IV) drug functionalized with the Nrp-1-targeting peptide (CRGDK) was delivered specifically to prostate cancer cells in vitro. Targeted peptide ensures specific binding to the Nrp-1 receptor, leading to enhanced cellular uptake level and cell toxicity. The nanocarriers were themselves nontoxic, but exhibited high cytotoxicity and increased efficacy when functionalized with the targeting peptide and drug. The uptake of drug-loaded nanocarriers is dependent on the interaction with Nrp-1 in cell lines expressing high (PC-3) and low (DU-145) levels of Nrp-1, as confirmed through inductively coupled plasma mass spectrometry and confocal microscopy. The nanocarriers have effective anticancer activity, through upregulation of nuclear factor kappa-B (NF-κB) protein (p50 and p65) expression and activation of NF-κB-DNA-binding activity. Our preliminary investigations with platinum(IV)-functionalized gold nanoparticles along with a targeting peptide hold significant promise for future cancer treatment.
Collapse
Affiliation(s)
- Anil Kumar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing, 100190, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Granulocyte colony-stimulating factor receptor signalling via Janus kinase 2/signal transducer and activator of transcription 3 in ovarian cancer. Br J Cancer 2013; 110:133-45. [PMID: 24220695 PMCID: PMC3887286 DOI: 10.1038/bjc.2013.673] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/25/2013] [Accepted: 10/04/2013] [Indexed: 12/24/2022] Open
Abstract
Background: Ovarian cancer remains a major cause of cancer mortality in women, with only limited understanding of disease aetiology at the molecular level. Granulocyte colony-stimulating factor (G-CSF) is a key regulator of both normal and emergency haematopoiesis, and is used clinically to aid haematopoietic recovery following ablative therapies for a variety of solid tumours including ovarian cancer. Methods: The expression of G-CSF and its receptor, G-CSFR, was examined in primary ovarian cancer samples and a panel of ovarian cancer cell lines, and the effects of G-CSF treatment on proliferation, migration and survival were determined. Results: G-CSFR was predominantly expressed in high-grade serous ovarian epithelial tumour samples and a subset of ovarian cancer cell lines. Stimulation of G-CSFR-expressing ovarian epithelial cancer cells with G-CSF led to increased migration and survival, including against chemotherapy-induced apoptosis. The effects of G-CSF were mediated by signalling via the downstream JAK2/STAT3 pathway. Conclusion: This study suggests that G-CSF has the potential to impact on ovarian cancer pathogenesis, and that G-CSFR expression status should be considered in determining appropriate therapy.
Collapse
|
15
|
Tsvetkova E, Goss GD. Drug resistance and its significance for treatment decisions in non-small-cell lung cancer. ACTA ACUST UNITED AC 2012; 19:S45-51. [PMID: 22787410 DOI: 10.3747/co.19.1113] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-small-cell lung cancer (nsclc) constitutes about 85% of all lung cancers. Approximately 50% of patients diagnosed with nsclc present with advanced disease (stage iii or iv) that is not amenable to curative treatment. The number of patients with stage iiib or iv disease who are alive at 1 year after diagnosis has increased from 10% in the untreated population in the early 1980s to 50% in patients with a good performance status receiving treatment today. However, those statistics remain dismal, and the two dominant reasons are the large number of patients diagnosed with advanced-stage disease and the observed primary or secondary resistance to current therapies. The present article addresses the question of drug resistance in lung cancer, focusing on subjects that are currently topical and under intense scrutiny.
Collapse
Affiliation(s)
- E Tsvetkova
- The Ottawa Hospital Cancer Centre, Division of Medical Oncology, University of Ottawa, Ottawa, ON
| | | |
Collapse
|
16
|
Jani TS, DeVecchio J, Mazumdar T, Agyeman A, Houghton JA. Inhibition of NF-kappaB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. J Biol Chem 2010; 285:19162-72. [PMID: 20424169 DOI: 10.1074/jbc.m109.091645] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer is the third most common malignancy in the United States. Modest advances with therapeutic approaches that include oxaliplatin (L-OHP) have brought the median survival rate to 22 months, with drug resistance remaining a significant barrier. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is undergoing clinical evaluation. Although human colon carcinomas express TRAIL receptors, they can also demonstrate TRAIL resistance. Constitutive NF-kappaB activation has been implicated in resistance to TRAIL and to cytotoxic agents. We have demonstrated constitutive NF-kappaB activation in five of six human colon carcinoma cell lines; this activation is inhibited by quinacrine. Quinacrine induced apoptosis in colon carcinomas and potentiated the cytotoxic activity of TRAIL in RKO and HT29 cells and that of L-OHP in HT29 cells. Similarly, overexpression of IkappaBalpha mutant (IkappaBalphaM) or treatment with the IKK inhibitor, BMS-345541, also sensitized these cells to TRAIL and L-OHP. Importantly, 2 h of quinacrine pretreatment resulted in decreased expression of c-FLIP and Mcl-1, which were determined to be transcriptional targets of NF-kappaB. Extended exposure for 24 h to quinacrine did not further sensitize these cells to TRAIL- or L-OHP-induced cell death; however, exposure caused the down-regulation of additional NF-kappaB-dependent survival factors. Short hairpin RNA-mediated knockdown of c-FLIP or Mcl-1 significantly sensitized these cells to TRAIL and L-OHP. Taken together, data demonstrate that NF-kappaB is constitutively active in colon cancer cell lines and NF-kappaB, and its downstream targets may constitute an important target for the development of therapeutic approaches against this disease.
Collapse
Affiliation(s)
- Tanvi S Jani
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|