1
|
Woo DU, Lee Y, Min CW, Kim ST, Kang YJ. RiceProteomeDB (RPDB): a user-friendly database for proteomics data storage, retrieval, and analysis. Sci Rep 2024; 14:3671. [PMID: 38351208 PMCID: PMC10864295 DOI: 10.1038/s41598-024-54151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Rice, feeding a significant portion of the world, poses unique proteomic challenges critical to agricultural research and global food security. The complexity of the rice proteome, influenced by various genetic and environmental factors, demands specialized analytical approaches for effective study. The central challenges in rice proteomics lie in developing custom methods suited to the unique aspects of rice biology. These include data preprocessing, method selection, and result validation, all of which are essential for advancing rice research. Our aim is to decode these proteomic intricacies to facilitate breakthroughs in strain improvement, disease resistance, and yield optimization, all vital for combating global food insecurity. To achieve this, we have created the RiceProteomeDB (RPDB), a React + Django database, offering a streamlined and comprehensive platform for the analysis of rice proteomics data. RiceProteomeDB (RPDB) simplifies proteomics data management and analysis. It offers features for data organization, preprocessing, method selection, result validation, and data sharing. Researchers can access processed rice proteomics data, conduct analyses, and explore experimental conditions. The user-friendly web interface enhances navigation and interaction. RPDB fosters collaboration by enabling data sharing and proper acknowledgment of sources, contributing to proteomics research and knowledge dissemination. Availability and implementation: Web application: http://riceproteome.plantprofile.net/ . The web application's source code, user's manual, and sample data: https://github.com/dongu7610/Riceproteome .
Collapse
Affiliation(s)
- Dong U Woo
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Yejin Lee
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Milyang, 50463, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Milyang, 50463, Republic of Korea
| | - Yang Jae Kang
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea.
- Division of Life Science Department, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
2
|
Nazli A, Qiu J, Tang Z, He Y. Recent Advances and Techniques for Identifying Novel Antibacterial Targets. Curr Med Chem 2024; 31:464-501. [PMID: 36734893 DOI: 10.2174/0929867330666230123143458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND With the emergence of drug-resistant bacteria, the development of new antibiotics is urgently required. Target-based drug discovery is the most frequently employed approach for the drug development process. However, traditional drug target identification techniques are costly and time-consuming. As research continues, innovative approaches for antibacterial target identification have been developed which enabled us to discover drug targets more easily and quickly. METHODS In this review, methods for finding drug targets from omics databases have been discussed in detail including principles, procedures, advantages, and potential limitations. The role of phage-driven and bacterial cytological profiling approaches is also discussed. Moreover, current article demonstrates the advancements being made in the establishment of computational tools, machine learning algorithms, and databases for antibacterial target identification. RESULTS Bacterial drug targets successfully identified by employing these aforementioned techniques are described as well. CONCLUSION The goal of this review is to attract the interest of synthetic chemists, biologists, and computational researchers to discuss and improve these methods for easier and quicker development of new drugs.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Jingyi Qiu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing, 400714, P. R. China
| | - Ziyi Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing, 400714, P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
3
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
4
|
Shi F, Yang X, Zeng H, Guo L, Qiu D. Label-free quantitative proteomic analysis revealed a positive effect of ectopic over-expression of PeaT1 from Alternaria tenuissima on rice ( Oryza sativa) response to drought. 3 Biotech 2018; 8:480. [PMID: 30456014 PMCID: PMC6233311 DOI: 10.1007/s13205-018-1507-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/07/2018] [Indexed: 01/23/2023] Open
Abstract
The protein elicitor PeaT1 was found in Alternaria tenuissima and exerted broad spectrum resistance in wheat, cotton, and rice. Recently, we found that overexpressing PeaT1 rice (OE) could enhance plant drought tolerance. Elucidating some elevated drought stress-related proteins and associated mechanisms is inevitable for improving drought tolerance in rice. In this study, combining a label-free quantitative proteomic method, multiple proteins were differentially accumulated in OE plants. Among these, a total of 57 significant changed proteins (including 32 up-regulated and 25 down-regulated) were mainly involved in metabolic, cellular, biological progress, and stress response. Using the RT-qPCR assay, 18 proteins' relative abundance was detected mostly consistent with the proteins abundance in proteomic data. Specially, proteins involved in abiotic stress, such as OsSKIPa and OsPP2C, which were significantly induced in early after dehydration treatment in transgenic rice, and the other stress response genes (prohibitin protein, PsbP protein, msrB Protein) also changed in PeaT1 OE lines. Taken together, these results suggested that these differential proteins would be helpful for understanding the functional molecular mechanism of PeaT1 in rice.
Collapse
Affiliation(s)
- Fachao Shi
- Key Laboratory for Biological Control of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, 510316 China
| | - Xiufen Yang
- Key Laboratory for Biological Control of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hongmei Zeng
- Key Laboratory for Biological Control of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lihua Guo
- Key Laboratory for Biological Control of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dewen Qiu
- Key Laboratory for Biological Control of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
5
|
Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol 2018; 17:297-314. [PMID: 29775961 PMCID: PMC6007815 DOI: 10.1016/j.redox.2018.05.002] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 05/05/2018] [Indexed: 12/20/2022] Open
Abstract
Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Raju Nagarajan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India.
| |
Collapse
|
6
|
Williamson TP, Amirahmadi S, Joshi G, Kaludov NK, Martinov MN, Johnson DA, Johnson JA. Discovery of potent, novel Nrf2 inducers via quantum modeling, virtual screening, and in vitro experimental validation. Chem Biol Drug Des 2012; 80:810-20. [PMID: 22925725 DOI: 10.1111/cbdd.12040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is the master transcription factor of the antioxidant response element pathway, coordinating the induction of detoxifying and antioxidant enzymes. Nrf2 is normally sequestered in the cytoplasm by Kelch-like ECH-associating protein 1 (Keap1). To identify novel small molecules that will disturb Nrf2-Keap1 binding and promote activation of the Nrf2- antioxidant response element pathway, we generated a quantum model based on the structures of known Nrf2- antioxidant response element activators. We used the quantum model to perform in silico screening on over 18 million commercially available chemicals to identify the structures predicted to activate the Nrf2- antioxidant response element pathway based on the quantum model. The top hits were tested in vitro, and half of the predicted hits activated the Nrf2-antioxidant response element pathway significantly in primary cell culture. In addition, we identified a new family of Nrf2-antioxidant response element-activating structures that all have comparable activity to tBHQ and protect against oxidative stress and dopaminergic toxins in vitro. The improved ability to identify potent activators of Nrf2 through the combination of in silico and in vitro screening described here improves the speed and cost associated with screening Nrf2-antioxidant response element -activating compounds for drug development.
Collapse
Affiliation(s)
- Tracy P Williamson
- Divison of Pharmaceutical Sciences, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Lieder F, Reisen F, Geppert T, Sollberger G, Beer HD, auf dem Keller U, Schäfer M, Detmar M, Schneider G, Werner S. Identification of UV-protective activators of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) by combining a chemical library screen with computer-based virtual screening. J Biol Chem 2012; 287:33001-13. [PMID: 22851183 DOI: 10.1074/jbc.m112.383430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor erythroid-derived 2-related factor 2 (Nrf2) is a master regulator of cellular antioxidant defense systems, and activation of this transcription factor is a promising strategy for protection of skin and other organs from environmental insults. To identify efficient Nrf2 activators in keratinocytes, we combined a chemical library screen with computer-based virtual screening. Among 14 novel Nrf2 activators, the most potent compound, a nitrophenyl derivative of 2-chloro-5-nitro-N-phenyl-benzamide, was characterized with regard to its molecular mechanism of action. This compound induced the expression of cytoprotective genes in keratinocytes isolated from wild-type but not from Nrf2-deficient mice. Most importantly, it showed low toxicity and protected primary human keratinocytes from UVB-induced cell death. Therefore, it represents a potential lead compound for the development of drugs for skin protection under stress conditions. Our study demonstrates that chemical library screening combined with advanced computational similarity searching is a powerful strategy for identification of bioactive compounds, and it points toward an innovative therapeutic approach against UVB-induced skin damage.
Collapse
Affiliation(s)
- Franziska Lieder
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang B, Zhu X, Kim Y, Li J, Huang S, Saleem S, Li RC, Xu Y, Dore S, Cao W. Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic Biol Med 2012; 52:928-36. [PMID: 22226832 PMCID: PMC6010182 DOI: 10.1016/j.freeradbiomed.2011.12.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 12/13/2022]
Abstract
Interest in histone deacetylase (HDAC)-based therapeutics as a potential treatment for stroke has grown dramatically. The neuroprotection of HDAC inhibition may involve multiple mechanisms, including modulation of transcription factor acetylation independent of histones. The transcription factor Nrf2 has been shown to be protective in stroke as a key regulator of antioxidant-responsive genes. Here, we hypothesized that HDAC inhibition might provide neuroprotection against mouse cerebral ischemia by activating the Nrf2 pathway. We determined that the classic HDAC inhibitor trichostatin A increased neuronal cell viability after oxygen-glucose deprivation (from an OD value of 0.10±0.01 to 0.25±0.08) and reduced infarct volume in wild-type mice with stroke (from 49.1±3.8 to 21.3±4.6%). In vitro studies showed that HDAC inhibition reduced Nrf2 suppressor Keap1 expression, induced Keap1/Nrf2 dissociation, Nrf2 nuclear translocation, and Nrf2 binding to antioxidant response elements in heme oxygenase 1 (HO1), and caused HO1 transcription. Furthermore, we demonstrated that HDAC inhibition upregulated proteins downstream of Nrf2, including HO1, NAD(P)H:quinone oxidoreductase 1, and glutamate-cysteine ligase catalytic subunit in neuron cultures and brain tissue. Finally, unlike wild-type mice, Nrf2-deficient mice were not protected by pharmacologic inhibition of HDAC after cerebral ischemia. Our studies suggest that activation of Nrf2 might be an important mechanism by which HDAC inhibition provides neuroprotection.
Collapse
Affiliation(s)
- Bing Wang
- Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|