1
|
Geelen IGP, Gullaksen SE, Ilander MM, Olssen-Strömberg U, Mustjoki S, Richter J, Blijlevens NMA, Smit WM, Gjertsen BT, Gedde-Dahl T, Markevärn B, Koppes MMA, Westerweel PE, Hjorth-Hansen H, Janssen JJWM. Switching from imatinib to nilotinib plus pegylated interferon-α2b in chronic phase CML failing to achieve deep molecular response: clinical and immunological effects. Ann Hematol 2023; 102:1395-1408. [PMID: 37119314 DOI: 10.1007/s00277-023-05199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/23/2023] [Indexed: 05/01/2023]
Abstract
In order to improve molecular response for a discontinuation attempt in chronic myeloid leukemia (CML) patients in chronic phase, who had not achieved at least a molecular response <0.01% BCR-ABL1IS (MR4.0) after at least 2 years of imatinib therapy, we prospectively evaluated whether they could attain MR4.0 after a switch to a combination of nilotinib and 9 months of pegylated interferon-α2b (PegIFN). The primary endpoint of confirmed MR4.0 at month 12 (a BCR-ABL1IS level ≤ 0.01% both at 12 and 15 months) was reached by 44% (7/16 patients, 95% confidence interval (CI): 23- 67%) of patients, with 81% (13/16 patients, 95% CI: 57-93%) of patients achieving an unconfirmed MR4.0. The scheduled combination was completed by 56% of the patients, with premature discontinuations, mainly due to mood disturbances after the introduction of PegIFN, questioning the feasibility of the combination of nilotinib and PegIFN for this patient population and treatment goal. A comprehensive clinical substudy program was implemented to characterize the impact of the treatment changes on the immunological profile. This trial was registered at www.clinicaltrials.gov as #NCT01866553.
Collapse
Affiliation(s)
- Inge G P Geelen
- Department of Internal Medicine / Hematology, Albert Schweitzer Hospital, Dordrecht, The Netherlands.
| | - Stein-Erik Gullaksen
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology section, Helse Bergen, Bergen, Norway
| | - Mette M Ilander
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer center, Helsinki, Finland
| | | | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Johan Richter
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | | | - Willem M Smit
- Department of Hematology, Medical Spectrum Twente, Enschede, The Netherlands
| | - Bjorn T Gjertsen
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology section, Helse Bergen, Bergen, Norway
| | - Tobias Gedde-Dahl
- Department of Hematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Berit Markevärn
- Department of Hematology, Umeå University Hospital, Umeå, Sweden
| | - Malika M A Koppes
- Department of Hematology, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands
| | - Peter E Westerweel
- Department of Internal Medicine / Hematology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Henrik Hjorth-Hansen
- Department of Hematology, St Olavs Hospital, Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jeroen J W M Janssen
- Department of Hematology, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Yao D, Lai J, Lu Y, Zhong J, Zha X, Huang X, Liu L, Zeng X, Chen S, Weng J, Du X, Li Y, Xu L. Comprehensive analysis of the immune pattern of T cell subsets in chronic myeloid leukemia before and after TKI treatment. Front Immunol 2023; 14:1078118. [PMID: 36742315 PMCID: PMC9893006 DOI: 10.3389/fimmu.2023.1078118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Background Immunological phenotypes and differentiation statuses commonly decide the T cell function and anti-tumor ability. However, little is known about these alterations in CML patients. Method Here, we investigated the immunologic phenotypes (CD38/CD69/HLA-DR/CD28/CD57/BTLA/TIGIT/PD-1) of T subsets (TN, TCM, TEM, and TEMRA) in peripheral blood (PB) and bone marrow (BM) from de novo CML patients (DN-CML), patients who achieved a molecular response (MR) and those who failed to achieve an MR (TKI-F) after tyrosine kinase inhibitor (TKI) treatment using multicolor flow cytometry. Results CD38 or HLA-DR positive PB CD8+TN and TCM cells decreased in the DN-CML patients and this was further decreased in TKI-F patients. Meanwhile, the level of PD-1 elevated in CD8+ TEM and TEMRA cells from PB in all groups. Among BM sample, the level of HLA-DR+CD8+TCM cells significantly decreased in all groups and CD8+TEMRA cells from TKI-F patients exhibited increased level of TIGIT and CD8+ tissue-residual T cells (TRM) from DN-CML patients expressed a higher level of PD-1 and TIGIT. Lastly, we found a significantly decreased proportion of CD86+ dendritic cells (DCs) and an imbalanced CD80/CD86 in the PB and BM of DN-CML patients, which may impair the activation of T cells. Conclusion In summary, early differentiated TN and TCM cells from CML patients may remain in an inadequate activation state, particularly for TKI-F patients. And effector T cells (TEM, TEMRA and TRM) may be dysfunctional due to the expression of PD-1 and TIGIT in CML patients. Meanwhile, DCs cells exhibited the impairment of costimulatory molecule expression in DN-CML patients. Those factors may jointly contribute to the immune escape in CML patients.
Collapse
Affiliation(s)
- Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuhong Lu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jun Zhong
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lian Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Puzzolo MC, Breccia M, Mariglia P, Colafigli G, Pepe S, Scalzulli E, Mariggiò E, Latagliata R, Guarini A, Foà R. Immunomodulatory Effects of IFNα on T and NK Cells in Chronic Myeloid Leukemia Patients in Deep Molecular Response Preparing for Treatment Discontinuation. J Clin Med 2022; 11:jcm11195594. [PMID: 36233461 PMCID: PMC9570842 DOI: 10.3390/jcm11195594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
A deep and stable molecular response (DMR) is a prerequisite for a successful treatment-free remission (TFR) in chronic myeloid leukemia (CML). In order to better identify and analyze potential candidates of successful TFR, we examined the phenotypic and functional host immune compartment in DMR patients who had received TKI treatment only (TKI-only) or had been previously treated with interferon-alpha (IFNα + TKI) or had received IFNα treatment only (IFNα-only). The T/NK-cell subset distribution, NK- and T-cell cytokine production, activation and maturation markers were measured in 44 patients in DMR treated with IFNα only (9), with IFNα + TKI (11) and with TKI-only (24). IFNα + TKI and TKI-only groups were eligible to TKI discontinuation according to the NCCN and ESMO guidelines (stable MR4 for more than two years). In IFNα-treated patients, we documented an increased number of lymphocytes capable of producing IFNγ and TNFα compared to the TKI-only group. In INFα + TKI patients, the percentage of NKG2C expression and its mean fluorescence intensity were significantly higher compared to the TKI-only group and to the INFα-only group in the CD56dim/CD16+ NK cell subsets (INFα + TKI vs. TKI-only p = 0.041, p = 0.037; INFα + TKI vs. INFα-only p = 0.03, p = 0.033, respectively). Furthermore, in INFα-only treated patients, we observed an increase of NKp46 MFI in the CD56bright/CD16- NK cell subset that becomes significant compared to the INFα + TKI group (p = 0.008). Our data indicate that a previous exposure to IFNα substantially and persistently modified the immune system of CML patients in memory T lymphocytes, differentiated NKG2C+ “long-lived” NK cells responses, even years after the last IFNα contact.
Collapse
Affiliation(s)
- Maria Cristina Puzzolo
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto 1, ‘Sapienza’ University, 00161 Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto 1, ‘Sapienza’ University, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-06-857-951; Fax: +39-06-4424-1984
| | - Paola Mariglia
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto 1, ‘Sapienza’ University, 00161 Rome, Italy
| | - Gioia Colafigli
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto 1, ‘Sapienza’ University, 00161 Rome, Italy
| | - Sara Pepe
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto 1, ‘Sapienza’ University, 00161 Rome, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto 1, ‘Sapienza’ University, 00161 Rome, Italy
| | - Elena Mariggiò
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto 1, ‘Sapienza’ University, 00161 Rome, Italy
| | - Roberto Latagliata
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto 1, ‘Sapienza’ University, 00161 Rome, Italy
| | - Anna Guarini
- Hematology, Department of Molecular Medicine, ‘Sapienza’ University, 00161 Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto 1, ‘Sapienza’ University, 00161 Rome, Italy
| |
Collapse
|
4
|
Ptackova P, Petrackova M, Hindos M, Duskova M, Hamsikova E, Klamova H, Pecherkova P, Humlova Z, Vonka V. Intracellular Cytokines Produced by Stimulated CD3+ Cells from Chronic Myeloid Leukemia Patients. Acta Haematol 2017; 137:148-157. [PMID: 28376476 DOI: 10.1159/000458703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/01/2017] [Indexed: 01/05/2023]
Abstract
Our work examined the production of intracellular interferon (INF)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, and IL-4 by in vitro stimulated CD3+ cells from 38 chronic myeloid leukemia (CML) patients. At the time of diagnosis the percentages of cells producing INF-γ, TNF-α, and IL-2 were strongly suppressed compared to those in healthy control subjects. Hematological remission achieved through treatment with tyrosine-kinase inhibitors was associated with a highly significant increase in the ratio of cells producing all 4 cytokines. The percentages of CD3+ cells producing cytokines were dependent on age, more so in CML patients than in healthy controls, and they negatively correlated with the number of leukocytes. Patients with an optimal therapy outcome possessed higher percentages of cytokine-producing CD3+ cells at diagnosis than those with nonoptimal outcomes. This difference was statistically significant in the case of INF-γ-producing cells, and it was on the brink of significance in the case of IL-2-producing cells.
Collapse
Affiliation(s)
- Pavlina Ptackova
- Department of Immunology, Institute of Hematology and Blood Transfusion, General University Hospital and First Faculty of Medicine of Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
CML patients with deep molecular responses to TKI have restored immune effectors and decreased PD-1 and immune suppressors. Blood 2017; 129:1166-1176. [DOI: 10.1182/blood-2016-10-745992] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/17/2016] [Indexed: 12/12/2022] Open
Abstract
Key Points
Increased immune suppressors and PD-1 abrogates effector responses in CML patients at diagnosis. Enhanced net effector immune responses and decreased PD-1 and immune suppressors may promote sustained deep molecular response in CML.
Collapse
|
6
|
Vonka V, Humlova Z, Klamova H, Kujovska-Krcmova L, Petrackova M, Hamsikova E, Krmencikova-Fliegl M, Duskova M, Roth Z. Kynurenine and uric acid levels in chronic myeloid leukemia patients. Oncoimmunology 2015; 4:e992646. [PMID: 25949913 DOI: 10.4161/2162402x.2014.992646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/24/2014] [Indexed: 01/20/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), IDO2 and tryptophan 2,3-dioxygenase (TDO) represent some of the key immune regulators. Their increased activity has been demonstrated in a number of human malignancies but not yet in chronic myeloid leukemia (CML). In the present study, the activity of these enzymes was tested in 29 CML patients and 28 healthy subjects by monitoring the kynurenine (KYN)/tryptophan ratio. Serum samples taken prior to the therapy displayed a highly significant difference in KYN levels between the patient and control groups. However, increased KYN levels were detected in only 13 (44.8%) of these CML patients. The KYN levels in pretreatment sera of the patients correlated with the tumor burden. There was also a strong correlation between KYN levels and uric acid levels (UA). This suggests but does not prove the possible involvement of UA in activating IDO family of enzymes. Whenever tested, the increased KYN levels normalized in the course of the therapy. Patients with normal KYN levels in their pretreatment sera and subsequently treated with interferon-α, showed a transitory increase in their KYN levels. The present data indicate that CML should be added to the malignancies with an increased activity of the IDO family of enzymes and suggest that IDO inhibitors may be used in the treatment of CML patients.
Collapse
Key Words
- 3-dioxygenase
- CML, chronic myeloid leukemia
- IDO, indoleamine 2, 3-dioxygenase
- INFα, interferon- α
- INFγ, interferon-γ
- KTI, kynurenine/tryptophan index
- KYN, kynurenine
- NK, natural killer
- PBMC, peripheral blood mononuclear cells
- Ph+, Philadelphia chromosome positive
- T regs, regulatory T cells
- TDO, tryptophan 2, 3-dioxygenase
- TKI, tyrosine-kinase inhibitors
- TRY, tryptophan
- UA, uric acid.
- chronic myeloid leukemia
- indoleamine 2
- kynurenine
- tryptophan metabolism
- uric acid
Collapse
Affiliation(s)
- Vladimir Vonka
- Department of Experimental Virology; Institute of Haematology and Blood Transfusion ; Prague, Czech Republic
| | - Zuzana Humlova
- Institute of Immunology; First Medical Faculty; Charles University ; Prague; Czech Republic ; Department of Immunology and Microbiology; 1st Medical Faculty; Charles University, and the General Teaching Hospital in Prague ; Prague, Czech Republic
| | - Hana Klamova
- Department of Experimental Virology; Institute of Haematology and Blood Transfusion ; Prague, Czech Republic
| | - Lenka Kujovska-Krcmova
- Department of Analytical Chemistry; Faculty of Pharmacy; Charles University ; Hradec Králové, Czech Republic ; III. Internal Gerontometabolic Clinic; University Hospital ; Hradec Králové, Czech Republic
| | - Martina Petrackova
- Department of Experimental Virology; Institute of Haematology and Blood Transfusion ; Prague, Czech Republic
| | - Eva Hamsikova
- Department of Experimental Virology; Institute of Haematology and Blood Transfusion ; Prague, Czech Republic
| | - Monika Krmencikova-Fliegl
- Department of Experimental Virology; Institute of Haematology and Blood Transfusion ; Prague, Czech Republic
| | - Martina Duskova
- Department of Experimental Virology; Institute of Haematology and Blood Transfusion ; Prague, Czech Republic
| | - Zdenek Roth
- Department of Biostatistics; State Institute of Health ; Prague, Czech Republic
| |
Collapse
|
7
|
Vonka V, Petráčková M. Immunology of chronic myeloid leukemia: current concepts and future goals. Expert Rev Clin Immunol 2015; 11:511-22. [PMID: 25728856 DOI: 10.1586/1744666x.2015.1019474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although chronic myeloid leukemia is a rare malignancy, it has developed into a model system for the study of a variety of aspects of cancer biology and immunology. The introduction of tyrosine kinase inhibitors has resulted in a significant prolongation of the survival rates of chronic myeloid leukemia patients but has not resulted in a cure. There is a growing conviction that this aim can be achieved through immunotherapy. For this concept to be successful, a considerable increase in the present understanding of chronic myeloid leukemia immunology is required. The authors attempt to review and evaluate the current findings that demonstrate a number of immunological aberrations in patients prior to the start of any therapy and their normalization after achieving remission. They also discuss the recent clinical trials with experimental therapeutic vaccines and then present their own strategy on how to address the problem.
Collapse
Affiliation(s)
- Vladimír Vonka
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic
| | | |
Collapse
|
8
|
Chronic myeloid leukaemia and human immunodeficiency virus (HIV) infection. Int J Hematol 2012; 95:556-63. [PMID: 22527850 DOI: 10.1007/s12185-012-1073-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|