1
|
Vrabič N, Fakin A, Tekavčič Pompe M. Spectrum and frequencies of extraocular features reported in CEP290-associated ciliopathy - A systematic review. J Fr Ophtalmol 2024; 47:104232. [PMID: 39213781 DOI: 10.1016/j.jfo.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 09/04/2024]
Abstract
Pathogenic variants in the CEP290 gene may result in a broad spectrum of diseases, ranging from lethal neonatal syndromes to isolated retinopathy. A detailed review of the clinical spectrum with the incidence of affected extraocular systems has not yet been published. A review of published papers was carried out to provide a comprehensive report on systemic signs and symptoms associated with CEP290 ciliopathies and to explore the genotype-phenotype correlation. Genetic and clinical data were collected on patients with biallelic variants in the CEP290 gene and the extraocular tissues affected. Genotype-phenotype analysis was performed. Two hundred thirty-five patients were included in the analysis. The most frequently reported organs affected, after the eye, were the central nervous system (82.6%, 194/235), followed by the kidney (53.2%, 125/235), skeletal system (15.3% 36/235), and a large spectrum of other, less frequently reported clinical manifestations. Patients with two variants that together predictably resulted in a low amount of CEP290 protein showed a significant association with having two or more extraocular organ systems affected. This is the most extensive report to date on patients with CEP290-ciliopathy and affected extraocular tissues. Based on these findings and previous publications, systemic screening is proposed, together with a clinical pathway for patients with CEP290-related ciliopathy.
Collapse
Affiliation(s)
- N Vrabič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - A Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - M Tekavčič Pompe
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Knapp M, Supruniuk E, Górski J. Myostatin and the Heart. Biomolecules 2023; 13:1777. [PMID: 38136649 PMCID: PMC10741510 DOI: 10.3390/biom13121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Myostatin (growth differentiation factor 8) is a member of the transforming growth factor-β superfamily. It is secreted mostly by skeletal muscles, although small amounts of myostatin are produced by the myocardium and the adipose tissue as well. Myostatin binds to activin IIB membrane receptors to activate the downstream intracellular canonical Smad2/Smad3 pathway, and additionally acts on non-Smad (non-canonical) pathways. Studies on transgenic animals have shown that overexpression of myostatin reduces the heart mass, whereas removal of myostatin has an opposite effect. In this review, we summarize the potential diagnostic and prognostic value of this protein in heart-related conditions. First, in myostatin-null mice the left ventricular internal diameters along with the diastolic and systolic volumes are larger than the respective values in wild-type mice. Myostatin is potentially secreted as part of a negative feedback loop that reduces the effects of the release of growth-promoting factors and energy reprogramming in response to hypertrophic stimuli. On the other hand, both human and animal data indicate that myostatin is involved in the development of the cardiac cachexia and heart fibrosis in the course of chronic heart failure. The understanding of the role of myostatin in such conditions might initiate a development of targeted therapies based on myostatin signaling inhibition.
Collapse
Affiliation(s)
- Małgorzata Knapp
- Department of Cardiology, Medical University of Białystok, 15-276 Białystok, Poland
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Jan Górski
- Department of Health Sciences, University of Łomża, 18-400 Łomża, Poland;
| |
Collapse
|
3
|
Trevino CE, Holleman AM, Corbitt H, Maslen CL, Rosser TC, Cutler DJ, Johnston HR, Rambo-Martin BL, Oberoi J, Dooley KJ, Capone GT, Reeves RH, Cordell HJ, Keavney BD, Agopian AJ, Goldmuntz E, Gruber PJ, O'Brien JE, Bittel DC, Wadhwa L, Cua CL, Moskowitz IP, Mulle JG, Epstein MP, Sherman SL, Zwick ME. Identifying genetic factors that contribute to the increased risk of congenital heart defects in infants with Down syndrome. Sci Rep 2020; 10:18051. [PMID: 33093519 PMCID: PMC7582922 DOI: 10.1038/s41598-020-74650-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/05/2020] [Indexed: 01/16/2023] Open
Abstract
Atrioventricular septal defects (AVSD) are a severe congenital heart defect present in individuals with Down syndrome (DS) at a > 2000-fold increased prevalence compared to the general population. This study aimed to identify risk-associated genes and pathways and to examine a potential polygenic contribution to AVSD in DS. We analyzed a total cohort of 702 individuals with DS with or without AVSD, with genomic data from whole exome sequencing, whole genome sequencing, and/or array-based imputation. We utilized sequence kernel association testing and polygenic risk score (PRS) methods to examine rare and common variants. Our findings suggest that the Notch pathway, particularly NOTCH4, as well as genes involved in the ciliome including CEP290 may play a role in AVSD in DS. These pathways have also been implicated in DS-associated AVSD in prior studies. A polygenic component for AVSD in DS has not been examined previously. Using weights based on the largest genome-wide association study of congenital heart defects available (2594 cases and 5159 controls; all general population samples), we found PRS to be associated with AVSD with odds ratios ranging from 1.2 to 1.3 per standard deviation increase in PRS and corresponding liability r2 values of approximately 1%, suggesting at least a small polygenic contribution to DS-associated AVSD. Future studies with larger sample sizes will improve identification and quantification of genetic contributions to AVSD in DS.
Collapse
Affiliation(s)
- Cristina E Trevino
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - Aaron M Holleman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Holly Corbitt
- Division of Cardiovascular Medicine and the Heart Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Cheryl L Maslen
- Division of Cardiovascular Medicine and the Heart Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Tracie C Rosser
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - H Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - Benjamin L Rambo-Martin
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - Jai Oberoi
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - Kenneth J Dooley
- Sibley Heart Center Cardiology, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | | | - Roger H Reeves
- Department of Physiology and the Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A J Agopian
- Human Genetics Center; Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter J Gruber
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - James E O'Brien
- The Ward Family Heart Center, Section of Cardiac Surgery, Children's Mercy Hospital, Kansas City, MO, USA
| | - Douglas C Bittel
- College of Biosciences, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | | | - Clifford L Cua
- Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Raso A, Dirkx E, Philippen LE, Fernandez-Celis A, De Majo F, Sampaio-Pinto V, Sansonetti M, Juni R, El Azzouzi H, Calore M, Bitsch N, Olieslagers S, Oerlemans MIFJ, Huibers MM, de Weger RA, Reckman YJ, Pinto YM, Zentilin L, Zacchigna S, Giacca M, da Costa Martins PA, López-Andrés N, De Windt LJ. Therapeutic Delivery of miR-148a Suppresses Ventricular Dilation in Heart Failure. Mol Ther 2018; 27:584-599. [PMID: 30559069 PMCID: PMC6403487 DOI: 10.1016/j.ymthe.2018.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 01/02/2023] Open
Abstract
Heart failure is preceded by ventricular remodeling, changes in left ventricular mass, and myocardial volume after alterations in loading conditions. Concentric hypertrophy arises after pressure overload, involves wall thickening, and forms a substrate for diastolic dysfunction. Eccentric hypertrophy develops in volume overload conditions and leads wall thinning, chamber dilation, and reduced ejection fraction. The molecular events underlying these distinct forms of cardiac remodeling are poorly understood. Here, we demonstrate that miR-148a expression changes dynamically in distinct subtypes of heart failure: while it is elevated in concentric hypertrophy, it decreased in dilated cardiomyopathy. In line, antagomir-mediated silencing of miR-148a caused wall thinning, chamber dilation, increased left ventricle volume, and reduced ejection fraction. Additionally, adeno-associated viral delivery of miR-148a protected the mouse heart from pressure-overload-induced systolic dysfunction by preventing the transition of concentric hypertrophic remodeling toward dilation. Mechanistically, miR-148a targets the cytokine co-receptor glycoprotein 130 (gp130) and connects cardiomyocyte responsiveness to extracellular cytokines by modulating the Stat3 signaling. These findings show the ability of miR-148a to prevent the transition of pressure-overload induced concentric hypertrophic remodeling toward eccentric hypertrophy and dilated cardiomyopathy and provide evidence for the existence of separate molecular programs inducing distinct forms of myocardial remodeling.
Collapse
Affiliation(s)
- Andrea Raso
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Ellen Dirkx
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Leonne E Philippen
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Amaya Fernandez-Celis
- Cardiovascular Translational Research, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Federica De Majo
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Vasco Sampaio-Pinto
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal; Instituto Nacional de Engenharia Biomédica (INEB), Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Marida Sansonetti
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Rio Juni
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Hamid El Azzouzi
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Departments of Cardiology and Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martina Calore
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Nicole Bitsch
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Servé Olieslagers
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Martinus I F J Oerlemans
- Departments of Cardiology and Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Manon M Huibers
- Departments of Cardiology and Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roel A de Weger
- Departments of Cardiology and Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yolan J Reckman
- Department of Experimental Cardiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - Yigal M Pinto
- Department of Experimental Cardiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Paula A da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Leon J De Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Baán JA, Varga ZV, Leszek P, Kuśmierczyk M, Baranyai T, Dux L, Ferdinandy P, Braun T, Mendler L. Myostatin and IGF-I signaling in end-stage human heart failure: a qRT-PCR study. J Transl Med 2015; 13:1. [PMID: 25591711 PMCID: PMC4301667 DOI: 10.1186/s12967-014-0365-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022] Open
Abstract
Background Myostatin (Mstn) is a key regulator of heart metabolism and cardiomyocyte growth interacting tightly with insulin-like growth factor I (IGF-I) under physiological conditions. The pathological role of Mstn has also been suggested since Mstn protein was shown to be upregulated in the myocardium of end-stage heart failure. However, no data are available about the regulation of gene expression of Mstn and IGF-I in different regions of healthy or pathologic human hearts, although they both might play a crucial role in the pathomechanism of heart failure. Methods In the present study, heart samples were collected from left ventricles, septum and right ventricles of control healthy individuals as well as from failing hearts of dilated (DCM) or ischemic cardiomyopathic (ICM) patients. A comprehensive qRT-PCR analysis of Mstn and IGF-I signaling was carried out by measuring expression of Mstn, its receptor Activin receptor IIB (ActRIIB), IGF-I, IGF-I receptor (IGF-IR), and the negative regulator of Mstn miR-208, respectively. Moreover, we combined the measured transcript levels and created complex parameters characterizing either Mstn- or IGF-I signaling in the different regions of healthy or failing hearts. Results We have found that in healthy control hearts, the ratio of Mstn/IGF-I signaling was significantly higher in the left ventricle/septum than in the right ventricle. Moreover, Mstn transcript levels were significantly upregulated in all heart regions of DCM but not ICM patients. However, the ratio of Mstn/IGF-I signaling remained increased in the left ventricle/septum compared to the right ventricle of DCM patients (similarly to the healthy hearts). In contrast, in ICM hearts significant transcript changes were detected mainly in IGF-I signaling. In paralell with these results miR-208 showed mild upregulation in the left ventricle of both DCM and ICM hearts. Conclusions This is the first demonstration of a spatial asymmetry in the expression pattern of Mstn/IGF-I in healthy hearts, which is likely to play a role in the different growth regulation of left vs. right ventricle. Moreover, we identified Mstn as a massively regulated gene in DCM but not in ICM as part of possible compensatory mechanisms in the failing heart.
Collapse
|
6
|
Torrado M, Franco D, Hernández-Torres F, Crespo-Leiro MG, Iglesias-Gil C, Castro-Beiras A, Mikhailov AT. Pitx2c is reactivated in the failing myocardium and stimulates myf5 expression in cultured cardiomyocytes. PLoS One 2014; 9:e90561. [PMID: 24595098 PMCID: PMC3942452 DOI: 10.1371/journal.pone.0090561] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/01/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pitx2 (paired-like homeodomain 2 transcription factor) is crucial for heart development, but its role in heart failure (HF) remains uncertain. The present study lays the groundwork implicating Pitx2 signalling in different modalities of HF. METHODOLOGY/PRINCIPAL FINDINGS A variety of molecular, cell-based, biochemical, and immunochemical assays were used to evaluate: (1) Pitx2c expression in the porcine model of diastolic HF (DHF) and in patients with systolic HF (SHF) due to dilated and ischemic cardiomyopathy, and (2) molecular consequences of Pitx2c expression manipulation in cardiomyocytes in vitro. In pigs, the expression of Pitx2c, physiologically downregulated in the postnatal heart, is significantly re-activated in left ventricular (LV) failing myocardium which, in turn, is associated with increased expression of a restrictive set of Pitx2 target genes. Among these, Myf5 was identified as the top upregulated gene. In vitro, forced expression of Pitx2c in cardiomyocytes, but not in skeletal myoblasts, activates Myf5 in dose-dependent manner. In addition, we demonstrate that the level of Pitx2c is upregulated in the LV-myocardium of SHF patients. CONCLUSIONS/SIGNIFICANCE The results provide previously unrecognized evidence that Pitx2c is similarly reactivated in postnatal/adult heart at distinct HF phenotypes and suggest that Pitx2c is involved, directly or indirectly, in the regulation of Myf5 expression in cardiomyocytes.
Collapse
Affiliation(s)
- Mario Torrado
- Institute of Health Sciences, University of La Coruña, La Coruña, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, Jaen, Spain
| | | | | | | | - Alfonso Castro-Beiras
- Institute of Health Sciences, University of La Coruña, La Coruña, Spain
- University Hospital Center of La Coruña, La Coruña, Spain
| | | |
Collapse
|
7
|
Chapalamadugu KC, VandeVoort CA, Settles ML, Robison BD, Murdoch GK. Maternal bisphenol a exposure impacts the fetal heart transcriptome. PLoS One 2014; 9:e89096. [PMID: 24586524 PMCID: PMC3934879 DOI: 10.1371/journal.pone.0089096] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023] Open
Abstract
Conditions during fetal development influence health and disease in adulthood, especially during critical windows of organogenesis. Fetal exposure to the endocrine disrupting chemical, bisphenol A (BPA) affects the development of multiple organ systems in rodents and monkeys. However, effects of BPA exposure on cardiac development have not been assessed. With evidence that maternal BPA is transplacentally delivered to the developing fetus, it becomes imperative to examine the physiological consequences of gestational exposure during primate development. Herein, we evaluate the effects of daily, oral BPA exposure of pregnant rhesus monkeys (Macaca mulatta) on the fetal heart transcriptome. Pregnant monkeys were given daily oral doses (400 µg/kg body weight) of BPA during early (50–100±2 days post conception, dpc) or late (100±2 dpc – term), gestation. At the end of treatment, fetal heart tissues were collected and chamber specific transcriptome expression was assessed using genome-wide microarray. Quantitative real-time PCR was conducted on select genes and ventricular tissue glycogen content was quantified. Our results show that BPA exposure alters transcription of genes that are recognized for their role in cardiac pathophysiologies. Importantly, myosin heavy chain, cardiac isoform alpha (Myh6) was down-regulated in the left ventricle, and ‘A Disintegrin and Metalloprotease 12’, long isoform (Adam12-l) was up-regulated in both ventricles, and the right atrium of the heart in BPA exposed fetuses. BPA induced alteration of these genes supports the hypothesis that exposure to BPA during fetal development may impact cardiovascular fitness. Our results intensify concerns about the role of BPA in the genesis of human metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Kalyan C. Chapalamadugu
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho, United States of America
| | - Catherine A. VandeVoort
- Department of Obstetrics and Gynecology, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Matthew L. Settles
- Department of Computer Science, University of Idaho, Moscow, Idaho, United States of America
- Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Barrie D. Robison
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Gordon K. Murdoch
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
8
|
In search of novel targets for heart disease: myocardin and myocardin-related transcriptional cofactors. Biochem Res Int 2012; 2012:973723. [PMID: 22666593 PMCID: PMC3362810 DOI: 10.1155/2012/973723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
Growing evidence suggests that gene-regulatory networks, which are responsible for directing cardiovascular development, are altered under stress conditions in the adult heart. The cardiac gene regulatory network is controlled by cardioenriched transcription factors and multiple-cell-signaling inputs. Transcriptional coactivators also participate in gene-regulatory circuits as the primary targets of both physiological and pathological signals. Here, we focus on the recently discovered myocardin-(MYOCD) related family of transcriptional cofactors (MRTF-A and MRTF-B) which associate with the serum response transcription factor and activate the expression of a variety of target genes involved in cardiac growth and adaptation to stress via overlapping but distinct mechanisms. We discuss the involvement of MYOCD, MRTF-A, and MRTF-B in the development of cardiac dysfunction and to what extent modulation of the expression of these factors in vivo can correlate with cardiac disease outcomes. A close examination of the findings identifies the MYOCD-related transcriptional cofactors as putative therapeutic targets to improve cardiac function in heart failure conditions through distinct context-dependent mechanisms. Nevertheless, we are in support of further research to better understand the precise role of individual MYOCD-related factors in cardiac function and disease, before any therapeutic intervention is to be entertained in preclinical trials.
Collapse
|
9
|
Breitbart A, Auger-Messier M, Molkentin JD, Heineke J. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. Am J Physiol Heart Circ Physiol 2011; 300:H1973-82. [PMID: 21421824 DOI: 10.1152/ajpheart.00200.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future.
Collapse
Affiliation(s)
- Astrid Breitbart
- Medizinische Hochschule Hannover, Klinik für Kardiologie und Angiologie, Rebirth-Cluster of Excellence, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|
10
|
Coppieters F, Lefever S, Leroy BP, De Baere E. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat 2011; 31:1097-108. [PMID: 20690115 DOI: 10.1002/humu.21337] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ciliopathies are an emerging group of disorders, caused by mutations in ciliary genes. One of the most intriguing disease genes associated with ciliopathies is CEP290, in which mutations cause a wide variety of distinct phenotypes, ranging from isolated blindness over Senior-Loken syndrome (SLS), nephronophthisis (NPHP), Joubert syndrome (related disorders) (JS[RD]), Bardet-Biedl syndrome (BBS), to the lethal Meckel-Grüber syndrome (MKS). Despite the identification of over 100 unique CEP290 mutations, no clear genotype-phenotype correlations could yet be established, and consequently the predictive power of a CEP290-related genotype remains limited. One of the challenges is a better understanding of second-site modifiers. In this respect, there is a growing interest in the potential modifying effects of variations in genes encoding other members of the ciliary proteome that interact with CEP290. Here, we provide an overview of all CEP290 mutations identified so far, with their associated phenotypes. To this end, we developed CEP290base, a locus-specific mutation database that links mutations with patients and their phenotypes (medgen.ugent.be/cep290base).
Collapse
Affiliation(s)
- Frauke Coppieters
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | |
Collapse
|
11
|
Torrado M, Iglesias R, Centeno A, López E, Mikhailov AT. Exon-skipping brain natriuretic peptide variant is overexpressed in failing myocardium and attenuates brain natriuretic peptide production in vitro. Exp Biol Med (Maywood) 2010; 235:941-51. [DOI: 10.1258/ebm.2010.010078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Brain natriuretic peptide/natriuretic peptide precursor B (NPPB) is one of the most studied genes in relation to heart failure (HF) conditions. However, it is still unclear as to whether alternative splicing could create NPPB mRNA variants, which may be expressed in normal and diseased myocardium. We aimed to identify and characterize a novel alternatively spliced variant of porcine and human NPPB resulting from exon 2 skipping (designated as ΔE2-NPPB). A variety of conventional molecular, biochemical and immunochemical methods were used to examine the expression and functional consequences of ΔE2-NPPB in vitro and in vivo. The pig ΔE2-NPPB mRNA is effectively translated into stable protein in cell-based assays but, in contrast to normally spliced NPPB, the ΔE2-NPPB protein is not secreted into the media. Co-transfection assays demonstrate that ΔE2-NPPB attenuates production and secretion of normally spliced NPPB, suggesting a negative feedback loop of NPPB signaling through generation of ΔE2-NPPB. The inhibitory effects of ΔE2-NPPB on the expression of NPPB are associated with sequence elements residing in exon 3 of ΔE2-NPPB. In piglets, ΔE2-NPPB gene expression is downregulated in both ventricles after birth, but it is markedly re-activated in the postnatal myocardium in experimental diastolic heart failure. In addition, we demonstrate that the exon-skipped NPPB variants are expressed in the postnatal and adult human myocardium and upregulated at end-stage HF due to dilated cardiomyopathy. Our work uncovers an important role of alternative exon skipping in the regulation of NPPB gene expression, thereby pinpointing a putative new mechanism for post-transcriptional regulation of NPPB production and secretion.
Collapse
Affiliation(s)
- Mario Torrado
- Developmental Biology Unit, Institute of Health Sciences, University of La Coruña, Campus de Oza, Building ‘El Fortin’, As Xubias Str. s/n
| | - Raquel Iglesias
- Developmental Biology Unit, Institute of Health Sciences, University of La Coruña, Campus de Oza, Building ‘El Fortin’, As Xubias Str. s/n
| | - Alberto Centeno
- Experimental Surgery Unit, University Hospital Centre of La Coruña, La Coruña 15006, Spain
| | - Eduardo López
- Experimental Surgery Unit, University Hospital Centre of La Coruña, La Coruña 15006, Spain
| | - Alexander T Mikhailov
- Developmental Biology Unit, Institute of Health Sciences, University of La Coruña, Campus de Oza, Building ‘El Fortin’, As Xubias Str. s/n
| |
Collapse
|