1
|
Khongrum J, Yingthongchai P, Tateing S, Kaewkaen P. Cognitive-Enhancing Effect of Marine Brown Algae-Derived Phenolics through S100B Inhibition and Antioxidant Activity in the Rat Model of Ischemic Stroke. Mar Drugs 2024; 22:451. [PMID: 39452859 PMCID: PMC11509588 DOI: 10.3390/md22100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Cognitive impairments are frequently reported after ischemic strokes. Novel and effective treatments are required. This study aimed to develop a functional ingredient obtained from marine algae and to determine the effect of the extract on antioxidative stress, as well as neuroprotective effects, in a rat model of MCAO-induced ischemic stroke. Among the selected marine algal extracts, Sargassum polycystum displayed the highest total phenolic content and antioxidative potential, and was subsequently used to evaluate cognitive function in rat models of ischemic stroke. The S. polycystum extract, administered at doses of 100, 300, and 500 mg/kg BW, significantly improved cognitive function by enhancing cognitive performance in the Morris water maze and novel object recognition tests. Biochemical changes revealed that providing S. polycystum increased the activities of SOD, CAT, and GSH-Px by 52.48%, 50.77%, and 66.20%, respectively, and decreased the concentrations of MDA by 51.58% and S100B by 36.64% compared to the vehicle group. These findings suggest that S. polycystum extract may mitigate cognitive impairment in ischemic stroke by reducing oxidative stress and inhibiting S100B expression, thus highlighting its potential as a functional ingredient for drugs and nutraceuticals aimed at neuroprotection.
Collapse
Affiliation(s)
- Jurairat Khongrum
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (P.Y.)
- Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pratoomporn Yingthongchai
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (P.Y.)
| | - Suriya Tateing
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pratchaya Kaewkaen
- Animal Cognitive Neuroscience Laboratory (ACoN), Faculty of Education, Burapha University, Chon Buri 20131, Thailand
| |
Collapse
|
2
|
Cho SB. Comorbidity Genes of Alzheimer's Disease and Type 2 Diabetes Associated with Memory and Cognitive Function. Int J Mol Sci 2024; 25:2211. [PMID: 38396891 PMCID: PMC10889845 DOI: 10.3390/ijms25042211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are comorbidities that result from the sharing of common genes. The molecular background of comorbidities can provide clues for the development of treatment and management strategies. Here, the common genes involved in the development of the two diseases and in memory and cognitive function are reviewed. Network clustering based on protein-protein interaction network identified tightly connected gene clusters that have an impact on memory and cognition among the comorbidity genes of AD and T2DM. Genes with functional implications were intensively reviewed and relevant evidence summarized. Gene information will be useful in the discovery of biomarkers and the identification of tentative therapeutic targets for AD and T2DM.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street, Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
3
|
Mondal A, Saha P, Bose D, Chatterjee S, Seth RK, Xiao S, Porter DE, Brooks BW, Scott GI, Nagarkatti M, Nagarkatti P, Chatterjee S. Environmental Microcystin exposure in underlying NAFLD-induced exacerbation of neuroinflammation, blood-brain barrier dysfunction, and neurodegeneration are NLRP3 and S100B dependent. Toxicology 2021; 461:152901. [PMID: 34416350 DOI: 10.1016/j.tox.2021.152901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been shown to be associated with extrahepatic comorbidities including neuronal inflammation and Alzheimer's-like pathology. Environmental and genetic factors also act as a second hit to modulate severity and are expected to enhance the NAFLD-linked neuropathology. We hypothezied that environmental microcystin-LR (MC-LR), a toxin produced by harmful algal blooms of cyanobacteria, exacerbates the neuroinflammation and degeneration of neurons associated with NAFLD. Using a mouse model of NAFLD, exposed to MC-LR subsequent to the onset of fatty liver, we show that the cyanotoxin could significantly increase proinflammatory cytokine expression in the frontal cortex and cause increased expression of Lcn2 and HMGB1. The above effects were NLRP3 inflammasome activation-dependent since the use of NLRP3 knockout mice abrogated the increase in inflammation. NLRP3 was also responsible for decreased expression of the blood-brain barrier (BBB) tight junction proteins Occludin and Claudin 5 suggesting BBB dysfunction was parallel to neuroinflammation following microcystin exposure. An increased circulatory S100B release, a hallmark of astrocyte activation in MC-LR exposed NAFLD mice also confirmed BBB integrity loss, but the astrocyte activation observed in vivo was NLRP3 independent suggesting an important role of a secondary S100B mediated crosstalk. Mechanistically, conditioned medium from reactive astrocytes and parallel S100B incubation in neuronal cells caused increased inducible NOS, COX-2, and higher BAX/ Bcl2 protein expression suggesting oxidative stress-mediated neuronal cell apoptosis crucial for neurodegeneration. Taken together, MC-LR exacerbated neuronal NAFLD-linked comorbidities leading to cortical inflammation, BBB dysfunction, and neuronal apoptosis.
Collapse
Affiliation(s)
- Ayan Mondal
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA; Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Somdatta Chatterjee
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Ratanesh K Seth
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA; Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy at Rutgers University, Piscataway, NJ, 08854, USA
| | - Dwayne E Porter
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, 29208, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, 76798-7266, USA
| | - Geoff I Scott
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA; Columbia VA Medical Center, Columbia, SC, 29209, USA.
| |
Collapse
|
4
|
Angelopoulou E, Paudel YN, Piperi C. Emerging role of S100B protein implication in Parkinson's disease pathogenesis. Cell Mol Life Sci 2021; 78:1445-1453. [PMID: 33052436 PMCID: PMC11073186 DOI: 10.1007/s00018-020-03673-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/10/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
The exact etiology of Parkinson's disease (PD) remains obscure, lacking effective diagnostic and prognostic biomarkers. In search of novel molecular factors that may contribute to PD pathogenesis, emerging evidence highlights the multifunctional role of the calcium-binding protein S100B that is widely expressed in the brain and predominantly in astrocytes. Preclinical evidence points towards the possible time-specific contributing role of S100B in the pathogenesis of neurodegenerative disorders including PD, mainly by regulating neuroinflammation and dopamine metabolism. Although existing clinical evidence presents some contradictions, estimation of S100B in the serum and cerebrospinal fluid seems to hold a great promise as a potential PD biomarker, particularly regarding the severity of motor and non-motor PD symptoms. Furthermore, given the recent development of S100B inhibitors that are able to cross the blood brain barrier, novel opportunities are arising in the research field of PD therapeutics. In this review, we provide an update on recent advances in the implication of S100B protein in the pathogenesis of PD and discuss relevant studies investigating the biomarker potential of S100B in PD, aiming to shed more light on clinical targeting approaches related to this incurable disorder.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527, Athens, Greece.
| |
Collapse
|
5
|
Levels of serum S100B are associated with cognitive dysfunction in patients with type 2 diabetes. Aging (Albany NY) 2020; 12:4193-4203. [PMID: 32112645 PMCID: PMC7093188 DOI: 10.18632/aging.102873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 11/25/2022]
Abstract
Objective: Previous studies have provided robust evidence that cognitive impairment exists in patients with type 2 diabetes. The predictive role of S100B in a variety of neurodegenerative diseases such as Alzheimer’s disease, has been shown to be closely related to cognitive function. The purpose of this study was to investigate the correlation between serum S100B levels and cognitive function in type 2 diabetes patients. Results: The type 2 diabetes group scored lower than the healthy control group in all domains of cognitive function except language and attention, and the former group also had lower serum levels of S100B. Besides, serum S100B levels were lower in the type 2 diabetes patients with impaired cognition than in those with normal cognition. In addition, the moderate to severe cognitive impairment group had significantly lower levels than that in mild cognitive impairment group. After adjusting for confounding factors, serum S100B levels were positively correlated with cognitive function in type 2 diabetes patients. Conclusions: Serum S100B levels were positively correlated with cognitive function in type 2 diabetes patients with cognitive impairment. It is suggested that S100B may be involved in the occurrence and development of cognitive dysfunction in type 2 diabetes patients and play a protective role. Methods: The clinical data and biochemical indexes of ninety-six patients with type 2 diabetes and sixty-eight healthy subjects were collected. The levels of serum S100B were detected by enzyme-linked immunosorbent assay. Ninety-six type 2 diabetes patients were divided into a cognitive dysfunction group and a normal cognition group according to Mini-mental State Examination scores. To better understand the differences in various aspects of cognition, we used the Repeatable Battery for the Assessment of Neuropsychological Status scale for further evaluation. To study the relationship between serum S100B levels and cognitive impairment, the cognitive dysfunction group was divided into a mild cognitive impairment group and a moderate to severe cognitive impairment group for further study.
Collapse
|
6
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
7
|
Yang JW, Wang XR, Zhang M, Xiao LY, Zhu W, Ji CS, Liu CZ. Acupuncture as a multifunctional neuroprotective therapy ameliorates cognitive impairment in a rat model of vascular dementia: A quantitative iTRAQ proteomics study. CNS Neurosci Ther 2018; 24:1264-1274. [PMID: 30278105 DOI: 10.1111/cns.13063] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/31/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
AIMS Acupuncture has been reported to affect vascular dementia through a variety of molecular mechanisms. An isobaric tag for relative and absolute quantification (iTRAQ) with high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses makes it possible to attain a global profile of proteins. Hence, we used an iTRAQ-LC-MS/MS strategy to unravel the underlying mechanism of acupuncture. METHODS Wistar rats were subjected to vascular dementia with bilateral common carotid occlusion. Acupuncture was intervened for 2 weeks at 3 days after surgery. The Morris water maze was used to assess the cognitive function. Proteins were screened by quantitative proteomics and analyzed by bioinformatic analysis. Four differentially expressed proteins (DEPs) were validated by western blot. The reactive oxygen species (ROS) production, neuron cell loss, and long-term potentiation (LTP) were determined after western blot. RESULTS Acupuncture at proper acupoints significantly improved cognitive function. A total of 31 proteins were considered DEPs. Gene ontology (GO) analysis showed that most of the DEPs were related to oxidative stress, apoptosis, and synaptic function, which were regarded as the major cellular processes related to acupuncture effect. Western blot results confirm the credibility of iTRAQ results. Acupuncture could decrease ROS production, increase neural cell survival, and improve LTP, which verified the three major cellular processes. CONCLUSION Acupuncture may serve as a promising clinical candidate for the treatment of vascular dementia via regulating oxidative stress, apoptosis, or synaptic functions.
Collapse
Affiliation(s)
- Jing-Wen Yang
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.,School of Acupuncture-Moxibution and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Rui Wang
- Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing, China
| | - Meng Zhang
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Ling-Yong Xiao
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Zhu
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cai-Shuo Ji
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cun-Zhi Liu
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Li N, Hu P, Xu T, Chen H, Chen X, Hu J, Yang X, Shi L, Luo JH, Xu J. iTRAQ-based Proteomic Analysis of APPSw,Ind Mice Provides Insights into the Early Changes in Alzheimer's Disease. Curr Alzheimer Res 2018; 14:1109-1122. [PMID: 28730955 PMCID: PMC5676024 DOI: 10.2174/1567205014666170719165745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/13/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Several proteins have been identified as potential diagnostic biomarkers in imaging, genetic, or proteomic studies in Alzheimer disease (AD) patients and mouse models. However, biomarkers for presymptom diagnosis of AD are still under investigation, as are the presymptom molecular changes in AD pathogenesis. OBJECTIVE In this study, we aim to analyzed the early proteomic changes in APPSw,Ind mice and to conduct further functional studies on interesting proteins. METHODS We used the isobaric tags for relative and absolute quantitation (iTRAQ) approach combined with mass spectrometry to examine the early proteomic changes in hippocampi of APPSw,Ind mice. Quantitative reverse transcription polymerase chain reaction (RT-PCR) and immuno-blotting were performed for further validation. Finally, the functions of interesting proteins β-spectrin and Rab3a in APP trafficking and processing were tested by shRNA knockdown, in N2A cells stably expressing β-amyloid precursor protein (APP). RESULTS The iTRAQ and RT-PCR results revealed the detailed molecular changes in oxidative stress, myelination, astrocyte activation, mTOR signaling and Rab3-dependent APP trafficking in the early stage of AD progression. Knock down of β -spectrin and Rab3a finally led to increased APP fragment production, indicating key roles of β-spectrin and Rab3a in regulating APP processing. CONCLUSION Our study provides the first insights into the proteomic changes that occur in the hippocampus in the early stages of the AD mouse model. In addition to improving the understanding of molecular alterations and functional cascades involved in early AD pathogenesis, our findings raise the possibility of developing potential biomarkers and therapeutic targets for early AD.
Collapse
Affiliation(s)
- Nan Li
- Center of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058. China
| | - Pinghong Hu
- Center of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058. China
| | - Tiantian Xu
- Center of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058. China
| | - Huan Chen
- Center of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058. China
| | - Xiaoying Chen
- Center of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058. China
| | - Jianwen Hu
- Shanghai Applied Protein Technology Co., Ltd., Shanghai. China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen. China
| | - Lei Shi
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen. China
| | - Jian-Hong Luo
- Center of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058. China
| | - Junyu Xu
- Center of Neuroscience, Zhejiang University, 866 Yuhangtang Road, Hangzhou. China
| |
Collapse
|
9
|
Zhu L, Gao N, Wang R, Zhang L. Proteomic and metabolomic analysis of marine medaka (Oryzias melastigma) after acute ammonia exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:267-277. [PMID: 29322369 DOI: 10.1007/s10646-017-1892-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Ammonia is both a highly toxic environmental pollutant and the major nitrogenous waste produced by ammoniotelic teleosts. Although the acute toxic effects of ammonia have been widely studied in fish, the biochemical mechanisms of its toxicity have not been understood comprehensively. In this study, we performed comparative proteomic and metabolomic analysis between ammonia-challenged (1.2 and 2.6 mmol L-1 NH4Cl for 96 h) and control groups of marine medaka (Oryzias melastigma) to identify changes of the metabolite and protein profiles in response to ammonia stress. The metabolic responses included changes of multiple amino acids, carbohydrates (glucose and glycogen), energy metabolism products (ATP and creatinine), and other metabolites (choline and phosphocholine) after ammonia exposure, indicating that ammonia mainly caused disturbance in energy metabolism and amino acids metabolism. The two-dimensional electrophoresis-based proteomic study identified 23 altered proteins, which were involved in nervous system, locomotor system, cytoskeleton assembly, immune stress, oxidative stress, and signal transduction of apoptosis. These results suggested that ammonia not only induced oxidative stress, immune stress, cell injury and apoptosis but also affected the motor ability and central nervous system in marine medaka. It is the first time that metabolomic and proteomic approaches were integrated to elucidate ammonia toxicity in marine fishes. This study is of great value in better understanding the mechanisms of ammonia toxicity in marine fishes and in practical aspects of aquaculture.
Collapse
Affiliation(s)
- Limei Zhu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Na Gao
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifang Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
10
|
Zhang J, Li J, Ma L, Lou J. Retracted
: RNA interference‐mediated silencing of S100B improves nerve function recovery and inhibits hippocampal cell apoptosis in rat models of ischemic stroke. J Cell Biochem 2018; 119:8095-8111. [DOI: 10.1002/jcb.26747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/25/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jin‐Hua Zhang
- Department of NeurologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
- Department of NeurologyKaifeng Central HospitalKaifengP.R. China
| | - Jiang‐Kun Li
- Department of NeurologyKaifeng Central HospitalKaifengP.R. China
| | - Li‐Li Ma
- Department of NeurologyKaifeng Central HospitalKaifengP.R. China
| | - Ji‐Yu Lou
- Department of NeurologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| |
Collapse
|
11
|
Kurzątkowska K, Jankowska A, Wysłouch-Cieszyńska A, Zhukova L, Puchalska M, Dehaen W, Radecka H, Radecki J. Voltammetric detection of the S100B protein using His-tagged RAGE domain immobilized onto a gold electrode modified with a dipyrromethene–Cu(II) complex and different diluents. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
GE YALI, LI XIAOBO, GAO JU, ZHANG XICHENG, FANG XIANGZHI, ZHOU LUOJING, JI WEI, LIN SHUNYAN. Beneficial effects of intravenous dexmedetomidine on cognitive function and cerebral injury following a carotid endarterectomy. Exp Ther Med 2016; 11:1128-1134. [PMID: 26998048 PMCID: PMC4774506 DOI: 10.3892/etm.2016.2978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/25/2015] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to investigate the effects of dexmedetomidine (DEX) on cognition following a carotid endarterectomy (CEA). In addition, the neuroprotective effects of DEX against ischemia-reperfusion injury during CEA were analyzed. Patients due to undergo elective CEA under general anesthesia were randomly assigned to either the DEX-treated group (group D; n=25) or the control group (group C; n=25). Patients in group D were treated with 0.3 µg/kg DEX pre-CEA, followed by 0.3 µg/kg/h DEX intraoperatively up to 30 min prior to the completion of surgery, and the patients in group C received an equal volume of normal saline. Cognitive function was assessed prior to CEA (T0), and at 24, 48, and 72 h, 7 days and 1 month post-surgery (T1-5, respectively), using the Mini-Mental State Examination (MMSE). Blood samples were drawn from the ipsilateral jugular bulb of all patients at 20 min prior to anesthesia (t0), and at 10 min following tracheal intubation, 15 min following clamping and unclamping of the carotid artery, and at 6 and 24 h postoperatively (t1-5, respectively). The protein expression levels of markers of cerebral ischemia and injury, namely S100 calcium-binding protein B (S100B) and neuron-specific enolase (NSE), and the concentration of the oxidative stress marker malondialdehyde (MDA), were analyzed. Patients in group D exhibited elevated MMSE scores at T2 and T3 post-CEA, as compared with group C. Furthermore, the protein expression level of S100B and the concentration of MDA in the jugular bulb of group D patients were markedly decreased compared with those in group C at t3-5 and t3, respectively. The results of the present study suggested that DEX was able to enhance the recovery of cognition following CEA, and this was associated with decreased cerebral damage and antioxidative effects.
Collapse
Affiliation(s)
- YA-LI GE
- Department of Anesthesiology, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - XIAOBO LI
- Department of Neurology, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - JU GAO
- Department of Anesthesiology, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - XICHENG ZHANG
- Department of Vascular Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - XIANGZHI FANG
- Department of Anesthesiology, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - LUOJING ZHOU
- Department of Scientific Research, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - WEI JI
- Department of Anesthesiology, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - SHUNYAN LIN
- Department of Anesthesiology, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
13
|
Yeh CW, Yeh SHH, Shie FS, Lai WS, Liu HK, Tzeng TT, Tsay HJ, Shiao YJ. Impaired cognition and cerebral glucose regulation are associated with astrocyte activation in the parenchyma of metabolically stressed APPswe/PS1dE9 mice. Neurobiol Aging 2015; 36:2984-2994. [PMID: 26264859 DOI: 10.1016/j.neurobiolaging.2015.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/06/2015] [Accepted: 07/15/2015] [Indexed: 11/29/2022]
|
14
|
Cheng CY, Lin JG, Tang NY, Kao ST, Hsieh CL. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. Altern Ther Health Med 2015; 15:241. [PMID: 26187498 PMCID: PMC4506591 DOI: 10.1186/s12906-015-0752-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 06/29/2015] [Indexed: 11/10/2022]
Abstract
Background This study aimed to determine the effects of electroacupuncture stimulation at the Baihui (GV20) and Fengfu (GV16) acupoints, at frequencies of 5Hz (EA-5Hz) and 25Hz (EA-25Hz), 7 days after cerebral ischemia-reperfusion (I/R) injury, and to evaluate the possible signaling mechanisms involved in mitogen-activated protein kinase (MAPK) pathways. Methods Rats were subjected to 30 min of middle cerebral artery occlusion (MCAo) followed by 7 days of reperfusion. EA-5Hz or EA-25Hz was applied immediately after MCAo and then once daily for 7 consecutive days. Results Results indicated that EA-5Hz and EA-25Hz both markedly attenuated cerebral infarction and neurological deficits. EA-5Hz and EA-25Hz both markedly downregulated cytosolic glial fibrillary acidic protein (GFAP), mitochondrial Bax, mitochondrial and cytosolic second mitochondrial-derived activator of caspase/direct inhibitor of apoptosis protein-binding protein with low isoelectric point (Smac/DIABLO), and cytosolic cleaved caspase-3 expression, and effectively restored cytosolic phospho-p38 MAPK (p-p38 MAPK), cytosolic cAMP response element-binding protein (CREB), mitochondrial Bcl-xL, and cytosolic X-linked inhibitor of apoptosis protein (XIAP) expression, in the ischemic cortical penumbra 7 days after reperfusion. Both EA-5Hz and EA-25Hz also significantly increased the ratios of mitochondrial Bcl-xL/Bax and Bcl-2/Bax, respectively. Conclusions Both EA-5Hz and EA-25Hz effectively downregulate reactive astrocytosis to provide neuroprotection against cerebral infarction, most likely by activating the p38 MAPK/CREB signaling pathway. The modulating effects of EA-5Hz and EA-25Hz on Bax-mediated apoptosis are possibly due to the activation of p38 MAPK/CREB/Bcl-xL and p38 MAPK/CREB/Bcl-2 signaling pathways, respectively, and eventually contribute to the prevention of Smac/DIABLO translocation and subsequent restoration of XIAP-mediated suppression of caspase-3 in the cortical periinfarct area 7 days after reperfusion.
Collapse
|
15
|
Ye H, Wang L, Yang XK, Fan LP, Wang YG, Guo L. Serum S100B levels may be associated with cerebral infarction: a meta-analysis. J Neurol Sci 2014; 348:81-8. [PMID: 25434713 DOI: 10.1016/j.jns.2014.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/23/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The aim of this paper is to explore the potential association of serum human soluble protein-100B protein (S100B) levels with the diagnosis and prognosis of cerebral infarction (CI). METHODS Potential relevant studies were searched for in PubMed, Springerlink, Wiley, EBSCO, Ovid, Web of Science, Wanfang databases, China National Knowledge Infrastructure (CNKI) databases and VIP databases. Two investigators extracted data and assessed studies independently. Statistical analyses were carried out with the version 12.0 STATA statistical software. RESULTS A total of 10 case-control studies that assessed the correlation of S100B serum level with CI, including 1211 subjects (patients=773, healthy controls=438) were included. The results showed that S100B serum levels in CI victims were significantly higher compared with those of the control group. According to the subgroup analysis by ethnicity, S100B serum level in CI victims was statistically significant in Asians and the control group, but no statistical significance was found in Caucasians. An additional subgroup analysis was carried out based on sample size, revealing that the S100B serum levels in CI victims in small samples were of statistical significance; however, no statistical significance was discovered in large samples. CONCLUSIONS Elevator S100B serum levels might be negatively correlated with CI, suggesting that higher serum levels of S100B could lead to more serious condition and worse prognoses for CI patients. Therefore, S100B serum levels could be regarded as a biomarker for CI, and furthermore, S100B could aide in the diagnosis and prognosis of CI.
Collapse
Affiliation(s)
- Hua Ye
- Department of Neurology, the Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou 325000, China
| | - Lu Wang
- Department of orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang 325000, China
| | - Xiao-Kai Yang
- Department of Neurology, the Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou 325000, China
| | - Lu-Ping Fan
- Department of Neurology, the Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou 325000, China
| | - Yao-Guang Wang
- Department of Neurology, the Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou 325000, China
| | - Lei Guo
- Department of ICU, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
16
|
Maarouf CL, Kokjohn TA, Walker DG, Whiteside CM, Kalback WM, Whetzel A, Sue LI, Serrano G, Jacobson SA, Sabbagh MN, Reiman EM, Beach TG, Roher AE. Biochemical assessment of precuneus and posterior cingulate gyrus in the context of brain aging and Alzheimer's disease. PLoS One 2014; 9:e105784. [PMID: 25166759 PMCID: PMC4148328 DOI: 10.1371/journal.pone.0105784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/24/2014] [Indexed: 12/12/2022] Open
Abstract
Defining the biochemical alterations that occur in the brain during “normal” aging is an important part of understanding the pathophysiology of neurodegenerative diseases and of distinguishing pathological conditions from aging-associated changes. Three groups were selected based on age and on having no evidence of neurological or significant neurodegenerative disease: 1) young adult individuals, average age 26 years (n = 9); 2) middle-aged subjects, average age 59 years (n = 5); 3) oldest-old individuals, average age 93 years (n = 6). Using ELISA and Western blotting methods, we quantified and compared the levels of several key molecules associated with neurodegenerative disease in the precuneus and posterior cingulate gyrus, two brain regions known to exhibit early imaging alterations during the course of Alzheimer’s disease. Our experiments revealed that the bioindicators of emerging brain pathology remained steady or decreased with advancing age. One exception was S100B, which significantly increased with age. Along the process of aging, neurofibrillary tangle deposition increased, even in the absence of amyloid deposition, suggesting the presence of amyloid plaques is not obligatory for their development and that limited tangle density is a part of normal aging. Our study complements a previous assessment of neuropathology in oldest-old subjects, and within the limitations of the small number of individuals involved in the present investigation, it adds valuable information to the molecular and structural heterogeneity observed along the course of aging and dementia. This work underscores the need to examine through direct observation how the processes of amyloid deposition unfold or change prior to the earliest phases of dementia emergence.
Collapse
Affiliation(s)
- Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Tyler A. Kokjohn
- Department of Microbiology, Midwestern University, Glendale, Arizona, United States of America
| | - Douglas G. Walker
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Charisse M. Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Walter M. Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alexis Whetzel
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Geidy Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Sandra A. Jacobson
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
- * E-mail:
| |
Collapse
|
17
|
Cheng CY, Lin JG, Tang NY, Kao ST, Hsieh CL. Electroacupuncture-like stimulation at the Baihui (GV20) and Dazhui (GV14) acupoints protects rats against subacute-phase cerebral ischemia-reperfusion injuries by reducing S100B-mediated neurotoxicity. PLoS One 2014; 9:e91426. [PMID: 24626220 PMCID: PMC3953388 DOI: 10.1371/journal.pone.0091426] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 02/09/2014] [Indexed: 11/30/2022] Open
Abstract
Objectives The purpose of this study was to evaluate the effects of electroacupuncture-like stimulation at the Baihui (GV20) and Dazhui (GV14) acupoints (EA at acupoints) during the subacute phase of cerebral ischemia-reperfusion (I/R) injury and to establish the neuroprotective mechanisms involved in the modulation of the S100B-mediated signaling pathway. Methods The experimental rats were subjected to middle cerebral artery occlusion (MCAo) for 15 min followed by 1 d or 7 d of reperfusion. EA at acupoints was applied 1 d postreperfusion then once daily for 6 consecutive days. Results We observed that 15 min of MCAo caused delayed infarct expansion 7 d after reperfusion. EA at acupoints significantly reduced the cerebral infarct and neurological deficit scores. EA at acupoints also downregulated the expression of the glial fibrillary acidic protein (GFAP), S100B, nuclear factor-κB (NF-κB; p50), and tumor necrosis factor-α (TNF-α), and reduced the level of inducible nitric oxide synthase (iNOS) and apoptosis in the ischemic cortical penumbra 7 d after reperfusion. Western blot analysis showed that EA at acupoints significantly downregulated the cytosolic expression of phospho-p38 MAP kinase (p-p38 MAP kinase), tumor necrosis factor receptor type 1-associated death domain (TRADD), Fas-associated death domain (FADD), cleaved caspase-8, and cleaved caspase-3 in the ischemic cortical penumbra 7 d after reperfusion. EA at acupoints significantly reduced the numbers of GFAP/S100B and S100B/nitrotyrosine double-labeled cells. Conclusion Our study results indicate that EA at acupoints initiated 1 d postreperfusion effectively downregulates astrocytic S100B expression to provide neuroprotection against delayed infarct expansion by modulating p38 MAP kinase-mediated NF-κB expression. These effects subsequently reduce oxidative/nitrative stress and inhibit the TNF-α/TRADD/FADD/cleaved caspase-8/cleaved caspase-3 apoptotic pathway in the ischemic cortical penumbra 7 d after reperfusion.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Hui-Sheng Hospital, Taichung, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Nou-Ying Tang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Liang Hsieh
- Acupuncture Research Center, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Kalimeris K, Kouni S, Kostopanagiotou G, Nomikos T, Fragopoulou E, Kakisis J, Vasdekis S, Matsota P, Pandazi A. Cognitive function and oxidative stress after carotid endarterectomy: comparison of propofol to sevoflurane anesthesia. J Cardiothorac Vasc Anesth 2013; 27:1246-52. [PMID: 23725684 DOI: 10.1053/j.jvca.2012.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To examine the antioxidant role of propofol in ischemia-reperfusion during carotid endarterectomy (CEA) and its influence on cognitive dysfunction after CEA. DESIGN A randomized prospective study. SETTING Single-center study in a university hospital. PARTICIPANTS Forty-four patients. INTERVENTIONS Patients underwent elective CEA under general anesthesia with either sevoflurane (group S, n = 21) or propofol (group P, n = 23). MEASUREMENTS AND MAIN RESULTS Cognitive function was assessed with the Mini-Mental State Examination (MMSE) before CEA, 1 hour after CEA, and 24 hours after CEA. Blood samples from the radial artery and the internal jugular vein were drawn before carotid clamping and 5 minutes following unclamping, and peripheral blood was obtained 24 hours postoperatively. Samples were analyzed for lactate, S100B, and P-selectin concentrations and for the antioxidative markers malondialdehyde/low-density lipoprotein ratio and nitrate + nitrite concentrations. Compared with group S, patients in group P exhibited a greater increase in their MMSE values 24 hours postoperatively. Patients who had their MMSE performance reduced at 24 hours also were significantly fewer in group P (13% v 43% in group S, p<0.05). Significantly lower levels of lactate and S100B were observed in arterial and jugular vein samples in group P. In addition, the jugular vein-arterial differences of malondialdehyde-to-low-density lipoprotein ratio and nitrates + nitrites concentrations were lower during propofol anesthesia. CONCLUSIONS Propofol seemed to improve cognitive performance after CEA. This improvement was associated with decreased indices of ischemic cerebral damage and seemed to be due to antioxidative effect in the ischemic cerebral circulation.
Collapse
Affiliation(s)
- Konstantinos Kalimeris
- Second Department of Anesthesiology, School of Medicine, University of Athens, "Attikon" Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Reali C, Pillai R, Saba F, Cabras S, Michetti F, Sogos V. S100B modulates growth factors and costimulatory molecules expression in cultured human astrocytes. J Neuroimmunol 2012; 243:95-9. [DOI: 10.1016/j.jneuroim.2011.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 11/24/2011] [Accepted: 11/25/2011] [Indexed: 12/18/2022]
|
20
|
Maarouf CL, Daugs ID, Kokjohn TA, Walker DG, Hunter JM, Kruchowsky JC, Woltjer R, Kaye J, Castaño EM, Sabbagh MN, Beach TG, Roher AE. Alzheimer's disease and non-demented high pathology control nonagenarians: comparing and contrasting the biochemistry of cognitively successful aging. PLoS One 2011; 6:e27291. [PMID: 22087282 PMCID: PMC3210154 DOI: 10.1371/journal.pone.0027291] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/13/2011] [Indexed: 12/13/2022] Open
Abstract
The amyloid cascade hypothesis provides an economical mechanistic explanation for Alzheimer's disease (AD) dementia and correlated neuropathology. However, some nonagenarian individuals (high pathology controls, HPC) remain cognitively intact while enduring high amyloid plaque loads for decades. If amyloid accumulation is the prime instigator of neurotoxicity and dementia, specific protective mechanisms must enable these HPC to evade cognitive decline. We evaluated the neuropathological and biochemical differences existing between non-demented (ND)-HPC and an age-matched cohort with AD dementia. The ND-HPC selected for our study were clinically assessed as ND and possessed high amyloid plaque burdens. ELISA and Western blot analyses were used to quantify a group of proteins related to APP/Aβ/tau metabolism and other neurotrophic and inflammation-related molecules that have been found to be altered in neurodegenerative disorders and are pivotal to brain homeostasis and mental health. The molecules assumed to be critical in AD dementia, such as soluble or insoluble Aβ40, Aβ42 and tau were quantified by ELISA. Interestingly, only Aβ42 demonstrated a significant increase in ND-HPC when compared to the AD group. The vascular amyloid load which was not used in the selection of cases, was on the average almost 2-fold greater in AD than the ND-HPC, suggesting that a higher degree of microvascular dysfunction and perfusion compromise was present in the demented cohort. Neurofibrillary tangles were less frequent in the frontal cortices of ND-HPC. Biochemical findings included elevated vascular endothelial growth factor, apolipoprotein E and the neuroprotective factor S100B in ND-HPC, while anti-angiogenic pigment epithelium derived factor levels were lower. The lack of clear Aβ-related pathological/biochemical demarcation between AD and ND-HPC suggests that in addition to amyloid plaques other factors, such as neurofibrillary tangle density and vascular integrity, must play important roles in cognitive failure.
Collapse
Affiliation(s)
- Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Ian D. Daugs
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Tyler A. Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
- Department of Microbiology, Midwestern University, Glendale, Arizona, United States of America
| | - Douglas G. Walker
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jesse M. Hunter
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jane C. Kruchowsky
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Randy Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jeffrey Kaye
- Layton Aging and Alzheimer's Disease Center, Department of Neurology, Oregon Health and Science University, United States of America
| | | | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| |
Collapse
|
21
|
Roltsch E, Holcomb L, Young KA, Marks A, Zimmer DB. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation 2010; 7:78. [PMID: 21080947 PMCID: PMC2996465 DOI: 10.1186/1742-2094-7-78] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/16/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Numerous studies have reported that increased expression of S100B, an intracellular Ca2+ receptor protein and secreted neuropeptide, exacerbates Alzheimer's disease (AD) pathology. However, the ability of S100B inhibitors to prevent/reverse AD histopathology remains controversial. This study examines the effect of S100B ablation on in vivo plaque load, gliosis and dystrophic neurons. METHODS Because S100B-specific inhibitors are not available, genetic ablation was used to inhibit S100B function in the PSAPP AD mouse model. The PSAPP/S100B-/- line was generated by crossing PSAPP double transgenic males with S100B-/- females and maintained as PSAPP/S100B+/- crosses. Congo red staining was used to quantify plaque load, plaque number and plaque size in 6 month old PSAPP and PSAPP/S100B-/- littermates. The microglial marker Iba1 and astrocytic marker glial fibrillary acidic protein (GFAP) were used to quantify gliosis. Dystrophic neurons were detected with the phospho-tau antibody AT8. S100B immunohistochemistry was used to assess the spatial distribution of S100B in the PSAPP line. RESULTS PSAPP/S100B-/- mice exhibited a regionally selective decrease in cortical but not hippocampal plaque load when compared to PSAPP littermates. This regionally selective reduction in plaque load was accompanied by decreases in plaque number, GFAP-positive astrocytes, Iba1-positive microglia and phospho-tau positive dystrophic neurons. These effects were not attributable to regional variability in the distribution of S100B. Hippocampal and cortical S100B immunoreactivity in PSAPP mice was associated with plaques and co-localized with astrocytes and microglia. CONCLUSIONS Collectively, these data support S100B inhibition as a novel strategy for reducing cortical plaque load, gliosis and neuronal dysfunction in AD and suggest that both extracellular as well as intracellular S100B contribute to AD histopathology.
Collapse
Affiliation(s)
- Emily Roltsch
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | | | | | | | | |
Collapse
|