1
|
Sun Y, Tang D, Li N, Wang Y, Yang M, Shen C. Development of a Rapid Epstein-Barr Virus Detection System Based on Recombinase Polymerase Amplification and a Lateral Flow Assay. Viruses 2024; 16:106. [PMID: 38257806 PMCID: PMC10818573 DOI: 10.3390/v16010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The quality of cellular products used in biological research can directly impact the ability to obtain accurate results. Epstein-Barr virus (EBV) is a latent virus that spreads extensively worldwide, and cell lines used in experiments may carry EBV and pose an infection risk. The presence of EBV in a single cell line can contaminate other cell lines used in the same laboratory, affecting experimental results. We developed three EBV detection systems: (1) a polymerase chain reaction (PCR)-based detection system, (2) a recombinase polymerase amplification (RPA)-based detection system, and (3) a combined RPA-lateral flow assay (LFA) detection system. The minimum EBV detection limits were 1 × 103 copy numbers for the RPA-based and RPA-LFA systems and 1 × 104 copy numbers for the PCR-based system. Both the PCR and RPA detection systems were applied to 192 cell lines, and the results were consistent with those obtained by the EBV assay methods specified in the pharmaceutical industry standards of the People's Republic of China. A total of 10 EBV-positive cell lines were identified. The combined RPA-LFA system is simple to operate, allowing for rapid result visualization. This system can be implemented in laboratories and cell banks as part of a daily quality control strategy to ensure cell quality and experimental safety and may represent a potential new technique for the rapid detection of EBV in clinical samples.
Collapse
Affiliation(s)
- Yidan Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China;
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Danni Tang
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Nan Li
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Yudong Wang
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Meimei Yang
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan 430072, China;
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| |
Collapse
|
2
|
St‐Denis‐Bissonnette F, Cummings SE, Qiu S, Stalker A, Muradia G, Mehic J, Mediratta K, Kaczmarek S, Burger D, Lee S, Wang L, Lavoie JR. A clinically relevant large-scale biomanufacturing workflow to produce natural killer cells and natural killer cell-derived extracellular vesicles for cancer immunotherapy. J Extracell Vesicles 2023; 12:e12387. [PMID: 38054534 PMCID: PMC10698709 DOI: 10.1002/jev2.12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023] Open
Abstract
Natural killer cell-derived extracellular vesicles (NK-EVs) have shown promising potential as biotherapeutics for cancer due to their unique attributes as cytotoxic nanovesicles against cancer cells and immune-modulatory activity towards immune cells. However, a biomanufacturing workflow is needed to produce clinical-grade NK-EVs for pre-clinical and clinical applications. This study established a novel biomanufacturing workflow using a closed-loop hollow-fibre bioreactor to continuously produce NK-EVs from the clinically relevant NK92-MI cell line under serum-free, Xeno-free and feeder-free conditions following GMP-compliant conditions. The NK92 cells grown in the bioreactor for three continuous production lots resulted in large quantities of both NK cell and NK-EV biotherapeutics at the end of each production lot (over 109 viable cells and 1013 EVs), while retaining their cytotoxic payload (granzyme B and perforin), pro-inflammatory cytokine (interferon-gamma) content and cytotoxicity against the human leukemic cell line K562 with limited off-target toxicity against healthy human fibroblast cells. This scalable biomanufacturing workflow has the potential to facilitate the clinical translation of adoptive NK cell-based and NK-EV-based immunotherapies for cancer with GMP considerations.
Collapse
Affiliation(s)
- Frederic St‐Denis‐Bissonnette
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaONCanada
| | - Sarah E. Cummings
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
| | - Shirley Qiu
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
| | - Andrew Stalker
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
| | - Gauri Muradia
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
| | - Jelica Mehic
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
| | - Karan Mediratta
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaONCanada
- Ottawa Institute of Systems BiologyUniversity of OttawaOttawaONCanada
| | - Shelby Kaczmarek
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaONCanada
| | - Dylan Burger
- Kidney Research CentreOttawa Hospital Research InstituteOttawaONCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONCanada
| | - Seung‐Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaONCanada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for Infection, Immunity and InflammationUniversity of OttawaOttawaONCanada
- Ottawa Institute of Systems BiologyUniversity of OttawaOttawaONCanada
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaONCanada
| | - Jessie R. Lavoie
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food Branch, Health CanadaOttawaONCanada
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaONCanada
| |
Collapse
|
3
|
Klaihmon P, Kang X, Issaragrisil S, Luanpitpong S. Generation and Functional Characterization of Anti-CD19 Chimeric Antigen Receptor-Natural Killer Cells from Human Induced Pluripotent Stem Cells. Int J Mol Sci 2023; 24:10508. [PMID: 37445684 DOI: 10.3390/ijms241310508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Natural killer (NK) cells are a part of innate immunity that can be activated rapidly in response to malignant transformed cells without prior sensitization. Engineering NK cells to express chimeric antigen receptors (CARs) allows them to be directed against corresponding target tumor antigens. CAR-NK cells are regarded as a promising candidate for cellular immunotherapy alternatives to conventional CAR-T cells, due to the relatively low risk of graft-versus-host disease and safer clinical profile. Human induced pluripotent stem cells (iPSCs) are a promising renewable cell source of clinical NK cells. In the present study, we successfully introduced a third-generation CAR targeting CD19, which was validated to have effective signaling domains suitable for NK cells, into umbilical cord blood NK-derived iPSCs, followed by a single-cell clone selection and thorough iPSC characterization. The established single-cell clone of CAR19-NK/iPSCs, which is highly desirable for clinical application, can be differentiated using serum- and feeder-free protocols into functional CAR19-iNK-like cells with improved anti-tumor activity against CD19-positive hematologic cancer cells when compared with wild-type (WT)-iNK-like cells. With the feasibility of being an alternative source for off-the-shelf CAR-NK cells, a library of single-cell clones of CAR-engineered NK/iPSCs targeting different tumor antigens may be created for future clinical application.
Collapse
Affiliation(s)
- Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Xing Kang
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- BDMS Center of Excellence for Hematology, Wattanosoth Cancer Hospital, Bangkok 10310, Thailand
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
4
|
Selective Cytotoxicity of Single and Dual Anti-CD19 and Anti-CD138 Chimeric Antigen Receptor-Natural Killer Cells against Hematologic Malignancies. J Immunol Res 2021; 2021:5562630. [PMID: 34337077 PMCID: PMC8289607 DOI: 10.1155/2021/5562630] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/25/2021] [Indexed: 12/03/2022] Open
Abstract
Natural killer (NK) cells are part of the first line of defense that rapidly respond to malignant transformed cells. Chimeric antigen receptor- (CAR-) engineered NK cells, although are still at the preliminary stage, have been shown to be alternative to CAR-T cells, mainly due to the absence of graft-versus-host disease and safer clinical profile. Allogeneic human NK cell line NK-92 cells, equipped by CAR, are being developed for clinical applications. Herein, we designed third-generation CARs, optimized the production protocol, and generated CAR-NK-92 cells, targeting CD19 and/or CD138 antigens that employ CD28, 4-1BB, and CD3ζ signaling, with >80% CAR expression, designated as CD19-NK-92, CD138-NK-92, and dual-NK-92 cells. The generated CAR-NK-92 cells displayed high and selective cytotoxicity toward various corresponding leukemia, lymphoma, and multiple myeloma cell lines in vitro. Multitargeting approach using a mixture of CD19-NK-92 and CD138-NK-92 cells was also evaluated at various ratios to test the idea of personalized formulation to match the patients' antigen expression profile. Our data indicate that increasing the ratio of CD19-NK-92 to CD138-NK-92 could improve NK cytotoxicity in leukemia cells with a relatively higher expression of CD19 over CD138, supporting the personalized proof of concept. This information represents the basis for further in vivo studies and future progress to clinical trials.
Collapse
|
5
|
Golden RJ, Fesnak AD. Clinical development of natural killer cells expressing chimeric antigen receptors. Transfus Apher Sci 2021; 60:103065. [PMID: 33468407 PMCID: PMC10029926 DOI: 10.1016/j.transci.2021.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both natural killer (NK) cells and T cells demonstrate potent antitumor responses in many settings. NK cells, unlike T cells, are not the primary mediators of graft-versus-host disease (GVHD). Redirection of T cells with chimeric antigen receptors (CAR) has helped to overcome tumor escape from endogenous T cells. NK cells expressing CARs are a promising new therapy to treat malignancy. Clinical biomanufacturing of CAR NK cells can begin with NK cells derived from many different sources including adult peripheral blood-derived NK cells, cord blood-derived NK cells, cell line-derived NK cells, or stem cell-derived NK cells. Manufacturing protocols may include isolation of NK cells, activation, expansion, and genetic modification to express the chimeric antigen receptors. Clinical trials have tested both unmodified and CAR NK cells with encouraging results. The next stage in clinical development of CAR NK cells represents a highly exciting new frontier in clinical cell therapy as well as understanding basic NK cell biology. The purpose of this review is to provide the reader with a fundamental understanding of the core concepts in CAR NK cell manufacturing, specifically highlighting differences between CAR T cell manufacturing and focusing on future directions in the field.
Collapse
Affiliation(s)
- Ryan J Golden
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Andrew D Fesnak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Chen X, Li D. Sequencing facility and DNA source associated patterns of virus-mappable reads in whole-genome sequencing data. Genomics 2021; 113:1189-1198. [PMID: 33301893 PMCID: PMC7856238 DOI: 10.1016/j.ygeno.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Numerous viral sequences have been reported in the whole-genome sequencing (WGS) data of human blood. However, it is not clear to what degree the virus-mappable reads represent true viral sequences rather than random-mapping or noise originating from sample preparation, sequencing processes, or other sources. Identification of patterns of virus-mappable reads may generate novel indicators for evaluating the origins of these viral sequences. We characterized paired-end unmapped reads and reads aligned to viral references in human WGS datasets, then compared patterns of the virus-mappable reads among DNA sources and sequencing facilities which produced these datasets. We then examined potential origins of the source- and facility-associated viral reads. The proportions of clean unmapped reads among the seven sequencing facilities were significantly different (P < 2 × 10-16). We identified 260,339 reads that were mappable to a total of 99 viral references in 2535 samples. The majority (86.7%) of these virus-mappable reads (corresponding to 47 viral references), which can be classified into four groups based on their distinct patterns, were strongly associated with sequencing facility or DNA source (adjusted P value <0.01). Possible origins of these reads include artificial sequences in library preparation, recombinant vectors in cell culture, and phages co-contaminated with their host bacteria. The sequencing facility-associated virus-mappable reads and patterns were repeatedly observed in other datasets produced in the same facilities. We have constructed an analytic framework and profiled the unmapped reads mappable to viral references. The results provide a new understanding of sequencing facility- and DNA source-associated batch effects in deep sequencing data and may facilitate improved bioinformatics filtering of reads.
Collapse
Affiliation(s)
- Xun Chen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; Department of Computer Science, University of Vermont, Burlington, VT 05405, USA; Neuroscience, Behavior, Health Initiative, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
7
|
Loiseau V, Cordaux R, Giraud I, Beby-Defaux A, Lévêque N, Gilbert C. Characterization of a new case of XMLV (Bxv1) contamination in the human cell line Hep2 (clone 2B). Sci Rep 2020; 10:16046. [PMID: 32994520 PMCID: PMC7524804 DOI: 10.1038/s41598-020-73169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
The use of misidentified cell lines contaminated by other cell lines and/or microorganisms has generated much confusion in the scientific literature. Detailed characterization of such contaminations is therefore crucial to avoid misinterpretation and ensure robustness and reproducibility of research. Here we use DNA-seq data produced in our lab to first confirm that the Hep2 (clone 2B) cell line (Sigma-Aldrich catalog number: 85011412-1VL) is indistinguishable from the HeLa cell line by mapping integrations of the human papillomavirus 18 (HPV18) at their expected loci on chromosome 8. We then show that the cell line is also contaminated by a xenotropic murine leukemia virus (XMLV) that is nearly identical to the mouse Bxv1 provirus and we characterize one Bxv1 provirus, located in the second intron of the pseudouridylate synthase 1 (PUS1) gene. Using an RNA-seq dataset, we confirm the high expression of the E6 and E7 HPV18 oncogenes, show that the entire Bxv1 genome is moderately expressed, and retrieve a Bxv1 splicing event favouring expression of the env gene. Hep2 (clone 2B) is the fourth human cell line so far known to be contaminated by the Bxv1 XMLV. This contamination has to be taken into account when using the cell line in future experiments.
Collapse
Affiliation(s)
- Vincent Loiseau
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Richard Cordaux
- Université de Poitiers, CNRS UMR 7267 Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Isabelle Giraud
- Université de Poitiers, CNRS UMR 7267 Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Agnès Beby-Defaux
- Laboratoire de Virologie et de Mycobactériologie, CHU de Poitiers, Poitiers, France.,Unité de Microbiologie Moléculaire et Séquençage, CHU de Poitiers, Poitiers, France
| | - Nicolas Lévêque
- Laboratoire de Virologie et de Mycobactériologie, CHU de Poitiers, Poitiers, France.,EA4331-LITEC, Université de Poitiers, Poitiers, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Mansour NM, Balas EA, Yang FM, Vernon MM. Prevalence and Prevention of Reproducibility Deficiencies in Life Sciences Research: Large-Scale Meta-Analyses. Med Sci Monit 2020; 26:e922016. [PMID: 32960878 PMCID: PMC7519945 DOI: 10.12659/msm.922016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/18/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Studies have found that many published life sciences research results are irreproducible. Our goal was to provide comprehensive risk estimates of familiar reproducibility deficiencies to support quality improvement in research. MATERIAL AND METHODS Reports included were peer-reviewed, published between 1980 and 2016, and presented frequency data of basic biomedical research deficiencies. Manual and electronic literature searches were performed in seven bibliographic databases. For deficiency concepts with at least four frequency studies and with a sample size of at least 15 units in each, a meta-analysis was performed. RESULTS Overall, 68 publications met our inclusion criteria. The study identified several major groups of research quality defects: study design, cell lines, statistical analysis, and reporting. In the study design group of 3 deficiencies, missing power calculation was the most frequent (82.3% [95% Confidence Interval (CI): 69.9-94.6]). Among the 6 cell line deficiencies, mixed contamination was the most frequent (22.4% [95% CI: 10.4-34.3]). Among the 3 statistical analysis deficiencies, the use of chi-square test when expected cells frequency was <5 was the most prevalent (15.7% [95% CI: -3.2-34.7]). In the reporting group of 12 deficiencies, failure to state the number of tails was the most frequent (65% [95% CI: 39.3-90.8]). CONCLUSIONS The results of this study could serve as a general reference when consistently measurable sources of deficiencies need to be identified in research quality improvement.
Collapse
Affiliation(s)
- Nadine M. Mansour
- Biomedical Research Innovation Laboratory, Augusta University, Augusta, GA, U.S.A
- Department of Public Health, Cairo University, Cairo, Egypt
| | - E. Andrew Balas
- Biomedical Research Innovation Laboratory, Augusta University, Augusta, GA, U.S.A
| | | | - Marlo M. Vernon
- Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| |
Collapse
|
9
|
Drexler HG, Quentmeier H. The LL-100 Cell Lines Panel: Tool for Molecular Leukemia-Lymphoma Research. Int J Mol Sci 2020; 21:ijms21165800. [PMID: 32823535 PMCID: PMC7461097 DOI: 10.3390/ijms21165800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Certified cell line models provide ideal experimental platforms to answer countless scientific questions. The LL-100 panel is a cohort of cell lines that are broadly representative of all leukemia–lymphoma entities (including multiple myeloma and related diseases), rigorously authenticated and validated, and comprehensively annotated. The process of the assembly of the LL-100 panel was based on evidence and experience. To expand the genetic characterization across all LL-100 cell lines, we performed whole-exome sequencing and RNA sequencing. Here, we describe the conception of the panel and showcase some exemplary applications with a focus on cancer genomics. Due diligence was paid to exclude cross-contaminated and non-representative cell lines. As the LL-100 cell lines are so well characterized and readily available, the panel will be a valuable resource for identifying cell lines with mutations in cancer genes, providing superior model systems. The data also add to the current knowledge of the molecular pathogenesis of leukemia–lymphoma. Additional efforts to expand the breadth of available high-quality cell lines are clearly warranted.
Collapse
Affiliation(s)
- Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
- Faculty of Life Sciences, Technical University of Braunschweig, 38124 Braunschweig, Germany
- Correspondence:
| | - Hilmar Quentmeier
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
| |
Collapse
|
10
|
|
11
|
Garcin EB, Gon S, Sullivan MR, Brunette GJ, Cian AD, Concordet JP, Giovannangeli C, Dirks WG, Eberth S, Bernstein KA, Prakash R, Jasin M, Modesti M. Differential Requirements for the RAD51 Paralogs in Genome Repair and Maintenance in Human Cells. PLoS Genet 2019; 15:e1008355. [PMID: 31584931 PMCID: PMC6795472 DOI: 10.1371/journal.pgen.1008355] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/16/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells. Underlining their importance for genomic stability, mutant cell lines display variable growth defects, impaired sister chromatid recombination, reduced levels of stable RAD51 nuclear foci, and hyper-sensitivity to mitomycin C and olaparib, with the weakest phenotypes observed in RAD51B-deficient cells. Altogether these observations underscore the contributions of RAD51 paralogs in diverse DNA repair processes, and demonstrate essential differences in different cell types. Finally, this study will provide useful reagents to analyze patient-derived mutations and to investigate mechanisms of chemotherapeutic resistance deployed by cancers.
Collapse
Affiliation(s)
- Edwige B. Garcin
- Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France
| | - Stéphanie Gon
- Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France
| | - Meghan R. Sullivan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Gregory J. Brunette
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Anne De Cian
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Jean-Paul Concordet
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Carine Giovannangeli
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Wilhelm G. Dirks
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German, Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sonja Eberth
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German, Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kara A. Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Mauro Modesti
- Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France
| |
Collapse
|
12
|
Cancer Cell Lines Are Useful Model Systems for Medical Research. Cancers (Basel) 2019; 11:cancers11081098. [PMID: 31374935 PMCID: PMC6721418 DOI: 10.3390/cancers11081098] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Cell lines are in vitro model systems that are widely used in different fields of medical research, especially basic cancer research and drug discovery. Their usefulness is primarily linked to their ability to provide an indefinite source of biological material for experimental purposes. Under the right conditions and with appropriate controls, authenticated cancer cell lines retain most of the genetic properties of the cancer of origin. During the last few years, comparing genomic data of most cancer cell lines has corroborated this statement and those that were observed studying the tumoral tissue equivalents included in the The Cancer Genome Atlas (TCGA) database. We are at the disposal of comprehensive open access cell line datasets describing their molecular and cellular alterations at an unprecedented level of accuracy. This aspect, in association with the possibility of setting up accurate culture conditions that mimic the in vivo microenvironment (e.g., three-dimensional (3D) coculture), has strengthened the importance of cancer cell lines for continuing to sustain medical research fields. However, it is important to consider that the appropriate use of cell lines needs to follow established guidelines for guaranteed data reproducibility and quality, and to prevent the occurrence of detrimental events (i.e., those that are linked to cross-contamination and mycoplasma contamination).
Collapse
|
13
|
Epstein-Barr virus (EBV) activates NKL homeobox gene HLX in DLBCL. PLoS One 2019; 14:e0216898. [PMID: 31141539 PMCID: PMC6541347 DOI: 10.1371/journal.pone.0216898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
NKL homeobox genes encode developmental transcription factors regulating basic processes in cell differentiation. According to their physiological expression pattern in early hematopoiesis and lymphopoiesis, particular members of this homeobox gene subclass constitute an NKL-code. B-cell specific NKL-code genes generate a regulatory network and their deregulation is implicated in B-cell lymphomagenesis. Epstein-Barr virus (EBV) infects B-cells and influences the activity of signalling pathways including JAK/STAT and several genes encoding developmental regulators. Therefore, EBV-infection impacts the pathogenesis and the outcome of B-cell malignancies including Hodgkin lymphoma and diffuse large B-cell lymphoma (DLBCL). Here, we isolated EBV-positive and EBV-negative subclones from the DLBCL derived cell line DOHH-2. These subclones served as models to investigate the role of EBV in deregulation of the B-cell specific NKL-code members HHEX, HLX, MSX1 and NKX6-3. We showed that the EBV-encoded factors LMP1 and LMP2A activated the expression of HLX via STAT3. HLX in turn repressed NKX6-3, SPIB and IL4R which normally mediate plasma cell differentiation. In addition, HLX repressed the pro-apoptotic factor BCL2L11/BIM and hence supported cell survival. Thus, EBV aberrantly activated HLX in DLBCL, thereby disturbing both B-cell differentiation and apoptosis. The results of our study appreciate the pathogenic role of EBV in NKL homeobox gene deregulation and B-cell malignancies.
Collapse
|
14
|
Yang HG, Kang MC, Kim TY, Hwang I, Jin HT, Sung YC, Eom KS, Kim SW. Discovery of a novel natural killer cell line with distinct immunostimulatory and proliferative potential as an alternative platform for cancer immunotherapy. J Immunother Cancer 2019; 7:138. [PMID: 31126350 PMCID: PMC6534912 DOI: 10.1186/s40425-019-0612-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human natural killer (NK) cell lines serve as an attractive source for adoptive immunotherapy, but NK-92 remains the only cell line being assessed in the clinic. Here, we established a novel NK cell line, NK101, from a patient with extra-nodal natural killer/T-cell lymphoma and examined its phenotypic, genomic and functional characteristics. METHODS Single cell suspensions from lymphoma tissue were expanded with anti-NKp46/anti-CD2-coated beads in the presence of IL-2. A continuously growing CD56+ cell clone was selected and designated as NK101. Flow cytometry and RNA sequencing were used to characterize phenotypic and genomic features of NK101. In vitro cytotoxicity and IFN-γ/TNF-α secretion were measured by flow cytometry-based cytotoxicity assay and enzyme-linked immunosorbent assay, respectively, after direct co-culture with tumor cells. Immunomodulatory potential of NK101 was assessed in an indirect co-culture system using conditioned medium. Finally, in vivo antitumor efficacy was evaluated in an immunocompetent, syngeneic 4T1 mammary tumor model. RESULTS NK101 displayed features of CD56dimCD62L+ intermediate stage NK subset with the potential to simultaneously act as a cytokine producer and a cytotoxic effector. Comparative analysis of NK101 and NK-92 revealed that NK101 expressed lower levels of perforin and granzyme B that correlated with weaker cytotoxicity, but produced higher levels of pro-inflammatory cytokines including IFN-γ and TNF-α. Contrarily, NK-92 produced greater amounts of anti-inflammatory cytokines, IL-1 receptor antagonist and IL-10. Genome-wide analysis revealed that genes associated with positive regulation of leukocyte proliferation were overexpressed in NK101, while those with opposite function were highly enriched in NK-92. The consequence of such expressional and functional discrepancies was well-represented in (i) indirect co-culture system where conditioned medium derived from NK101 induced greater proliferation of human peripheral blood mononuclear cells and (ii) immunocompetent 4T1 tumor model where peritumoral injections of NK101 displayed stronger anti-tumor activities by inducing higher tumor-specific immune responses. In a manufacturing context, NK101 not only required shorter recovery time after thawing, but also exhibited faster growth profile than NK-92, yielding more than 200-fold higher cell numbers after 20-day culture. CONCLUSION NK101 is a unique NK cell line bearing strong immunostimulatory potential and substantial scalability, providing an attractive source for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
- Hyun Gul Yang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Moon Cheol Kang
- SL-BIGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Tae Yoon Kim
- SL-BIGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Injung Hwang
- SL-BIGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Hyun Tak Jin
- SL-BIGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Young Chul Sung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Ki-Seong Eom
- Division of Hematology, Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
| | - Sae Won Kim
- SL-BIGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
15
|
Uphoff CC, Pommerenke C, Denkmann SA, Drexler HG. Screening human cell lines for viral infections applying RNA-Seq data analysis. PLoS One 2019; 14:e0210404. [PMID: 30629668 PMCID: PMC6328144 DOI: 10.1371/journal.pone.0210404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023] Open
Abstract
Monitoring viral infections of cell cultures is largely neglected although the viruses may have an impact on the physiology of cells and may constitute a biohazard regarding laboratory safety and safety of bioactive agents produced by cell cultures. PCR, immunological assays, and enzyme activity tests represent common methods to detect virus infections. We have screened more than 300 Cancer Cell Line Encyclopedia RNA sequencing and 60 whole exome sequencing human cell lines data sets for specific viral sequences and general viral nucleotide and protein sequence assessment applying the Taxonomer bioinformatics tool developed by IDbyDNA. The results were compared with our previous findings from virus specific PCR analyses. Both, the results obtained from the direct alignment method and the Taxonomer alignment method revealed a complete concordance with the PCR results: twenty cell lines were found to be infected with five virus species. Taxonomer further uncovered a bovine polyomavirus infection in the breast cancer cell line SK-BR-3 most likely introduced by contaminated fetal bovine serum. RNA-Seq data sets were more sensitive for virus detection although a significant proportion of cell lines revealed low numbers of virus specific alignments attributable to low level nucleotide contamination during RNA preparation or sequencing procedure. Low quality reads leading to Taxonomer false positive results can be eliminated by trimming the sequence data before analysis. One further important result is that no viruses were detected that had never been shown to occur in cell cultures. The results prove that the currently applied testing of cell cultures is adequate for the detection of contamination and for the risk assessment of cell cultures. The results emphasize that next generation sequencing is an efficient tool to determine the viral infection status of human cells.
Collapse
Affiliation(s)
- Cord C. Uphoff
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine A. Denkmann
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
16
|
Tudrej P, Olbryt M, Zembala-Nożyńska E, Kujawa KA, Cortez AJ, Fiszer-Kierzkowska A, Pigłowski W, Nikiel B, Głowala-Kosińska M, Bartkowska-Chrobok A, Smagur A, Fidyk W, Lisowska KM. Establishment and Characterization of the Novel High-Grade Serous Ovarian Cancer Cell Line OVPA8. Int J Mol Sci 2018; 19:E2080. [PMID: 30018258 PMCID: PMC6073376 DOI: 10.3390/ijms19072080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most frequent histological type of ovarian cancer and the one with worst prognosis. Unfortunately, the majority of established ovarian cancer cell lines which are used in the research have unclear histological origin and probably do not represent HGSOC. Thus, new and reliable models of HGSOC are needed. Ascitic fluid from a patient with recurrent HGSOC was used to establish a stable cancer cell line. Cells were characterized by cytogenetic karyotyping and short tandem repeat (STR) profiling. New generation sequencing was applied to test for hot-spot mutations in 50 cancer-associated genes and fluorescence in situ hybridization (FISH) analysis was used to check for TP53 status. Cells were analyzed for expression of several marker genes/proteins by reverse-transcription polymerase chain reaction (RT-PCR), fluorescence-activated cell sorting (FACS), and immunocytochemistry (ICC). Functional tests were performed to compare OVPA8 cells with five commercially available and frequently used ovarian cancer cell lines: SKOV3, A2780, OVCAR3, ES2, and OAW42. Our newly-established OVPA8 cell line shows morphologic and genetic features consistent with HGSOC, such as epithelial morphology, multiple chromosomal aberrations, TP53 mutation, BRCA1 mutation, and loss of one copy of BRCA2. The OVPA8 line has a stable STR profile. Cells are positive for EpCAM, CK19, and CD44; they have relatively low plating efficiency/ability to form spheroids, a low migration rate, and intermediate invasiveness in matrigel, as compared to other ovarian cancer lines. OVPA8 is sensitive to paclitaxel and resistant to cisplatin. We also tested two FGFR inhibitors; OVPA8 cells were resistant to AZD4547 (AstraZeneca, London, UK), but sensitive to the new inhibitor CPL304-110-01 (Celon Pharma, Łomianki/Kiełpin, Poland). We have established and characterized a novel cell line, OVPA8, which can be a valuable preclinical model for studies on high-grade serous ovarian cancer.
Collapse
Affiliation(s)
- Patrycja Tudrej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowskaj-Curie Institute-Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowskaj-Curie Institute-Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Ewa Zembala-Nożyńska
- Thumor Pathology Department, Maria Skłodowskaj-Curie Institute-Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Katarzyna A Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowskaj-Curie Institute-Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Alexander J Cortez
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowskaj-Curie Institute-Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Anna Fiszer-Kierzkowska
- Molecular Diagnostics Laboratory, Maria Skłodowskaj-Curie Institute-Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Wojciech Pigłowski
- Molecular Diagnostics Laboratory, Maria Skłodowskaj-Curie Institute-Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Barbara Nikiel
- Thumor Pathology Department, Maria Skłodowskaj-Curie Institute-Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Magdalena Głowala-Kosińska
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Skłodowskaj-Curie Institute-Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Aleksandra Bartkowska-Chrobok
- Department of Hematology and Bone Marrow Transplantation, Andrzej Mielęcki Independent Public Hospital, ul. Dąbrowskiego 25, 40-032 Katowice, Poland.
| | - Andrzej Smagur
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Skłodowskaj-Curie Institute-Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Wojciech Fidyk
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Skłodowskaj-Curie Institute-Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Katarzyna M Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowskaj-Curie Institute-Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| |
Collapse
|
17
|
Weger-Lucarelli J, Rückert C, Grubaugh ND, Misencik MJ, Armstrong PM, Stenglein MD, Ebel GD, Brackney DE. Adventitious viruses persistently infect three commonly used mosquito cell lines. Virology 2018; 521:175-180. [PMID: 29957338 DOI: 10.1016/j.virol.2018.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/26/2022]
Abstract
Mosquito cell lines have been used extensively in research to isolate and propagate arthropod-borne viruses and understand virus-vector interactions. Despite their utility as an in vitro tool, these cell lines are poorly defined and may harbor insect-specific viruses. Accordingly, we screened four commonly-used mosquito cell lines, C6/36 and U4.4 cells from Aedes albopictus, Aag2 cells from Aedes aegypti, and Hsu cells from Culex quinquefasciatus, for the presence of adventitious (i.e. exogenous) viruses. All four cell lines stained positive for double-stranded RNA, indicative of RNA virus replication. We subsequently identified viruses infecting Aag2, U4.4 and Hsu cell lines using untargeted next-generation sequencing, but not C6/36 cells. PCR confirmation revealed that these sequences stem from active viral replication and/or integration into the cellular genome. Our results show that these commonly-used mosquito cell lines are persistently-infected with several viruses. This finding may be critical to interpreting data generated in these systems.
Collapse
Affiliation(s)
- James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Claudia Rückert
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Nathan D Grubaugh
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael J Misencik
- The Connecticut Agricultural Experiment Station, Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Philip M Armstrong
- The Connecticut Agricultural Experiment Station, Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Doug E Brackney
- The Connecticut Agricultural Experiment Station, Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA.
| |
Collapse
|
18
|
Shioda S, Kasai F, Watanabe K, Kawakami K, Ohtani A, Iemura M, Ozawa M, Arakawa A, Hirayama N, Kawaguchi E, Tano T, Miyata S, Satoh M, Shimizu N, Kohara A. Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: characterization of in vitro human cells by viral infection. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172472. [PMID: 29892436 PMCID: PMC5990783 DOI: 10.1098/rsos.172472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
Human cell lines have been used in a variety of research fields as an in vitro model. These cells are all derived from human tissue samples, thus there is a possibility of virus infection. Virus tests are routinely performed in clinical practice, but are limited in cell lines. In this study, we investigated 15 kinds of viruses in 844 human cell lines registered at the Japanese Collection of Research Bioresources (JCRB) Cell Bank. Our real-time PCR analysis revealed that six viruses, EBV, HTLV-1, HBV, B19V, HHV-6 and HHV-7, were detected in 43 cell lines. Of them, 20 cell lines were transformed by intentional infection in vitro with EBV or HTLV-1. Viruses in the other 23 cell lines and one EBV transformed cell line are derived from an in vivo infection, including five de novo identifications of EBV, B19V or HHV-7 carriers. Among them, 17 cell lines were established from patients diagnosed with virus-associated diseases. However, the other seven cell lines originated from in vivo cells unrelated to disease or cellular tropism. Our approach to screen for a set of 15 viruses in each cell line has worked efficiently to identify these rare cases. Virus tests in cell lines contribute not only to safety assessments but also to investigation of in vivo viral infection which can be a characteristic feature of cell lines.
Collapse
Affiliation(s)
- Setsuko Shioda
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Fumio Kasai
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Author for correspondence: Fumio Kasai e-mail:
| | - Ken Watanabe
- Department of Virology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Kawakami
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Azusa Ohtani
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masashi Iemura
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Midori Ozawa
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Akemi Arakawa
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Noriko Hirayama
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Eiko Kawaguchi
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tomoko Tano
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Sayaka Miyata
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Motonobu Satoh
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Norio Shimizu
- Department of Virology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arihiro Kohara
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
19
|
Engineering Natural Killer Cells for Cancer Immunotherapy. Mol Ther 2017; 25:1769-1781. [PMID: 28668320 PMCID: PMC5542803 DOI: 10.1016/j.ymthe.2017.06.012] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 01/21/2023] Open
Abstract
The past several years have seen tremendous advances in the engineering of immune effector cells as therapy for cancer. While chimeric antigen receptors (CARs) have been used extensively to redirect the specificity of autologous T cells against hematological malignancies with striking clinical results, studies of CAR-modified natural killer (NK) cells have been largely preclinical. In this review, we focus on recent advances in NK cell engineering, particularly on preclinical evidence suggesting that NK cells may be as effective as T cells in recognizing and killing targets after genetic modification. We will discuss strategies to introduce CARs into both primary NK cells and NK cell lines in an effort to provide antigen specificity, the challenges of manufacturing engineered NK cells, and evidence supporting the effectiveness of this approach from preclinical and early-phase clinical studies using CAR-engineered NK cells. CAR-NK cells hold great promise as a novel cellular immunotherapy against refractory malignancies. Notably, NK cells can provide an "off-the-shelf" product, eliminating the need for a personalized and patient-specific product that plagues current CAR-T cell therapies. The ability to more potently direct NK cell-mediated cytotoxicity against refractory tumors through the expression of CAR is likely to contribute to the recent paradigm shift in cancer treatment.
Collapse
|
20
|
Bakri FG, Al-Abdallat IM, Ababneh N, Al Ali R, Idhair AKF, Mahafzah A. Prevalence of blood-borne viral infections among autopsy cases in Jordan. Qatar Med J 2017; 2016:14. [PMID: 28534006 PMCID: PMC5427512 DOI: 10.5339/qmj.2016.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 10/27/2016] [Indexed: 11/03/2022] Open
Abstract
Background: Morgues are high risk areas for the spread of infection from cadavers to staff during the post-mortem examination. Infection can spread from corpses to workers by airborne transmission, by direct contact, or through needle and sharp object injuries. Objective: Knowledge about the prevalence of these infections on autopsy is essential to determine the risk of transmission and to further enforce safety measures. Methods: This is a descriptive study. All autopsies performed in the Department of Forensic Medicine at Jordan University Hospital during the study period were tested for the serology of human immunodeficiency, hepatitis B and C viruses. Positive tests were confirmed by nucleic acid testing. Results: A total of 242 autopsies were tested. Age ranged from 3 days to 94 years (median 75.5 years, mean 45.3 years (21.9 ± SD)). There were 172 (71%) males. The cause of death was considered natural in 137 (56.6%) cases, accidental in 89 (36.8%), homicide in nine (3.7%), suicide in four (1.7%), and unknown in three (1.2%) cases. Hepatitis B surface antigen was positive in five (2.1%) cases. Hepatitis C virus antibody was positive in five (2.1%) cases and the hepatitis C virus polymerase chain reaction was positive in two (0.8%) cases. HIV antibody was not detected in any of the cases. The infection status of cases was not associated with age, sex, nationality, or cause of death. Conclusion: The study findings indicated that there is a low prevalence of virus-infected autopsies in Jordan. However, the risk of transmission remains a potential threat and therefore the necessary precautions should always be taken during autopsy.
Collapse
Affiliation(s)
- Faris G Bakri
- Infectious Diseases and Vaccine Center, Department of Medicine - Division of Infectious Diseases, Jordan University Hospital, University of Jordan, Amman, Jordan
| | - Imad M Al-Abdallat
- Department of Forensic Medicine, Jordan University Hospital, University of Jordan, Amman, Jordan
| | - Nidaa Ababneh
- Department of Laboratory Medicine, Jordan University Hospital, University of Jordan, Amman, Jordan
| | - Rayyan Al Ali
- Department of Laboratory Medicine, Jordan University Hospital, University of Jordan, Amman, Jordan
| | - Ahmed K F Idhair
- Department of Forensic Medicine, Jordan University Hospital, University of Jordan, Amman, Jordan
| | - Azmi Mahafzah
- An-Najah Forensic Medicine Institute and The National Institute of Forensic Medicine, Ministry of Justice, Nablus, Palestine
| |
Collapse
|
21
|
Lewis SD, Hickman-Davis JM, Bergdall VK. Institutional Animal Care and Use Committee Considerations Regarding the Use of Virus-Induced Carcinogenesis and Oncolytic Viral Models. ILAR J 2016; 57:86-94. [PMID: 27034398 DOI: 10.1093/ilar/ilv046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of virus-induced carcinogenesis and oncologic experimental animal models is essential in understanding the mechanisms of cancer development to advance prevention, diagnosis, and treatment methods. The Institutional Animal Care and Use Committee (IACUC) is responsible for both the complex philosophical and practical considerations associated with animal models of cancer. Animal models of cancer carry their own unique issues that require special consideration from the IACUC. Many of the considerations to be discussed apply to cancer models in general; specific issues related to viral carcinogenesis or oncolytic viruses will be specifically discussed as they arise. Responsible animal use integrates good science, humane care, and regulatory compliance. To meet those standards, the IACUC, in conjunction with the research investigator and attending veterinarian, must address a wide range of issues, including animal model selection, cancer model selection, humane end point considerations, experimental considerations, postapproval monitoring, reporting requirements, and animal management and personnel safety considerations.
Collapse
Affiliation(s)
- Stephanie D Lewis
- Stephanie D. Lewis, DVM, MS, DACLAM, is an associate professor and clinical veterinarian for University Laboratory Animal Resources at The Ohio State University in Columbus, Ohio. Judy M. Hickman-Davis, DVM, PhD, DACLAM, is a professor and clinical veterinarian for University Laboratory Animal Resources at The Ohio State University in Columbus, Ohio. Valerie K. Bergdall, DVM, DACLAM, is a professor and Director of University Laboratory Animal Resources and attending veterinarian at The Ohio State University in Columbus, Ohio
| | - Judy M Hickman-Davis
- Stephanie D. Lewis, DVM, MS, DACLAM, is an associate professor and clinical veterinarian for University Laboratory Animal Resources at The Ohio State University in Columbus, Ohio. Judy M. Hickman-Davis, DVM, PhD, DACLAM, is a professor and clinical veterinarian for University Laboratory Animal Resources at The Ohio State University in Columbus, Ohio. Valerie K. Bergdall, DVM, DACLAM, is a professor and Director of University Laboratory Animal Resources and attending veterinarian at The Ohio State University in Columbus, Ohio
| | - Valerie K Bergdall
- Stephanie D. Lewis, DVM, MS, DACLAM, is an associate professor and clinical veterinarian for University Laboratory Animal Resources at The Ohio State University in Columbus, Ohio. Judy M. Hickman-Davis, DVM, PhD, DACLAM, is a professor and clinical veterinarian for University Laboratory Animal Resources at The Ohio State University in Columbus, Ohio. Valerie K. Bergdall, DVM, DACLAM, is a professor and Director of University Laboratory Animal Resources and attending veterinarian at The Ohio State University in Columbus, Ohio
| |
Collapse
|
22
|
Using Small RNA Deep Sequencing Data to Detect Human Viruses. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2596782. [PMID: 27066498 PMCID: PMC4811048 DOI: 10.1155/2016/2596782] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/13/2016] [Accepted: 02/03/2016] [Indexed: 01/08/2023]
Abstract
Small RNA sequencing (sRNA-seq) can be used to detect viruses in infected hosts without the necessity to have any prior knowledge or specialized sample preparation. The sRNA-seq method was initially used for viral detection and identification in plants and then in invertebrates and fungi. However, it is still controversial to use sRNA-seq in the detection of mammalian or human viruses. In this study, we used 931 sRNA-seq runs of data from the NCBI SRA database to detect and identify viruses in human cells or tissues, particularly from some clinical samples. Six viruses including HPV-18, HBV, HCV, HIV-1, SMRV, and EBV were detected from 36 runs of data. Four viruses were consistent with the annotations from the previous studies. HIV-1 was found in clinical samples without the HIV-positive reports, and SMRV was found in Diffuse Large B-Cell Lymphoma cells for the first time. In conclusion, these results suggest the sRNA-seq can be used to detect viruses in mammals and humans.
Collapse
|
23
|
Rogers DL, McClure GB, Ruiz JC, Abee CR, Vanchiere JA. Endemic Viruses of Squirrel Monkeys (Saimiri spp.). Comp Med 2015; 65:232-240. [PMID: 26141448 PMCID: PMC4485632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Nonhuman primates are the experimental animals of choice for the study of many human diseases. As such, it is important to understand that endemic viruses of primates can potentially affect the design, methods, and results of biomedical studies designed to model human disease. Here we review the viruses known to be endemic in squirrel monkeys (Saimiri spp.). The pathogenic potential of these viruses in squirrel monkeys that undergo experimental manipulation remains largely unexplored but may have implications regarding the use of squirrel monkeys in biomedical research.
Collapse
Affiliation(s)
- Donna L Rogers
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Gloria B McClure
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Julio C Ruiz
- Keeling Center for Comparative Medicine, Department of Veterinary Sciences, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Christian R Abee
- Keeling Center for Comparative Medicine, Department of Veterinary Sciences, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - John A Vanchiere
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA.
| |
Collapse
|
24
|
Prevalence and characterization of murine leukemia virus contamination in human cell lines. PLoS One 2015; 10:e0125622. [PMID: 25927683 PMCID: PMC4416031 DOI: 10.1371/journal.pone.0125622] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/24/2015] [Indexed: 11/26/2022] Open
Abstract
Contaminations of cell cultures with microbiological organisms are well documented and can be managed in cell culture laboratories applying reliable detection, elimination and prevention strategies. However, the presence of viral contaminations in cell cultures is still a matter of debate and cannot be determined with general detection methods. In the present study we screened 577 human cell lines for the presence of murine leukemia viruses (MLV). Nineteen cell lines were found to be contaminated with MLV, including 22RV1 which is contaminated with the xenotropic murine leukemia virus-related virus variant of MLV. Of these, 17 cell lines were shown to produce active retroviruses determined by product enhanced reverse transcriptase PCR assay for reverse transcriptase activity. The contaminated cell lines derive from various solid tumor types as well as from leukemia and lymphoma types. A contamination of primary human cells from healthy volunteers could not be substantiated. Sequence analyses of 17 MLV PCR products and five complete MLV genomes of different infected cell lines revealed at least three groups of related MLV genotypes. The viruses harvested from the supernatants of infected cell cultures were infectious to uninfected cell cultures. In the course of the study we found that contamination of human genomic DNA preparations with murine DNA can lead to false-positive results. Presumably, xenotransplantations of the human tumor cells into immune-deficient mice to determine the tumorigenicity of the cells are mainly responsible for the MLV contaminations. Furthermore, the use of murine feeder layer cells during the establishment of human cell lines and a cross-contamination with MLV from infected cultures might be sources of infection. A screening of cell cultures for MLV contamination is recommended given a contamination rate of 3.3%.
Collapse
|
25
|
Hermanson DL, Kaufman DS. Utilizing chimeric antigen receptors to direct natural killer cell activity. Front Immunol 2015; 6:195. [PMID: 25972867 PMCID: PMC4412125 DOI: 10.3389/fimmu.2015.00195] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells represent an attractive lymphocyte population for cancer immunotherapy due to their ability to lyse tumor targets without prior sensitization and without need for human leukocyte antigens-matching. Chimeric antigen receptors (CARs) are able to enhance lymphocyte targeting and activation toward diverse malignancies. CARs consist of an external recognition domain (typically a small chain variable fragment) directed at a specific tumor antigen that is linked with one or more intracellular signaling domains that mediate lymphocyte activation. Most CAR studies have focused on their expression in T cells. However, use of CARs in NK cells is starting to gain traction because they provide a method to redirect these cells more specifically to target refractory cancers. CAR-mediated anti-tumor activity has been demonstrated using NK cell lines, as well as NK cells isolated from peripheral blood, and NK cells produced from human pluripotent stem cells. This review will outline the CAR constructs that have been reported in NK cells with a focus on comparing the use of different signaling domains in combination with other co-activating domains.
Collapse
Affiliation(s)
- David L. Hermanson
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Dan S. Kaufman
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- *Correspondence: Dan S. Kaufman, Department of Medicine, Stem Cell Institute, University of Minnesota, 420 Delaware Street SE, MMC 480, Minneapolis, MN 55455, USA,
| |
Collapse
|
26
|
High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project. J Virol 2014; 89:713-29. [PMID: 25355872 DOI: 10.1128/jvi.02570-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Using high-throughput RNA sequencing data from 50 common lymphoma cell culture models from the Cancer Cell Line Encyclopedia project, we performed an unbiased global interrogation for the presence of a panel of 740 viruses and strains known to infect human and other mammalian cells. This led to the findings of previously identified infections by Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human T-lymphotropic virus type 1 (HTLV-1). In addition, we also found a previously unreported infection of one cell line (DEL) with a murine leukemia virus. High expression of murine leukemia virus (MuLV) transcripts was observed in DEL cells, and we identified four transcriptionally active integration sites, one being in the TNFRSF6B gene. We also found low levels of MuLV reads in a number of other cell lines and provided evidence suggesting cross-contamination during sequencing. Analysis of HTLV-1 integrations in two cell lines, HuT 102 and MJ, identified 14 and 66 transcriptionally active integration sites with potentially activating integrations in immune regulatory genes, including interleukin-15 (IL-15), IL-6ST, STAT5B, HIVEP1, and IL-9R. Although KSHV and EBV do not typically integrate into the genome, we investigated a previously identified integration of EBV into the BACH2 locus in Raji cells. This analysis identified a BACH2 disruption mechanism involving splice donor sequestration. Through viral gene expression analysis, we detected expression of stable intronic RNAs from the EBV BamHI W repeats that may be part of long transcripts spanning the repeat region. We also observed transcripts at the EBV vIL-10 locus exclusively in the Hodgkin's lymphoma cell line, Hs 611.T, the expression of which were uncoupled from other lytic genes. Assessment of the KSHV viral transcriptome in BCP-1 cells showed expression of the viral immune regulators, K2/vIL-6, K4/vIL-8-like vCCL1, and K5/E2-ubiquitin ligase 1 that was significantly higher than expression of the latency-associated nuclear antigen. Together, this investigation sheds light into the virus composition across these lymphoma model systems and provides insights into common viral mechanistic principles. IMPORTANCE Viruses cause cancer in humans. In lymphomas the Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV) and human T-lymphotropic virus type 1 are major contributors to oncogenesis. We assessed virus-host interactions using a high throughput sequencing method that facilitates the discovery of new virus-host associations and the investigation into how the viruses alter their host environment. We found a previously unknown murine leukemia virus infection in one cell line. We identified cellular genes, including cytokine regulators, that are disrupted by virus integration, and we determined mechanisms through which virus integration causes deregulation of cellular gene expression. Investigation into the KSHV transcriptome in the BCP-1 cell line revealed high-level expression of immune signaling genes. EBV transcriptome analysis showed expression of vIL-10 transcripts in a Hodgkin's lymphoma that was uncoupled from lytic genes. These findings illustrate unique mechanisms of viral gene regulation and to the importance of virus-mediated host immune signaling in lymphomas.
Collapse
|
27
|
Houldcroft CJ, Petrova V, Liu JZ, Frampton D, Anderson CA, Gall A, Kellam P. Host genetic variants and gene expression patterns associated with Epstein-Barr virus copy number in lymphoblastoid cell lines. PLoS One 2014; 9:e108384. [PMID: 25290448 PMCID: PMC4188571 DOI: 10.1371/journal.pone.0108384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023] Open
Abstract
Lymphoblastoid cell lines (LCLs) are commonly used in molecular genetics, supplying DNA for the HapMap and 1000 Genomes Projects, used to test chemotherapeutic agents, and informing the basis of a number of population genetics studies of gene expression. The process of transforming human B cells into LCLs requires the presence of Epstein-Barr virus (EBV), a double-stranded DNA virus which through B-cell immortalisation maintains an episomal virus genome in every cell of an LCL at variable copy numbers. Previous studies have reported that EBV alters host-gene expression and EBV copy number may be under host genetic control. We performed a genome-wide association study of EBV genome copy number in LCLs and found the phenotype to be highly heritable, although no individual SNPs achieved a significant association with EBV copy number. The expression of two host genes (CXCL16 and AGL) was positively correlated and expression of ADARB2 was negatively correlated with EBV copy number in a genotype-independent manner. This study shows an association between EBV copy number and the gene expression profile of LCLs, and suggests that EBV copy number should be considered as a covariate in future studies of host gene expression in LCLs.
Collapse
Affiliation(s)
- Charlotte J. Houldcroft
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Division of Biological Anthropology, Department of Archaeology and Anthropology, University of Cambridge, Cambridge, United Kingdom
| | - Velislava Petrova
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jimmy Z. Liu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Dan Frampton
- Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Carl A. Anderson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Astrid Gall
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
28
|
Carbonari M, Tedesco T, Fiorilli M. Correlation between terminal restriction fragments and flow-FISH measures in samples over wide range telomere lengths. Cell Prolif 2014; 47:20-7. [PMID: 24450811 DOI: 10.1111/cpr.12086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/02/2013] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES Terminal restriction fragment (TRF) analysis of human telomeres was used to calibrate flow-fluorescence in situ hybridization (FF) measures of telomere lengths to expand the range of measures and increase power of resolution of our previously published protocol. TRF data used as the gold standard should be obtained by electrophoresis with suitable resolution applied to appropriately isolated genomic DNA. When we considered TRF attained by correct methods, we found our method to be insufficiently accurate, thus we have reviewed our previously published FF protocol to obtain the best coefficient of determination (r(2)) between our experimental results and valid TRF lengths. MATERIALS AND METHODS Using human telomere-specific PNA probe, Cy5-OO-(CCCTAA)3 , we measured telomere lengths of continuous cell line and of peripheral blood lymphocytes by FF. We modified hybridization, stringency, negative control handling, stoichiometric DNA staining and telomere fluorescence assessment of the protocol. RESULTS We realized a procedure with increased power of resolution, improved TRF versus FF r(2) values that allowed simultaneous analysis of DNA and telomere duplication. Notwithstanding multiple steps in formamide sampling, recovery was satisfactory. DISCUSSION The reviewed FF protocol appeared at least as suitable as the TRF method. Measures obtained by TRF can be affected by chromosome end variability, DNA fragmentation, incomplete digestion and unsuitable electrophoresis. In contrast, the FF technique analyses telomeric sequences confined to preserved nuclei thus overcome most previous limitations. As yet, however, the FF telomere measure cannot be performed together with immunophenotyping and/or generation study by the dye dilution method.
Collapse
Affiliation(s)
- M Carbonari
- Dipartimento di Medicina Clinica, Università di Roma "La Sapienza", 00185, Roma, Italy
| | | | | |
Collapse
|
29
|
|
30
|
Raquin V, Wannagat M, Zouache K, Legras-Lachuer C, Moro CV, Mavingui P. Detection of dengue group viruses by fluorescence in situ hybridization. Parasit Vectors 2012; 5:243. [PMID: 23110979 PMCID: PMC3507901 DOI: 10.1186/1756-3305-5-243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background Dengue fever (DF) and dengue hemorrhagic fever (DHF) represent a global challenge in public health. It is estimated that 50 to 100 million infections occur each year causing approximately 20,000 deaths that are usually linked to severe cases like DHF and dengue shock syndrome. The causative agent of DF is dengue virus (genus Flavivirus) that comprises four distinct serotypes (DENV-1 to DENV-4). Fluorescence in situ hybridization (FISH) has been used successfully to detect pathogenic agents, but has not been implemented in detecting DENV. To improve our understanding of DENV infection and dissemination in host tissues, we designed specific probes to detect DENV in FISH assays. Methods Oligonucleotide probes were designed to hybridize with RNA from the broadest range of DENV isolates belonging to the four serotypes, but not to the closest Flavivirus genomes. Three probes that fit the criteria defined for FISH experiments were selected, targeting both coding and non-coding regions of the DENV genome. These probes were tested in FISH assays against the dengue vector Aedes albopictus (Diptera: Culicidae). The FISH experiments were led in vitro using the C6/36 cell line, and in vivo against dissected salivary glands, with epifluorescence and confocal microscopy. Results The three 60-nt oligonucleotides probes DENV-Probe A, B and C cover a broad range of DENV isolates from the four serotypes. When the three probes were used together, specific fluorescent signals were observed in C6/36 infected with each DENV serotypes. No signal was detected in either cells infected with close Flavivirus members West Nile virus or yellow fever virus. The same protocol was used on salivary glands of Ae. albopictus fed with a DENV-2 infectious blood-meal which showed positive signals in the lateral lobes of infected samples, with no significant signal in uninfected mosquitoes. Conclusion Based on the FISH technique, we propose a way to design and use oligonucleotide probes to detect arboviruses. Results showed that this method was successfully implemented to specifically detect DENV in a mosquito cell line, as well as in mosquito salivary glands for the DENV-2 serotype. In addition, we emphasize that FISH could be an alternative method to detect arboviruses in host tissues, also offering to circumvent the discontinuity of antibodies used in immunofluorescent assays.
Collapse
Affiliation(s)
- Vincent Raquin
- UMR CNRS 5557 Ecologie Microbienne, Université Lyon 1, 43 boulevard du 11 Novembre 1918, Villeurbanne cedex, 69622, France
| | | | | | | | | | | |
Collapse
|