1
|
Pharmacological Effects and Clinical Prospects of Cepharanthine. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248933. [PMID: 36558061 PMCID: PMC9782661 DOI: 10.3390/molecules27248933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Cepharanthine is an active ingredient separated and extracted from Stephania cepharantha Hayata, a Menispermaceae plant. As a bisbenzylisoquinoline alkaloid, cepharanthine has various pharmacological properties, including antioxidant, anti-inflammatory, immunomodulatory, antitumoral, and antiviral effects. Following the emergence of coronavirus disease 2019 (COVID-19), cepharanthine has been found to have excellent anti-COVID-19 activity. In this review, the important physicochemical properties and pharmacological effects of cepharanthine, particularly the antiviral effect, are systematically described. Additionally, the molecular mechanisms and novel dosage formulations for the efficient, safe, and convenient delivery of cepharanthine are summarized.
Collapse
|
2
|
Agarwal S, Sau S, Iyer AK, Dixit A, Kashaw SK. Multiple strategies for the treatment of invasive breast carcinoma: A comprehensive prospective. Drug Discov Today 2021; 27:585-611. [PMID: 34715356 DOI: 10.1016/j.drudis.2021.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023]
Abstract
In this review, we emphasize on evolving therapeutic strategies and advances in the treatment of breast cancer (BC). This includes small-molecule inhibitors under preclinical and clinical investigation, phytoconstituents with antiproliferative potential, targeted therapies as antibodies and antibody-drug conjugates (ADCs), vaccines as immunotherapeutic agents and peptides as a novel approach inhibiting the interaction of oncogenic proteins. We provide an update of molecules under different phases of clinical investigation which aid in the identification of loopholes or shortcomings that can be overcomed with future breast cancer research.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar, MP, India
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar, MP, India.
| |
Collapse
|
3
|
Zhang H, Wang X, Guo Y, Liu X, Zhao X, Teka T, Lv C, Han L, Huang Y, Pan G. Thirteen bisbenzylisoquinoline alkaloids in five Chinese medicinal plants: Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity studies. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113566. [PMID: 33166629 DOI: 10.1016/j.jep.2020.113566] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
RELEVANCE Bisbenzylisoquinoline (BBIQ) alkaloids are generally present in plants of Berberidaceae, Monimiaceae and Ranunculaceae families in tropical and subtropical regions. Some species of these families are used in traditional Chinese medicine, with the effects of clearing away heat and detoxification, promoting dampness and defecation, and eliminating sores and swelling. This article offers essential data focusing on 13 representative BBIQ compounds, which are mainly extracted from five plants. The respective botany, traditional uses, phytochemistry, pharmacokinetics, and toxicity are summarized comprehensively. In addition, the ADME prediction of the 13 BBIQ alkaloids is compared and analyzed with the data obtained. MATERIALS AND METHODS We have conducted a systematic review of the botanical characteristics, traditional uses, phytochemistry, pharmacokinetics and toxicity of BBIQ alkaloids based on literatures collected from PubMed, Web of Science and Elsevier during 1999-2020. ACD/Percepta software was utilized to predict the pharmacokinetic parameters of BBIQ alkaloids and their affinity with enzymes and transporters. RESULTS Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity of 13 alkaloids, namely, tetrandrine, dauricine, curine, trilobine, isotrilobine, cepharanthine, daurisoline, thalicarpine, thalidasine, isotetrandrine, liensinine, neferine and isoliensinine, have been summarized in this paper. It can't be denied that these alkaloids are important material basis of pharmacological effects of family Menispermaceae and others, and for traditional and local uses which has been basically reproduced in the current studies. The 13 BBIQ alkaloids in this paper showed strong affinity and inhibitory effect on P-glycoprotein (P-gp), with poor oral absorption and potent binding ability with plasma protein. BBIQ alkaloids represented by tetrandrine play a key role in regulating P-gp or reversing multidrug resistance (MDR) in a variety of tumors. The irrationality of their usage could pose a risk of poisoning in vivo, including renal and liver toxicity, which are related to the formation of quinone methide during metabolism. CONCLUSION Although there is no further clinical evaluation of BBIQ alkaloids as MDR reversal agents, their effects on P-gp should not be ignored. Considering their diverse distribution, pharmacokinetic characteristics and toxicity reported during clinical therapy, the quality standards in different plant species and the drug dosage remain unresolved problems.
Collapse
Affiliation(s)
- Han Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Yaqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Xiaomei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Xizi Zhao
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Tekleab Teka
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Chunxiao Lv
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin-300250, China
| | - Lifeng Han
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China.
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin-300250, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin-300250, China.
| |
Collapse
|
4
|
Xu W, Chen S, Wang X, Tanaka S, Onda K, Sugiyama K, Yamada H, Hirano T. Molecular mechanisms and therapeutic implications of tetrandrine and cepharanthine in T cell acute lymphoblastic leukemia and autoimmune diseases. Pharmacol Ther 2020; 217:107659. [PMID: 32800789 DOI: 10.1016/j.pharmthera.2020.107659] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 02/08/2023]
Abstract
Inappropriately activated T cells mediate autoimmune diseases and T cell acute lymphoblastic leukemia (T-ALL). Glucocorticoid and chemotherapeutic agents have largely extended lives of these patients. However, serious side effects and drug resistance often limit the prognosis of considerable number of the patients. The efficient treatment of autoimmune diseases or T-ALL with drug resistance remains an important unmet demand clinically. Bisbenzylisoquinoline alkaloids tetrandrine and cepharanthine have been applied for the treatment of certain types of autoimmune diseases and cancers, while studies on their action mechanisms and their further applications combined with glucocorticoids or chemotherapeutic agents remains to be expanded. This review introduced molecular mechanisms of tetrandrine and cepharanthine in T cells, including their therapeutic implications. Both tetrandrine and cepharnthine influence the growth of activated T cells via several kinds of signaling pathways, such as NF-κB, caspase cascades, cell cycle, MAPK, and PI3K/Akt/mTOR. According to recent preclinical and clinical studies, P-glycoprotein inhibitory effect of tetrandrine and cepharnthine could play a significant role on T cell-involved refractory diseases. Therefore, tetrandrine or cepharanthine combined with glucocorticoid or other anti-leukemia drugs would bring a new hope for patients with glucocorticoid-resistant autoimmune disease or refractory T-ALL accompanied with functional P-glycoprotein. In conclusion, bisbenzylisoquinoline alkaloids tetrandrine and cepharanthine can regulate several signaling pathways in abnormally activated T cells with low toxicity. Bisbenzylisoquinoline alkaloids deserve to be paid more attention as a lead compound to develop new drugs for the treatment of T cell-involved diseases in the future.
Collapse
Affiliation(s)
- Wencheng Xu
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China; Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, PR China
| | - Shuhe Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China; Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, PR China
| | - Xiaoqin Wang
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China.
| | - Sachiko Tanaka
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenji Onda
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kentaro Sugiyama
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Haruki Yamada
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
5
|
Proteomic Differences in Feline Fibrosarcomas Grown Using Doxorubicin-Sensitive and -Resistant Cell Lines in the Chick Embryo Model. Int J Mol Sci 2018; 19:ijms19020576. [PMID: 29443940 PMCID: PMC5855798 DOI: 10.3390/ijms19020576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022] Open
Abstract
Proteomic analyses are rapid and powerful tools that are used to increase the understanding of cancer pathogenesis, discover cancer biomarkers and predictive markers, and select and monitor novel targets for cancer therapy. Feline injection-site sarcomas (FISS) are aggressive skin tumours with high recurrence rates, despite treatment with surgery, radiotherapy, and chemotherapy. Doxorubicin is a drug of choice for soft tissue sarcomas, including FISS. However, multidrug resistance is one of the major causes of chemotherapy failure. The main aim of the present study was to identify proteins that differentiate doxorubicin-resistant from doxorubicin-sensitive FISS using two-dimensional gel electrophoresis (2DE), followed by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Using the three-dimensional (3D) preclinical in ovo model, which resembles features of spontaneous fibrosarcomas, three significantly (p ≤ 0.05) differentially expressed proteins were identified in tumours grown from doxorubicin-resistant fibrosarcoma cell lines (FFS1 and FFS3) in comparison to the doxorubicin-sensitive one (FFS5): Annexin A5 (ANXA5), Annexin A3 (ANXA3), and meiosis-specific nuclear structural protein 1 (MNS1). Moreover, nine other proteins were significantly differentially expressed in tumours grown from the high doxorubicin-resistant cell line (FFS1) in comparison to sensitive one (FFS5). This study may be the first proteomic fingerprinting of FISS reported, identifying potential candidates for specific predictive biomarkers and research targets for doxorubicin-resistant FISS.
Collapse
|
6
|
Deng Y, Wu W, Ye S, Wang W, Wang Z. Determination of cepharanthine in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. PHARMACEUTICAL BIOLOGY 2017; 55:1775-1779. [PMID: 28521597 PMCID: PMC6130670 DOI: 10.1080/13880209.2017.1328446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Cepharanthine (CPA) has been reported to possess a wide range of pharmacological activities. OBJECTIVE This study investigates the pharmacokinetic characteristics after oral or intravenous administration of CPA by using a sensitive and rapid LC-MS/MS method. MATERIALS AND METHODS A sensitive and rapid LC-MS/MS method was developed for the determination of CPA in Sprague-Dawley rat plasma. Twelve rats were equally randomized into two groups, including the intravenous group (1 mg/kg) and the oral group (10 mg/kg). Blood samples (250 μL) were collected at designated time points and determined using this method. The pharmacokinetic parameters were calculated. RESULTS The calibration curve was linear within the range of 0.1-200 ng/mL (r = 0.999) with the lower limit of quantification at 0.1 ng/mL. After 1 mg/kg intravenous injection, the concentration of CPA reached a maximum of 153.17 ± 16.18 ng/mL and the t1/2 was 6.76 ± 1.21 h. After oral administration of 10 mg/kg of CPA, CPA was not readily absorbed and reached Cmax 46.89 ± 5.25 ng/mL at approximately 2.67 h. The t1/2 was 11.02 ± 1.32 h. The absolute bioavailability of CPA by oral route was 5.65 ± 0.35%, and the bioavailability was poor. DISCUSSION AND CONCLUSIONS The results indicate that the bioavailability of CPA was poor in rats, and further research should be conducted to investigate the reason for its poor bioavailability and address this problem.
Collapse
Affiliation(s)
- Yingbin Deng
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijun Wu
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sunzhi Ye
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyi Wang
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- CONTACT Zhiyi WangDepartment of Emergency Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou325027, China
| |
Collapse
|
7
|
Huang CZ, Wang YF, Zhang Y, Peng YM, Liu YX, Ma F, Jiang JH, Wang QD. Cepharanthine hydrochloride reverses P‑glycoprotein-mediated multidrug resistance in human ovarian carcinoma A2780/Taxol cells by inhibiting the PI3K/Akt signaling pathway. Oncol Rep 2017; 38:2558-2564. [PMID: 28791369 DOI: 10.3892/or.2017.5879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/12/2017] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecologic malignant tumors. The major obstacle to treatment success is multidrug resistance (MDR) to chemotherapy drugs. Cepharanthine hydrochloride (CH), a natural alkaloid-derived compound, has shown MDR reversal potency in several tumor cell lines; however, the molecular mechanism is not entirely known. In the present study, we assessed whether CH sensitized malignant cells to chemotherapy drugs in ovarian cancer and explored the relevant mechanism. We found that CH reduced the IC50 value of paclitaxel and increased intracellular rhodamine-123 accumulation in human ovarian cancer A2780/Taxol cells in a concentration-dependent manner. Reverse transcription polymerase chain reaction and western blot assay demonstrated that CH inhibited MDR1 expression as indicated by reduced mRNA and protein levels in A2780/Taxol cells. In addition, the inhibitory effect was strengthened after CH was combined with the specific PI3K/Akt signaling pathway inhibitor LY294002. Furthermore, p‑Akt expression decreased gradually with the concentration of CH (2, 4 and 8 µM). Taken together, these findings indicated that CH reversed P‑glycoprotein-mediated MDR in A2780/Taxol cells by inhibiting the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Chen-Zheng Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Ya-Feng Wang
- Department of Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yan Zhang
- Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - You-Mei Peng
- Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi-Xian Liu
- Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fang Ma
- Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jin-Hua Jiang
- Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qing-Duan Wang
- Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
8
|
Guizhi Fuling Wan, a Traditional Chinese Herbal Formula, Sensitizes Cisplatin-Resistant Human Ovarian Cancer Cells through Inactivation of the PI3K/AKT/mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4651949. [PMID: 27293459 PMCID: PMC4887624 DOI: 10.1155/2016/4651949] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/18/2016] [Indexed: 11/20/2022]
Abstract
The aim of the study was to explore the possible mechanisms that Guizhi Fuling Wan (GFW) enhances the sensitivity of the SKOV3/DDP ovarian cancer cells and the resistant xenograft tumours to cisplatin. Rat medicated sera containing GFW were prepared by administering GFW to rats, and the primary bioactive constituents of the sera were gallic acid, paeonol, and paeoniflorin analysed by HPLC/QqQ MS. Cell counting kit-8 analysis was shown that coincubation of the sera with cisplatin/paclitaxel enhanced significantly the cytotoxic effect of cisplatin or paclitaxel in SKOV3/DDP cells. The presence of the rat medicated sera containing GFW resulted in an increase in rhodamine 123 accumulation by flow cytometric assays and a decrease in the protein levels of P-gp, phosphorylation of AKT at Ser473, and mTOR in a dose-dependent manner in SKOV3/DDP cells by western blot analysis, but the sera had no effect on the protein levels of PI3K p110α and total AKT. The low dose of GFW enhanced the anticancer efficacy of cisplatin and paclitaxel treatment in resistant SKOV3/DDP xenograft tumours. GFW could sensitize cisplatin-resistant SKOV3/DDP cells by inhibiting the protein level and function of P-gp, which may be medicated through inactivation of the PI3K/AKT/mTOR pathway.
Collapse
|
9
|
Liu G, Wu D, Liang X, Yue H, Cui Y. Mechanisms and in vitro effects of cepharanthine hydrochloride: Classification analysis of the drug-induced differentially-expressed genes of human nasopharyngeal carcinoma cells. Oncol Rep 2015; 34:2002-10. [PMID: 26260412 DOI: 10.3892/or.2015.4193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/11/2015] [Indexed: 11/06/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most commonly diagnosed head and neck malignancy and is prevalent worldwide. Previous studies have demonstrated the antitumor properties of cepharanthine hydrochloride (CH) in several human cancer cells. However, the action of CH in NPC cells has yet to be determined. In the present study, we investigated the effects of CH in human NPC cell lines including CNE-1 and CNE-2 on cell growth and apoptosis in vitro. Using MTT and ATP-tumor chemosensitivity assays it was found that CH inhibited cell viability. Additionally, flow cytometric and analysis electron microscopy revealed the inhibition of cell cycle progression and reduction of apoptosis, respectively, in human NPC cell lines including CNE-1 and CNE-2 in vitro. To identify the potential action mechanisms of CH, the cDNA microarray analysis results were confirmed by quantitative PCR analysis using a number of genes, including CDKN1A/P21, NR4A1/TR3 and DAXX. In total, 138 upregulated and 63 downregulated genes in CNE-2 cells were treated with CH. According to their biological function, the genes were classified as: i) cell cycle-related genes; ii) DNA repair‑related genes; iii) apoptosis-related genes and iv) nuclear factor-κB (NF-κB) transcription factors signal pathways. The results of the present study showed that CH is a potential therapeutic agent against human NPC, and provide rational explanations and a scientific basis for the study of the development of CH in the treatment of NPC.
Collapse
Affiliation(s)
- Guanjun Liu
- Department of Medical Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dongmei Wu
- Department of Medical Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinqiang Liang
- Department of Medical Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huifen Yue
- Department of Medical Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ying Cui
- Department of Medical Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
10
|
Shan YQ, Zhu YP, Pang J, Wang YX, Song DQ, Kong WJ, Jiang JD. Tetrandrine Potentiates the Hypoglycemic Efficacy of Berberine by Inhibiting P-Glycoprotein Function. Biol Pharm Bull 2013; 36:1562-9. [DOI: 10.1248/bpb.b13-00272] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yong-Qiang Shan
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yan-Ping Zhu
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Jing Pang
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yan-Xiang Wang
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Dan-Qing Song
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Wei-Jia Kong
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Jian-Dong Jiang
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College
- State Key Laboratory of Bioactive Natural Products and Function, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
11
|
Zhu H, Liu Z, Tang L, Liu J, Zhou M, Xie F, Wang Z, Wang Y, Shen S, Hu L, Yu L. Reversal of P-gp and MRP1-mediated multidrug resistance by H6, a gypenoside aglycon from Gynostemma pentaphyllum, in vincristine-resistant human oral cancer (KB/VCR) cells. Eur J Pharmacol 2012; 696:43-53. [DOI: 10.1016/j.ejphar.2012.09.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
|
12
|
Tian QE, De Li H, Yan M, Cai HL, Tan QY, Zhang WY. Effects of Astragalus polysaccharides on P-glycoprotein efflux pump function and protein expression in H22 hepatoma cells in vitro. Altern Ther Health Med 2012; 12:94. [PMID: 22784390 PMCID: PMC3493361 DOI: 10.1186/1472-6882-12-94] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/15/2012] [Indexed: 02/10/2023]
Abstract
Background Astragalus polysaccharides (APS) are active constituents of Astragalus membranaceus. They have been widely studied, especially with respect to their immunopotentiating properties, their ability to counteract the side effects of chemotherapeutic drugs, and their anticancer properties. However, the mechanism by which APS inhibit cancer and the issue of whether that mechanism involves the reversal of multidrug resistance (MDR) is not completely clear. The present paper describes an investigation of the effects of APS on P-glycoprotein function and expression in H22 hepatoma cell lines resistant to Adriamycin (H22/ADM). Methods H22/ADM cell lines were treated with different concentrations of APS and/or the most common chemotherapy drugs, such as Cyclophosphamid, Adriamycin, 5-Fluorouracil, Cisplatin, Etoposide, and Vincristine. Chemotherapeutic drug sensitivity, P-glycoprotein function and expression, and MDR1 mRNA expression were detected using MTT assay, flow cytometry, Western blotting, and quantitative RT-PCR. Results When used alone, APS had no anti-tumor activity in H22/ADM cells in vitro. However, it can increase the cytotoxicity of certain chemotherapy drugs, such as Cyclophosphamid, Adriamycin, 5-Fluorouracil, Cisplatin, Etoposide, and Vincristine, in H22/ADM cells. It acts in a dose-dependent manner. Compared to a blank control group, APS increased intracellular Rhodamine-123 retention and decreased P-glycoprotein efflux function in a dose-dependent manner. These factors were assessed 24 h, 48 h, and 72 h after administration. APS down regulated P-glycoprotein and MDR1 mRNA expression in a concentration-dependent manner within a final range of 0.8–500 mg/L and in a time-dependent manner from 24–72 h. Conclusion APS can enhance the chemosensitivity of H22/ADM cells. This may involve the downregulation of MDR1 mRNA expression, inhibition of P-GP efflux pump function, or both, which would decrease the expression of the MDR1 protein.
Collapse
|
13
|
New fluphenazine analogues as inhibitors of P-glycoprotein in human lymphocyte cultures. Contemp Oncol (Pozn) 2012; 16:332-7. [PMID: 23788904 PMCID: PMC3687430 DOI: 10.5114/wo.2012.30063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/02/2012] [Accepted: 05/07/2012] [Indexed: 12/01/2022] Open
Abstract
Aim of the study To evaluate the inhibitory effect of 17 new analogues of FPh on the Pgp transport function, by estimation of the rhodamine 123 (Rod-123) accumulation inside cultured lymphocytes. Material and methods Lymphocyte were cultured in the presence of a lectin (PHA; 2%, v/v), incubated with benzo[α]pyrene (B[α]P; 7.5 µM, 48 h) to induce genotoxic damage and to increase Pgp expression in the cells. Lymphocytes cultured without the tested compounds were considered as controls. Results It was established that 10 analogues of FPh, among 17 tested, significantly increased Rod-123 accumulation in lymphocytes at the concentration of 10 µM. As compared to the control cultures the Pgp transport function was the most strongly inhibited by 1a, 1b, 1d, 3f, 3h and 3i analogues (approximately by 25%). Conclusions FPh analogues 1a, 1b, 1d, 3f, 3h and 3i should be further studied as promising candidates for adjuvant cancer chemotherapeutics.
Collapse
|