1
|
Ramos MJ, Lui AJ, Hollern DP. The Evolving Landscape of B Cells in Cancer Metastasis. Cancer Res 2023; 83:3835-3845. [PMID: 37815800 PMCID: PMC10914383 DOI: 10.1158/0008-5472.can-23-0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Metastasis is the leading cause of cancer mortality. Functional and clinical studies have documented diverse B-cell and antibody responses in cancer metastasis. The presence of B cells in tumor microenvironments and metastatic sites has been associated with diverse effects that can promote or inhibit metastasis. Specifically, B cells can contribute to the spread of cancer cells by enhancing tumor cell motility, invasion, angiogenesis, lymphangiogenesis, and extracellular matrix remodeling. Moreover, they can promote metastatic colonization by triggering pathogenic immunoglobulin responses and recruiting immune suppressive cells. Contrastingly, B cells can also exhibit antimetastatic effects. For example, they aid in enhanced antigen presentation, which helps activate immune responses against cancer cells. In addition, B cells play a crucial role in preventing the dissemination of metastatic cells from the primary tumor and secrete antibodies that can aid in tumor recognition. Here, we review the complex roles of B cells in metastasis, delineating the heterogeneity of B-cell activity and subtypes by metastatic site, antibody class, antigen (if known), and molecular phenotype. These important attributes of B cells emphasize the need for a deeper understanding and characterization of B-cell phenotypes to define their effects in metastasis.
Collapse
Affiliation(s)
- Monika J. Ramos
- Salk Institute for Biological Sciences
- The University of California San Diego School of Biological Sciences
| | - Asona J. Lui
- Salk Institute for Biological Sciences
- Radiation Medicine and Applied Sciences, The University of California School of Medicine
| | - Daniel P. Hollern
- Salk Institute for Biological Sciences
- The University of California San Diego School of Biological Sciences
- Radiation Medicine and Applied Sciences, The University of California School of Medicine
- NOMIS Center for Immunobiology and Microbial Pathogenesis
| |
Collapse
|
2
|
Teh R, Azimi A, Pupo GM, Ali M, Mann GJ, Fernández-Peñas P. Genomic and proteomic findings in early melanoma and opportunities for early diagnosis. Exp Dermatol 2023; 32:104-116. [PMID: 36373875 DOI: 10.1111/exd.14705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Overdiagnosis of early melanoma is a significant problem. Due to subtle unique and overlapping clinical and histological criteria between pigmented lesions and the risk of mortality from melanoma, some benign pigmented lesions are diagnosed as melanoma. Although histopathology is the gold standard to diagnose melanoma, there is a demand to find alternatives that are more accurate and cost-effective. In the current "omics" era, there is gaining interest in biomarkers to help diagnose melanoma early and to further understand the mechanisms driving tumor progression. Genomic investigations have attempted to differentiate malignant melanoma from benign pigmented lesions. However, genetic biomarkers of early melanoma diagnosis have not yet proven their value in the clinical setting. Protein biomarkers may be more promising since they directly influence tissue phenotype, a result of by-products of genomic mutations, posttranslational modifications and environmental factors. Uncovering relevant protein biomarkers could increase confidence in their use as diagnostic signatures. Currently, proteomic investigations of melanoma progression from pigmented lesions are limited. Studies have previously characterised the melanoma proteome from cultured cell lines and clinical samples such as serum and tissue. This has been useful in understanding how melanoma progresses into metastasis and development of resistance to adjuvant therapies. Currently, most studies focus on metastatic melanoma to find potential drug therapy targets, prognostic factors and markers of resistance. This paper reviews recent advancements in the genomics and proteomic fields and reports potential avenues, which could help identify and differentiate melanoma from benign pigmented lesions and prevent the progression of melanoma.
Collapse
Affiliation(s)
- Rachel Teh
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia.,Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Ali Azimi
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia.,Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Gulietta M Pupo
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia.,Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Marina Ali
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia
| | - Graham J Mann
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,The John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Pablo Fernández-Peñas
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia.,Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
3
|
Tumour- associated autoantibodies as prognostic cancer biomarkers- a review. Autoimmun Rev 2022; 21:103041. [DOI: 10.1016/j.autrev.2022.103041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
|
4
|
Gates KV, Xing Q, Griffiths LG. Immunoproteomic Identification of Noncarbohydrate Antigens Eliciting Graft-Specific Adaptive Immune Responses in Patients with Bovine Pericardial Bioprosthetic Heart Valves. Proteomics Clin Appl 2019; 13:e1800129. [PMID: 30548925 PMCID: PMC6565515 DOI: 10.1002/prca.201800129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/31/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE This case-control retrospective discovery study is to identify antigenic bovine pericardium (BP) proteins that stimulate graft-specific humoral immune response in patients implanted with glutaraldehyde fixed bovine pericardial (GFBP) heart valves. EXPERIMENTAL DESIGN Banked serum is collected from age- and sex-matched patients who received either a GFBP or mechanical heart valve replacement. Serum IgG is isolated and used to generate poly-polyclonal antibody affinity chromatography columns from each patient. Native and deglycosylated BP protein extracts are separately added to individual patient affinity chromatography columns, with unbound proteins washed through the column. Proteins captured in the affinity chromatography columns are submitted for proteomic identification. Differences between GFBP and mechanical heart valve replacement recipients are analyzed with Gaussian linearized modeling. RESULTS Carbohydrate antigens overwhelm protein capture in the column, requiring BP protein deglycosylation prior to affinity chromatography. Nineteen BP protein antigens, which stimulated graft-specific IgG production, are identified in patients who received GFBP valve replacements. Identified antigens are significantly over-represented for calcium-binding proteins. CONCLUSIONS AND CLINICAL RELEVANCE Patients implanted with GFBP valves develop a graft-specific humoral immune response toward BP protein antigens, with 19 specific antigens identified in this work. The molecular functions of over-represented antigens, specifically calcium-binding proteins, may aid in understanding the underlying factors that contribute to structural valve deterioration.
Collapse
Affiliation(s)
- Katherine V. Gates
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester MN 55905, USA
| | - Qi Xing
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester MN 55905, USA
| | - Leigh G. Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester MN 55905, USA
| |
Collapse
|
5
|
A diagnostic autoantibody signature for primary cutaneous melanoma. Oncotarget 2018; 9:30539-30551. [PMID: 30093967 PMCID: PMC6078131 DOI: 10.18632/oncotarget.25669] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/04/2018] [Indexed: 01/16/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer that is curable by surgical excision in the majority of cases, if detected at an early stage. To improve early stage melanoma detection, the development of a highly sensitive diagnostic test is of utmost importance. Here we aimed to identify antibodies to a panel of tumour associated antigens that can differentiate primary melanoma patients and healthy individuals. A total of 245 sera from primary melanoma patients and healthy volunteers were screened against a high-throughput microarray platform containing 1627 functional proteins. Following rigorous statistical analysis, we identified a combination of 10 autoantibody biomarkers that, as a panel, displays a sensitivity of 79%, specificity of 84% and an AUC of 0.828 for primary melanoma detection. This melanoma autoantibody signature may prove valuable for the development of a diagnostic blood test for routine population screening that, when used in conjunction with current melanoma diagnostic techniques, could improve the early diagnosis of this malignancy and ultimately decrease the mortality rate of patients.
Collapse
|
6
|
Rastogi A, Ali A, Tan SH, Banerjee S, Chen Y, Cullen J, Xavier CP, Mohamed AA, Ravindranath L, Srivastav J, Young D, Sesterhenn IA, Kagan J, Srivastava S, McLeod DG, Rosner IL, Petrovics G, Dobi A, Srivastava S, Srinivasan A. Autoantibodies against oncogenic ERG protein in prostate cancer: potential use in diagnosis and prognosis in a panel with C-MYC, AMACR and HERV-K Gag. Genes Cancer 2017; 7:394-413. [PMID: 28191285 PMCID: PMC5302040 DOI: 10.18632/genesandcancer.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overdiagnosis and overtreatment of prostate cancer (CaP) is attributable to widespread reliance on PSA screening in the US. This has prompted us and others to search for improved biomarkers for CaP, to facilitate early detection and disease stratification. In this regard, autoantibodies (AAbs) against tumor antigens could serve as potential candidates for diagnosis and prognosis of CaP. Towards this, our goals were: i) To investigate whether AAbs against ERG oncoprotein (overexpressed in 25-50% of Caucasian American and African American CaP) are present in the sera of CaP patients; ii) To evaluate an AAb panel to enhance CaP detection. The results using an enzyme-linked immunosorbent assay (ELISA) showed that anti-ERG AAbs are present in a significantly higher proportion in the sera of CaP patients compared to healthy controls (p = 0.0001). Furthermore, a panel of AAbs against ERG, AMACR and human endogenous retrovirus-K Gag successfully differentiated CaP patient sera from healthy controls (AUC = 0.791). These results demonstrate for the first time that anti-ERG AAbs are present in the sera of CaP patients. In addition, the data also suggest that AAbs against ERG together with AMACR and HERV-K Gag may be a useful panel of biomarkers for diagnosis and prognosis of CaP.
Collapse
Affiliation(s)
- Anshu Rastogi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Amina Ali
- Urology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sreedatta Banerjee
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Yongmei Chen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Charles P Xavier
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jigisha Srivastav
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Denise Young
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Jacob Kagan
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - David G McLeod
- Urology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inger L Rosner
- Urology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
7
|
Potential diagnostic significance of HSP90, ACS/TMS1, and L-plastin in the identification of melanoma. Melanoma Res 2014; 24:535-44. [DOI: 10.1097/cmr.0000000000000115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Clawson GA, Kimchi E, Patrick SD, Xin P, Harouaka R, Zheng S, Berg A, Schell T, Staveley-O'Carroll KF, Neves RI, Mosca PJ, Thiboutot D. Circulating tumor cells in melanoma patients. PLoS One 2012; 7:e41052. [PMID: 22829910 PMCID: PMC3400630 DOI: 10.1371/journal.pone.0041052] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/20/2012] [Indexed: 12/24/2022] Open
Abstract
Circulating tumor cells (CTCs) are of recognized importance for diagnosis and prognosis of cancer patients. With melanoma, most studies do not show any clear relationship between CTC levels and stage of disease. Here, CTCs were enriched (∼400X) from blood of melanoma patients using a simple centrifugation device (OncoQuick), and 4 melanocyte target RNAs (TYR, MLANA, MITF, and MIF) were quantified using QPCR. Approximately one-third of melanoma patients had elevated MIF and MLANA transcripts (p<0.0001 and p<0.001, respectively) compared with healthy controls. In contrast, healthy controls had uniformly higher levels of TYR and MITF than melanoma patients (p<0.0001). There was a marked shift of leukocytes into the CTC-enriched fractions (a 430% increase in RNA recovery, p<0.001), and no relationship between CTC levels and stage of disease was found. CTCs were captured on microfabricated filters and cultured. Captured melanoma CTCs were large cells, and consisted of 2 subpopulations, based on immunoreactivity. One subpopulation (∼50%) stained for both pan-cytokeratin (KRT) markers and the common leukocyte marker CD-45, whereas the second subpopulation stained for only KRT. Since similar cells are described in many cancers, we also examined blood from colorectal and pancreatic cancer patients. We observed analogous results, with most captured CTCs staining for both CD-45/KRT markers (and for the monocyte differentiation marker CD-14). Our results suggest that immature melanocyte-related cells (expressing TYR and MITF RNA) may circulate in healthy controls, although they are not readily detectable without considerable enrichment. Further, as early-stage melanomas develop, immature melanocyte migration into the blood is somehow curtailed, whereas a significant proportion of patients develop elevated CTC levels (based on MIF and MLANA RNAs). The nature of the captured CTCs is consistent with literature describing leukocyte/macrophage-tumor cell fusion hybrids, and their role in metastatic progression.
Collapse
Affiliation(s)
- Gary A Clawson
- Gittlen Cancer Research Foundation and Department of Pathology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|