1
|
Aziz B, Bosman ED, van der Wurff-Jacobs KM, van Nostrum CF, Khurshid A. Ficus caricaleaves extract-loaded PLGA nanoparticles: preparation, characterization, and in vitroanticancer activity on TFK-1 cell line. Biomed Mater 2025; 20:025027. [PMID: 39879653 DOI: 10.1088/1748-605x/adaff7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2024] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
Ficus caricaextract (FCe) is a natural herb that has received a lot of interest in cancer treatment due to its potential anticancer activities against various malignancies. However, due to FCe's low bioavailability and low solubility, its clinical use as an anti-cancer medicine is constrained. The current study aimed to prepare FCe-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) for cancer treatment. Prepared NPs were characterized by UV-v is spectroscopy, dynamic light scattering, zeta potential, and transmission electron microscopy. The results showed that the spherical FCe-loaded PLGA NPs had a particle size of 162 ± 0.7 nm, a polydispersity index of 0.08 ± 0.005, and a zeta potential of -4.7 ± 0.6 mV. The encapsulation and loading efficiency were found to be 56 ± 2.3% and 14 ± 1.5%, respectively. A drug release study indicated a diffusion-based release profile. Cytotoxicity was evaluated on the extrahepatic bile duct carcinoma (TFK-1) cell line, which showed that both free FCe and corresponding FCe concentrations in NPs were cytotoxic. Cell cycle analysis showed that the FCe arrests the cells in G0/G1 phase, and the cell arrest rate is higher in FCe-loaded NPs compared to free form. A phototoxicity study also showed that the phototoxicity of FCe-loaded PLGA NPs was time-dependent and enhanced in comparison to free FCe. The study's results demonstrated that FCe-encapsulated PLGA NPs are promising for cancer therapy as a phyto- and phototherapeutic agent-based system.
Collapse
Affiliation(s)
- Bushra Aziz
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Biophotonics and Photonanomedicine Research Laboratory, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan
- Department of Physics, Women University of Azad Jammu & Kashmir Bagh, Azad Kashmir, Pakistan
| | - Esmeralda Dc Bosman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kim Mg van der Wurff-Jacobs
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ahmat Khurshid
- Biophotonics and Photonanomedicine Research Laboratory, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan
| |
Collapse
|
2
|
Gyurova A, Milkova V, Iliev I, Lazarova-Zdravkova N, Rashev V, Simeonova L, Vilhelmova-Ilieva N. Anti-Coronavirus Activity of Chitosan-Stabilized Liposomal Nanocarriers Loaded with Natural Extracts from Bulgarian Flora. Life (Basel) 2024; 14:1180. [PMID: 39337963 PMCID: PMC11605225 DOI: 10.3390/life14091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Disease's severity, mortality rates, and common failures to achieve clinical improvement during the unprecedented COVID-19 pandemic exposed the emergency need for new antiviral therapeutics with higher efficacy and fewer adverse effects. This study explores the potential to encapsulate multi-component plant extracts in liposomes as optimized delivery systems and to verify if they exert inhibitory effects against human seasonal betacoronavirus OC43 (HCoV-OC43) in vitro. The selection of Sambucus nigra, Potentilla reptans, Allium sativum, Aesculus hippocastanum, and Glycyrrhiza glabra L. plant extracts was based on their established pharmacological and antiviral properties. The physicochemical characterization of extract-loaded liposomes was conducted by DLS and electrokinetics. Encapsulated amounts of the extract were evaluated based on the total flavonoid content (TFC) and total polyphenol content (TPC) by colorimetric methods. The BALB 3T3 neutral red uptake (NRU) phototoxicity/cytotoxicity assay was used to estimate compounds' safety. Photo irritation factors (PIFs) of the liposomes containing extracts were <2 which assigned them as non-phototoxic substances. The antiviral capacities of liposomes containing medicinal plant extracts against HCoV-OC43 were measured by the cytopathic effect inhibition test in susceptible HCT-8 cells. The antiviral activity increased by several times compared to "naked" extracts' activity reported previously. A. hippocastanum extract showed 16 times higher inhibitory properties reaching a selectivity index (SI) of 58.96. Virucidal and virus-adsorption effects were investigated using the endpoint dilution method and ∆lgs comparison with infected and untreated controls. The results confirmed that nanoparticles do not directly affect the viral surface or cell membrane, but only serve as carriers of the active substances and the observed protection is due solely to the intracellular action of the extracts.
Collapse
Affiliation(s)
- Anna Gyurova
- Institute of Physical Chemistry ‘Acad. R. Kaischew’, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.G.); (V.M.)
| | - Viktoria Milkova
- Institute of Physical Chemistry ‘Acad. R. Kaischew’, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.G.); (V.M.)
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski, 1756 Sofia, Bulgaria;
| | - Nevena Lazarova-Zdravkova
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski, 1756 Sofia, Bulgaria;
| | - Viktor Rashev
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria;
| | - Lora Simeonova
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria;
| | - Neli Vilhelmova-Ilieva
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria;
| |
Collapse
|
3
|
Song L, Zhang W, Tang SY, Luo SM, Xiong PY, Liu JY, Hu HC, Chen YQ, Jia B, Yan QH, Tang SQ, Huang W. Natural products in traditional Chinese medicine: molecular mechanisms and therapeutic targets of renal fibrosis and state-of-the-art drug delivery systems. Biomed Pharmacother 2024; 170:116039. [PMID: 38157643 DOI: 10.1016/j.biopha.2023.116039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.
Collapse
Affiliation(s)
- Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Yun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Si-Min Luo
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Pei-Yu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Yu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Heng-Chang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying-Qi Chen
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian-Hua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China.
| | - Song-Qi Tang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Wei Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Enhanced Anticancer Activity of Hymenocardia acida Stem Bark Extract Loaded into PLGA Nanoparticles. Pharmaceuticals (Basel) 2022; 15:ph15050535. [PMID: 35631361 PMCID: PMC9147688 DOI: 10.3390/ph15050535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hymenocardia acida (H. acida) is an African well-known shrub recognized for numerous medicinal properties, including its cancer management potential. The advent of nanotechnology in delivering bioactive medicinal plant extract with poor solubility has improved the drug delivery system, for a better therapeutic value of several drugs from natural origins. This study aimed to evaluate the anticancer properties of H. acida using human lung (H460), breast (MCF-7), and colon (HCT 116) cancer cell lines as well as the production, characterization, and cytotoxicity study of H. acida loaded into PLGA nanoparticles. Benchtop models of Saccharomyces cerevisiae and Raniceps ranninus were used for preliminary toxicity evaluation. Notable cytotoxic activity in benchtop models and human cancer cell lines was observed for H. acida crude extract. The PLGA nanoparticles loading H. acida had a size of about 200 nm and an association efficiency of above 60%, making them suitable to be delivered by different routes. The outcomes from this research showed that H. acida has anticancer activity as claimed from an ethnomedical point of view; however, a loss in activity was noted upon encapsulation, due to the sustained release of the drug.
Collapse
|
5
|
Sharaf NS, Shetta A, Elhalawani JE, Mamdouh W. Applying Box-Behnken Design for Formulation and Optimization of PLGA-Coffee Nanoparticles and Detecting Enhanced Antioxidant and Anticancer Activities. Polymers (Basel) 2021; 14:144. [PMID: 35012166 PMCID: PMC8747114 DOI: 10.3390/polym14010144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
In an attempt to prove biological activity enhancement upon particle size reduction to the nanoscale, coffee (Cf) was chosen to be formulated into poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) using the single emulsion-solvent evaporation (SE-SE) method via Box-Behnken Design (BBD) to study the impact of certain process and formulation parameters on the particle size and size homogeneity, surface stability and encapsulation efficiency (EE%). The coffee-loaded PLGA (PLGA-Cf) NPs were characterized by different methods to aid in selecting the optimum formulation conditions. The desirable physicochemical characteristics involved small particle sizes with an average of 318.60 ± 5.65 nm, uniformly distributed within a narrow range (PDI of 0.074 ± 0.015), with considerable stability (Zeta Potential of -20.50 ± 0.52 mV) and the highest EE% (85.92 ± 4.01%). The antioxidant and anticancer activities of plain PLGA NPs, pure Cf and the optimum PLGA-Cf NPs, were evaluated using 2,2-Diphenyl-1-picryl-hydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. As a result of nano-encapsulation, antioxidant activity was enhanced by 26.5%. Encapsulated Cf showed higher anticancer potency than pure Cf against different cancerous cell lines with an increase of 86.78%, 78.17%, 85.84% and 84.84% against MCF-7, A-549, HeLa and HepG-2, respectively. The in vitro release followed the Weibull release model with slow and biphasic release profile in both tested pH media, 7.4 and 5.5.
Collapse
Affiliation(s)
| | | | | | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (N.S.S.); (A.S.); (J.E.E.)
| |
Collapse
|
6
|
Kazdal F, Bahadori F, Celik B, Ertas A, Topcu G. Inhibition of Amyloid β Aggregation Using Optimized Nano-Encapsulated Formulations of Plant Extracts with High Metal Chelator Activities. Curr Pharm Biotechnol 2020; 21:681-701. [DOI: 10.2174/1389201021666191210125851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2019] [Revised: 08/02/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
Background:
The role of Fe+2, Cu+2 and Zn+2 in facilitating aggregation of Amyloid β (Aβ)
and consequently, the progression of Alzheimer's disease (AD) is well established.
Objective:
Development of non-toxic metal chelators is an emerging era in the treatment of AD, in
which complete success has not been fully achieved. The purpose of this study was to determine plant
extracts with high metal chelator and to encapsulate them in nano-micellar systems with the ability to
pass through the Blood Brain Barrier (BBB).
Method:
Extracts of 36 different Anatolian plants were prepared, total phenolic and flavonoid contents
were determined, and the extracts with high content were examined for their Fe+2, Cu+2 and Zn+2
chelating activities. Apolipoprotein E4 (Apo E) decorated nano-formulations of active extracts were
prepared using Poly (Lactide-co-Glycolide) (PLGA) (final product ApoEPLGA) to provide BBB penetrating
property.
Results:
Verbascum flavidum aqueous extract was found as the most active sample, incubation of
which, with Aβ before and after metal-induced aggregation, resulted in successful inhibition of aggregate
formation, while re-solubilization of pre-formed aggregates was not effectively achieved. The
same results were obtained using ApoEPLGA.
Conclusion:
An optimized metal chelator nano-formulation with BBB penetrating ability was prepared
and presented for further in-vivo studies.
Collapse
Affiliation(s)
- Fatma Kazdal
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih-Istanbul, Turkey
| | - Fatemeh Bahadori
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih-Istanbul, Turkey
| | - Burak Celik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih-Istanbul, Turkey
| | - Abdulselam Ertas
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, 21280 Diyarbakır, Turkey
| | - Gulacti Topcu
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih- Istanbul, Turkey
| |
Collapse
|
7
|
Gupta PD, Birdi TJ. Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med 2017; 8:266-275. [PMID: 28869082 PMCID: PMC5747506 DOI: 10.1016/j.jaim.2017.05.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2016] [Revised: 03/09/2017] [Accepted: 05/23/2017] [Indexed: 11/29/2022] Open
Abstract
The discovery of antibiotics in the previous century lead to reduction in mortality and morbidity due to infectious diseases but their inappropriate and irrational use has resulted in emergence of resistant microbial populations. Alteration of target sites, active efflux of drugs and enzymatic degradations are the strategies employed by the pathogenic bacteria to develop intrinsic resistance to antibiotics. This has led to an increased interest in medicinal plants since 25-50% of current pharmaceuticals are plant derived. Crude extracts of medicinal plants could serve as an alternate source of resistance modifying agents owing to the wide variety of secondary metabolites. These metabolites (alkaloids, tannins, polyphenols etc.) could act as potentials for antimicrobials and resistance modifiers. Plant extracts have the ability to bind to protein domains leading to modification or inhibition protein-protein interactions. This enables the herbals to also present themselves as effective modulators of host related cellular processes viz immune response, mitosis, apoptosis and signal transduction. Thus they may exert their activity not only by killing the microorganism but by affecting key events in the pathogenic process, thereby, the bacteria, fungi and viruses may have a reduced ability to develop resistance to botanicals. The article is meant to stimulate research wherein the cidal activity of the extract is not the only parameter considered but other mechanism of action by which plants can combat drug resistant microbes are investigated. The present article emphasizes on mechanisms involved in countering multi drug resistance.
Collapse
Affiliation(s)
- Pooja D Gupta
- The Foundation for Medical Research, 84-A, R.G. Thadani Marg, Worli, Mumbai, 400 018, Maharashtra, India
| | - Tannaz J Birdi
- The Foundation for Medical Research, 84-A, R.G. Thadani Marg, Worli, Mumbai, 400 018, Maharashtra, India.
| |
Collapse
|
8
|
Khuda-Bukhsh A. An overview of research at University of Kalyani in exploring some basic issues of Homoeopathy. INDIAN JOURNAL OF RESEARCH IN HOMOEOPATHY 2017. [DOI: 10.4103/ijrh.ijrh_25_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
|
9
|
Monteiro LDS, Bastos KX, Barbosa-Filho JM, de Athayde-Filho PF, Diniz MDFFM, Sobral MV. Medicinal Plants and Other Living Organisms with Antitumor Potential against Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:604152. [PMID: 25147575 PMCID: PMC4131470 DOI: 10.1155/2014/604152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Received: 04/23/2014] [Revised: 07/05/2014] [Accepted: 07/08/2014] [Indexed: 12/23/2022]
Abstract
Lung cancer is a disease with high morbidity and mortality rates. As a result, it is often associated with a significant amount of suffering and a general decrease in the quality of life. Herbal medicines are recognized as an attractive approach to lung cancer therapy with little side effects and are a major source of new drugs. The aim of this work was to review the medicinal plants and other living organisms with antitumor potential against lung cancer. The assays were conducted with animals and humans, and Lewis lung carcinoma was the most used experimental model. China, Japan, South Korea, and Ethiopia were the countries that most published studies of species with antitumor activity. Of the 38 plants evaluated, 27 demonstrated antitumor activity. In addition, six other living organisms were cited for antitumor activity against lung cancer. Mechanisms of action, combination with chemotherapeutic drugs, and new technologies to increase activity and reduce the toxicity of the treatment are discussed. This review was based on the NAPRALERT databank, Web of Science, and Chemical Abstracts. This work shows that natural products from plants continue to be a rich source of herbal medicines or biologically active compounds against cancer.
Collapse
Affiliation(s)
- Luara de Sousa Monteiro
- Department of Pharmaceutical Sciences, Federal University of Paraiba, 58051-900 João Pessoa, PB, Brazil
| | - Katherine Xavier Bastos
- Department of Pharmaceutical Sciences, Federal University of Paraiba, 58051-900 João Pessoa, PB, Brazil
| | - José Maria Barbosa-Filho
- Department of Pharmaceutical Sciences, Federal University of Paraiba, 58051-900 João Pessoa, PB, Brazil
| | | | | | - Marianna Vieira Sobral
- Department of Pharmaceutical Sciences, Federal University of Paraiba, 58051-900 João Pessoa, PB, Brazil
| |
Collapse
|
10
|
Bell IR, Sarter B, Koithan M, Banerji P, Banerji P, Jain S, Ives J. Integrative nanomedicine: treating cancer with nanoscale natural products. Glob Adv Health Med 2014; 3:36-53. [PMID: 24753994 PMCID: PMC3921611 DOI: 10.7453/gahmj.2013.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
Finding safer and more effective treatments for specific cancers remains a significant challenge for integrative clinicians and researchers worldwide. One emerging strategy is the use of nanostructured forms of drugs, vaccines, traditional animal venoms, herbs, and nutraceutical agents in cancer treatment. The recent discovery of nanoparticles in traditional homeopathic medicines adds another point of convergence between modern nanomedicine and alternative interventional strategies. A way in which homeopathic remedies could initiate anticancer effects includes cell-to-cell signaling actions of both exogenous and endogenous (exosome) nanoparticles. The result can be a cascade of modulatory biological events with antiproliferative and pro-apoptotic effects. The Banerji Protocols reflect a multigenerational clinical system developed by homeopathic physicians in India who have treated thousands of patients with cancer. A number of homeopathic remedy sources from the Banerji Protocols (eg, Calcarea phosphorica; Carcinosin-tumor-derived breast cancer tissue prepared homeopathically) overlap those already under study in nonhomeopathic nanoparticle and nanovesicle tumor exosome cancer vaccine research. Past research on antineoplastic effects of nano forms of botanical extracts such as Phytolacca, Gelsemium, Hydrastis, Thuja, and Ruta as well as on homeopathic remedy potencies made from the same types of source materials suggests other important overlaps. The replicated finding of silica, silicon, and nano-silica release from agitation of liquids in glassware adds a proven nonspecific activator and amplifier of immunological effects. Taken together, the nanoparticulate research data and the Banerji Protocols for homeopathic remedies in cancer suggest a way forward for generating advances in cancer treatment with natural product-derived nanomedicines.
Collapse
Affiliation(s)
- Iris R Bell
- Department of Family and Community Medicine, The University of Arizona College of Medicine, Tucson (Dr Bell), United States
| | - Barbara Sarter
- Hahn School of Nursing and Health Sciences, University of San Diego, California, and Bastyr University - California (Dr Sarter), United States
| | - Mary Koithan
- College of Nursing, The University of Arizona (Drs Koithan), United States
| | | | - Pratip Banerji
- PBH Research Foundation, Kolkata, India (Drs Banerji), India
| | - Shamini Jain
- Samueli Institute, Alexandria, Virginia (Dr Jain), United States
| | - John Ives
- Samueli Institute, Alexandria, Virginia (Dr Ives), United States
| |
Collapse
|
11
|
Bonifácio BV, Silva PBD, Ramos MADS, Negri KMS, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 2013; 9:1-15. [PMID: 24363556 PMCID: PMC3862741 DOI: 10.2147/ijn.s52634] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
Herbal medicines have been widely used around the world since ancient times. The advancement of phytochemical and phytopharmacological sciences has enabled elucidation of the composition and biological activities of several medicinal plant products. The effectiveness of many species of medicinal plants depends on the supply of active compounds. Most of the biologically active constituents of extracts, such as flavonoids, tannins, and terpenoids, are highly soluble in water, but have low absorption, because they are unable to cross the lipid membranes of the cells, have excessively high molecular size, or are poorly absorbed, resulting in loss of bioavailability and efficacy. Some extracts are not used clinically because of these obstacles. It has been widely proposed to combine herbal medicine with nanotechnology, because nanostructured systems might be able to potentiate the action of plant extracts, reducing the required dose and side effects, and improving activity. Nanosystems can deliver the active constituent at a sufficient concentration during the entire treatment period, directing it to the desired site of action. Conventional treatments do not meet these requirements. The purpose of this study is to review nanotechnology-based drug delivery systems and herbal medicines.
Collapse
Affiliation(s)
- Bruna Vidal Bonifácio
- School of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Patricia Bento da Silva
- School of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | | | - Kamila Maria Silveira Negri
- School of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Taís Maria Bauab
- School of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
12
|
Samarasinghe RM, Gibbons J, Kanwar RK, Kanwar JR. Nanotechnology based platforms for survivin targeted drug discovery. Expert Opin Drug Discov 2012; 7:1083-92. [PMID: 22950742 DOI: 10.1517/17460441.2012.719869] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Development of an effective, safe and targeted drug delivery system to fight cancer and other diseases is a prime focus in the area of drug discovery. The emerging field of nanotechnology has revolutionised the way cancer therapy and diagnosis is achieved primarily due to the recent advances in material engineering and drug availability. Further, the recognition of the crucial role played by anti-apoptotic proteins such as survivin, has initiated the development of therapeutics that can target this protein as an attempt to develop alternative cancer therapies. However, a key challenge faced in drug development is the efficient delivery of survivin-targeted molecules to specific areas in the body. AREAS COVERED This review primarily focuses on the different strategies employing nanotechnology for targeting survivin expressed in human cancers. Different nanomaterials incorporating nucleic molecules or drugs targeted at survivin are discussed and the results obtained from studies are highlighted. EXPERT OPINION There are extensive studies reporting different treatment regimens for cancer, however, they still result in systemic toxicity, reduced bioavailability and ineffective delivery. Novel approaches involve the use of biocompatible nanomaterials together with gene or drug molecules to target proteins such as survivin, which is overexpressed in cancerous cells. These nanoformulations allow the benefits of protecting easily degradable molecules, allow controlled release, and enhance targeted delivery and effectiveness. Hence, nanotherapy utilizing survivin targeting can be considered to play a key role in the development of personalized nanomedicine for cancer.
Collapse
Affiliation(s)
- Rasika M Samarasinghe
- Deakin University, Institute for Frontier Materials (IFM), Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR), Waurn Ponds, Australia
| | | | | | | |
Collapse
|
13
|
Paul S, Bhattacharyya SS, Samaddar A, Boujedaini N, Khuda-Bukhsh AR. Anticancer potentials of root extract of Polygala senega against benzo[a]pyrene-induced lung cancer in mice. ACTA ACUST UNITED AC 2012; 9:320-7. [PMID: 21419086 DOI: 10.3736/jcim20110314] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To evaluate anticancer potentials of Polygala senega on lung cancer induced by benzo[a]pyrene (B[a]P) in mice. METHODS Swiss albino mice were divided into five groups with each containing six animals. Group 1 served as control, and the animals received olive oil as vehicle. Group 2 animals were treated with B[a]P (50 mg/kg body weight dissolved in olive oil) orally twice a week for four consecutive weeks. Group 3 animals were fed B[a]P as in group 2 and 48% alcohol (since the vehicle of the remedy was alcohol). Group 4 animals were B[a]P-intoxicated mice (as in group 2) which were additionally fed ethanolic extract of Polygala senega (EEPS) daily for 16 weeks. EEPS treatment started after the first dose of B[a]P. Group 5 animals were treated with EEPS alone for 16 weeks to test cytotoxicity of EEPS if any. Mice were sacrificed after 16 weeks and the following parameters were assessed: the anti-oxidant activity measured by 2,2-diphenyl-1-picrylhydrazyl free radical assay, tumor incidence, lung weight and body weight, DNA damage evaluation by comet assay and enzyme-linked immunosorbent assay (ELISA); toxicity biomarkers like catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, lipid peroxidation (LPO) and total thiol content were also detected. RESULTS Treatment with EEPS increased the final body weight and significantly decreased the lung weight in group 4 mice (P<0.01) compared with group 3 mice. Comet assay showed that EEPS-treated mice in group 4 presented a decrease of DNA damage significantly (P<0.01) in lung tissues. There was a significant increase observed in the level of p53 in group 4 as compared with group 3 (P<0.01) detected by ELISA. A highly significant increase in tissue LPO with concomitant decrease in the activity of anti-oxidants was observed in group 2 and group 3 mice (P<0.05) compared with the control mice. These adverse changes were reversed significantly in group 4 mice (P<0.01). CONCLUSION Chemopreventive potentials of Polygala senega against chemically induced lung cancer in mice are confirmed.
Collapse
Affiliation(s)
- Saili Paul
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, India
| | | | | | | | | |
Collapse
|
14
|
Chen Y, Liu S, Cui Y, Jiang P, Chen H, Li F, Qin S. Biosynthesis and immobilization of biofunctional allophycocyanin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:751452. [PMID: 23008737 PMCID: PMC3154788 DOI: 10.1155/2011/751452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/14/2011] [Revised: 04/27/2011] [Accepted: 06/20/2011] [Indexed: 11/19/2022]
Abstract
The holo-allophycocyanin-α subunit, which has various reported pharmacological uses, was biosynthesized with both Strep-II-tag and His-tag at the N-terminal in Escherichia coli. The streptavidin-binding ability resulting from the Strep II-tag was confirmed by Western blot. Additionally, the metal-chelating ability deriving from the His-tag not only facilitated its purification by immobilized metal-ion affinity chromatography but also promoted its immobilization on Zn (II)-decorated silica-coated magnetic nanoparticles. The holo-allophycocyanin-α subunit with streptavidin-binding ability was thereby immobilized on magnetic nanoparticles. Magnetic nanoparticles are promising as drug delivery vehicles for targeting and locating at tumors. Thus, based on genetic engineering and nanotechnology, we provide a potential strategy to facilitate the biomodification and targeted delivery of pharmacological proteins.
Collapse
Affiliation(s)
- Yingjie Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaofang Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulin Cui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huaxin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuchao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Song Qin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|