1
|
Felipo-Benavent M, Martínez-Romero A, Valls M, Rojo-Solís C, Álvaro T, García-Párraga D, Rubio-Guerri C, O’Connor JE. Physiological values of phagocytic capacity in marine mammals and alterations during pathological situations. Front Vet Sci 2024; 11:1389977. [PMID: 38756511 PMCID: PMC11097660 DOI: 10.3389/fvets.2024.1389977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
The study of the immune function in marine mammals is essential to understand their physiology and can help to improve their welfare in the aquariums. Dedicating efforts to studying marine mammal physiology, pathophysiology, and implementing new diagnostic and therapeutic tools promote progress towards preventive medicine in aquariums by facilitating early detection and treatment of diseases. However, biological and clinical research on marine mammals is currently very limited due to difficult access to these species and their biological samples. With this objective, our group has adapted to marine mammals a commercially available assay routinely used to evaluate the phagocytic capacity of monocytes and granulocytes in human whole blood samples. We adapted IngoflowEx kit to bottlenose dolphins (Tursiops truncatus), beluga whales (Delphinapterus leucas), walruses (Odobenus rosmarus), Patagonian sea lions (Otaria flavescens), and harbor (Phoca vitulina). In this paper, we report the modifications carried out on the original protocol for their correct functioning in marine mammals. We obtained physiological values of phagocytic capacity in each species after repeated sampling for 4 years in various individuals of each species. Specific results revealed that the % phagocytic cells that ingested E.coli in bottlenose dolphins were 59.6 ± 1.27, in walruses 62.6 ± 2.17, in sea lions 57.5 ± 4.3, and in beluga whales 61.7 ± 1.4. In the case of the % phagocytic cells producing respiratory burst in bottlenose dolphins were 34.2 ± 3.6, in walruses 36.3 ± 4.3, in sea lions 40.8 ± 10.2, and in beluga whales 26.3 ± 3.7. These preliminary results can be used as a reference to detect alterations in phagocytic capacity either by immunosuppression or by exacerbation of the response in infectious inflammatory processes. Clinical applicability of the assay was verified in two clinical cases in which Ingoflow was useful to detect immune alterations in two diseased individuals, before and after the onset of clinical signs.
Collapse
Affiliation(s)
- Mar Felipo-Benavent
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | | | - Mónica Valls
- Veterinary Services, Avanqua Oceanográfic SL, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Carlos Rojo-Solís
- Veterinary Services, Avanqua Oceanográfic SL, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Teresa Álvaro
- Veterinary Services, Avanqua Oceanográfic SL, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Daniel García-Párraga
- Veterinary Services, Avanqua Oceanográfic SL, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Consuelo Rubio-Guerri
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
- Department of Pharmacy, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
- Laboratory of Cytomics, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Valencia University, Valencia, Spain
| |
Collapse
|
2
|
Lemlem M, Aklilu E, Mohammed M, Kamaruzzaman F, Zakaria Z, Harun A, Devan SS. Molecular detection and antimicrobial resistance profiles of Extended-Spectrum Beta-Lactamase (ESBL) producing Escherichia coli in broiler chicken farms in Malaysia. PLoS One 2023; 18:e0285743. [PMID: 37205716 DOI: 10.1371/journal.pone.0285743] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose.
Collapse
Affiliation(s)
- Mulu Lemlem
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Baharu, Malaysia
- Department of Medical Microbiology and Immunology, College of Health Science, Mekelle University, Tigray, Ethiopia
| | - Erkihun Aklilu
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Baharu, Malaysia
| | - Maizan Mohammed
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Baharu, Malaysia
| | | | - Zunita Zakaria
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azian Harun
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Susmita Seenu Devan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Baharu, Malaysia
| |
Collapse
|
3
|
Fulham M, Webster B, Power M, Gray R. Implications of Escherichia coli community diversity in free-ranging Australian pinniped pups. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 104:105351. [PMID: 35985441 DOI: 10.1016/j.meegid.2022.105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Escherichia coli is a widely studied bacterium, commonly used as an indicator of faecal contamination. Investigations into the structure and diversity of E. coli in free-ranging wildlife species has been limited. The objective of this study was to characterise intra-individual and inter-species E. coli phylotype and B2 sub-type diversity in free-ranging Australian pinniped pups, to determine whether a single E. coli colony is representative of the phylotype and B2 sub-type diversity in these hosts. Faecal samples were collected from free-ranging Australian fur seal (Arctocephalus pusillus doriferus), Australian sea lion (Neophoca cinerea) and long-nosed fur seal (Arctocephalus forsteri) pups from three breeding colonies between 2018 and 2021. Faecal swabs from thirty randomly selected pups (n = 10 from each species) were cultured and ten E. coli colonies were selected from each culture based on morphology and separation between colonies on agar plates. Molecular screening techniques were utilised to assign isolates to phylotypes and B2 sub-types. There was no significant difference (p > 0.05) in either intra-individual or inter-species E. coli phylotype and B2 sub-type diversity. The B2 phylotype was the most dominant, with 78% of isolates (n = 234) assigned to this phylotype. Host factors (species, weight [kg] and standard length [cm]) did not significantly affect phylotype diversity. The absence of intra-individual and inter-species differences in E. coli diversity at a phylotype level suggests that a single E. coli colony could be used as an indicator of overall diversity of E. coli at a phylotype level in A. p. doriferus, N. cinerea and A. forsteri pups. These findings can be used to simplify and improve the efficiency of sampling protocols for ongoing monitoring of human-associated E. coli phylotypes in free-ranging pinniped populations.
Collapse
Affiliation(s)
- Mariel Fulham
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
| | - Bridget Webster
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia.
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
4
|
Gross S, Müller A, Seinige D, Wohlsein P, Oliveira M, Steinhagen D, Kehrenberg C, Siebert U. Occurrence of Antimicrobial-Resistant Escherichia coli in Marine Mammals of the North and Baltic Seas: Sentinels for Human Health. Antibiotics (Basel) 2022; 11:antibiotics11091248. [PMID: 36140027 PMCID: PMC9495373 DOI: 10.3390/antibiotics11091248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is a global health threat that involves complex, opaque transmission processes in the environment. In particular, wildlife appears to function as a reservoir and vector for antimicrobial-resistant bacteria as well as resistance genes. In the present study, the occurrence of antimicrobial-resistant Escherichia coli was determined in marine mammals and various fish species of the North and Baltic Seas. Rectal or faecal swabs were collected from 66 live-caught or stranded marine mammals and 40 fish specimens. The antimicrobial resistance phenotypes and genotypes of isolated E. coli were determined using disk diffusion tests and PCR assays. Furthermore, isolates were assigned to the four major phylogenetic groups of E. coli. Additionally, post mortem examinations were performed on 41 of the sampled marine mammals. The investigations revealed resistant E. coli in 39.4% of the marine mammal samples, while no resistant isolates were obtained from any of the fish samples. The obtained isolates most frequently exhibited resistance against aminoglycosides, followed by β-lactams. Of the isolates, 37.2% showed multidrug resistance. Harbour porpoises (Phocoena phocoena) mainly carried E. coli isolates belonging to the phylogenetic group B1, while seal isolates were most frequently assigned to group B2. Regarding antimicrobial resistance, no significant differences were seen between the two sampling areas or different health parameters, but multidrug-resistant isolates were more frequent in harbour porpoises than in the sampled seals. The presented results provide information on the distribution of antimicrobial-resistant bacteria in the North and Baltic Seas, and highlight the role of these resident marine mammal species as sentinels from a One Health perspective.
Collapse
Affiliation(s)
- Stephanie Gross
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| | - Anja Müller
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Frankfurter Str. 92, 35392 Giessen, Germany
| | - Diana Seinige
- Office for Veterinary Affairs and Consumer Protection, Ministry of Lower Saxony for Food, Agriculture and Consumer Protection, Alte Grenze 7, 29221 Celle, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Manuela Oliveira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Frankfurter Str. 92, 35392 Giessen, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
- Correspondence:
| |
Collapse
|
5
|
Fulham M, McDougall F, Power M, McIntosh RR, Gray R. Carriage of antibiotic resistant bacteria in endangered and declining Australian pinniped pups. PLoS One 2022; 17:e0258978. [PMID: 35089935 PMCID: PMC8797192 DOI: 10.1371/journal.pone.0258978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
The rapid emergence of antimicrobial resistance (AMR) is a major concern for wildlife and ecosystem health globally. Genetic determinants of AMR have become indicators of anthropogenic pollution due to their greater association with humans and rarer presence in environments less affected by humans. The objective of this study was to determine the distribution and frequency of the class 1 integron, a genetic determinant of AMR, in both the faecal microbiome and in Escherichia coli isolated from neonates of three pinniped species. Australian sea lion (Neophoca cinerea), Australian fur seal (Arctocephalus pusillus doriferus) and long-nosed fur seal (Arctocephalus forsteri) pups from eight breeding colonies along the Southern Australian coast were sampled between 2016-2019. DNA from faecal samples (n = 309) and from E. coli (n = 795) isolated from 884 faecal samples were analysed for class 1 integrons using PCRs targeting the conserved integrase gene (intI) and the gene cassette array. Class 1 integrons were detected in A. p. doriferus and N. cinerea pups sampled at seven of the eight breeding colonies investigated in 4.85% of faecal samples (n = 15) and 4.52% of E. coli isolates (n = 36). Integrons were not detected in any A. forsteri samples. DNA sequencing of the class 1 integron gene cassette array identified diverse genes conferring resistance to four antibiotic classes. The relationship between class 1 integron carriage and the concentration of five trace elements and heavy metals was also investigated, finding no significant association. The results of this study add to the growing evidence of the extent to which antimicrobial resistant bacteria are polluting the marine environment. As AMR determinants are frequently associated with bacterial pathogens, their occurrence suggests that these pinniped species are vulnerable to potential health risks. The implications for individual and population health as a consequence of AMR carriage is a critical component of ongoing health investigations.
Collapse
Affiliation(s)
- Mariel Fulham
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Fiona McDougall
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, New South Wales, Australia
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, New South Wales, Australia
| | | | - Rachael Gray
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Toms CN, Stone T, Och T. Skin lesion and mortality rate estimates for common bottlenose dolphin (Tursiops truncatus) in the Florida Panhandle following a historic flood. PLoS One 2021; 16:e0257526. [PMID: 34618826 PMCID: PMC8496785 DOI: 10.1371/journal.pone.0257526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence links prolonged freshwater exposure to adverse health conditions, immune deficiencies, and mortality in delphinids. Pensacola, Florida, experienced a record-breaking flood event in April 2014, after which, skin lesions evident of freshwater exposure were observed on common bottlenose dolphins (Tursiops truncatus). Here we assess the potential consequences of the flood on bottlenose dolphin health and mortality. Data from an ongoing study were used to evaluate the relationship between skin lesions (progression, prevalence, and extent) and the flood with respect to changing environmental conditions (salinity). Annual stranding records (2012–2016) from Alabama to the eastern Florida Panhandle were used as an indicator of dolphin health to test the hypothesis that the flood event resulted in increased annual mortality rates. Although salinities remained low for several months, results suggest that there was not the widespread skin lesion outbreak anticipated. Of the 333 unique individuals detected only 20% were seen with skin lesions. There was a significant increase in the proportion of dolphins seen post-flood with lesion extent above background levels (≥ 5%; p = 0.001), however, there were only 11 cases with lesion extent greater than 20%. Skin lesion prevalence increased overall following the flood (p < 0.001), but pairwise comparisons revealed a delayed response with significant increases not detected until the following fall (p = 0.01), several months after salinities returned to expected levels. Regression modeling revealed no significant effects of year, region, or year x region on mortality rates, except in Alabama, where increased mortality rates were likely due to residual impacts from the Deepwater Horizon Oil Spill. This study takes advantage of a natural experiment, highlighting how little is understood about the conditions in which prolonged freshwater exposure leads to negative impacts on dolphin health.
Collapse
Affiliation(s)
- Christina N. Toms
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, Florida, United States of America
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida, United States of America
- * E-mail:
| | - Tori Stone
- Department of Biology, University of West Florida, Pensacola, Florida, United States of America
| | - Traci Och
- Department of Biology, University of West Florida, Pensacola, Florida, United States of America
| |
Collapse
|
7
|
EVALUATION OF IMMUNE FUNCTION IN TWO POPULATIONS OF GREEN SEA TURTLES (CHELONIA MYDAS) IN A DEGRADED VERSUS A NONDEGRADED HABITAT. J Wildl Dis 2021; 57:761-772. [PMID: 34460917 DOI: 10.7589/jwd-d-20-00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
There is a strong correlation between degraded marine habitats and the prevalence of diseases such as green turtle fibropapillomatosis (GTFP) in coastal populations. In GTFP, small to large tumors grow on the turtle's soft tissues and shell, while internal nodules may also occur. The disease primarily affects juvenile green sea turtles (Chelonia mydas) that reside in nearshore waters. As a link has been shown between environmental pollution and immune suppression in a variety of animals, the objective of our research was to compare innate and adaptive immune responsiveness in green sea turtles from a severely degraded and a more pristine habitat, which differ greatly in rates of GTFP. We quantified phagocytosis by flow cytometry and performed in vitro stimulation analysis to measure activity of both the innate and adaptive immune systems in wild-caught Florida green turtles. Sea turtles from the degraded environment, both with and without visible cutaneous tumors, exhibited significantly reduced phagocytosis and stimulation indices than did those from the less polluted environment. Our results suggest that environmental factors may contribute to the development of GTFP and thus can impact the health of sea turtle populations.
Collapse
|
8
|
Shen S, Wu W, Grimes DJ, Saillant EA, Griffitt RJ. Community composition and antibiotic resistance of bacteria in bottlenose dolphins Tursiops truncatus - Potential impact of 2010 BP Oil Spill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139125. [PMID: 32438143 DOI: 10.1016/j.scitotenv.2020.139125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Aquatic contamination, oil spills in particular, could lead to the accumulation of antibiotic resistance by promoting selection for and/or transfer of resistance genes. However, there have been few studies on antibiotic resistance in marine mammals in relation to environmental disturbances, specifically oil contaminations. Here we initiated a study on antibiotic resistance bacteria in bottlenose dolphins Tursiops truncatus in relation to oil contamination following the 2010 BP Oil Spill in the northern Gulf of Mexico. Bacterial communities and antibiotic resistance prevalence one year after the 2010 BP Oil Spill were compared between Barataria Bay (BB) and Sarasota Bay (SB) by applying the rarefaction curve method, and (generalized) linear mixed models. The results showed that the most common bacteria included Vibrio, Shewanella, Bacillus and Pseudomonas. The prevalence of antibiotic resistance was high in the bacterial isolates at both bays. Though bacterial diversity did not differ significantly among water or dolphin samples, and antibiotic resistance did not differ significantly among water samples between the two bays, antibiotic resistance and multi-drug resistance in dolphin samples was significantly higher in the BB than in the SB, mainly attributed to the resistance to E, CF, FEP and SXT. We also found sulfamethoxazole-trimethoprim-resistant Stenotrophomonas maltophilia the first time in the natural aquatic environment. The higher antibiotic resistance in the dolphins in BB is likely attributed to 2010 BP Oil Spill as we expected SB, a more urbanized bay area, would have had higher antibiotic resistance based on the previous studies. The antibiotic resistance data gathered in this research will fill in the important data gaps and contributes to the broader spatial-scale emerging studies on antibiotic resistance in aquatic environments.
Collapse
Affiliation(s)
- Shuo Shen
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| | - Wei Wu
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| | - D Jay Grimes
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| | - Eric A Saillant
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| |
Collapse
|
9
|
Liu X, Wei X, Liu L, Feng X, Shao Z, Han Z, Li Y. Prevalence and characteristics of extended-spectrum β-lactamases-producing Escherichia coli from broiler chickens at different day-age. Poult Sci 2020; 99:3688-3696. [PMID: 32616265 PMCID: PMC7597924 DOI: 10.1016/j.psj.2020.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/06/2023] Open
Abstract
Commensal Escherichia coli from the poultries have been considered as reservoirs of extended-spectrum β-lactamases (ESBL)-encoding genes. Between May 2018 and March 2019, a total of 340 E. coli isolates were obtained from apparently healthy broiler chickens from 20 to 40 D old, distributed in 17 small-scale commercial farms. Finally, 45 isolates (8 from 20-day-old broiler chickens, 14 from 30-day-old ones, and 23 from 40-day-old ones) were identified as ESBL producers, which were further investigated to shed light on the virulence gene profiles, phylogenetic groups, and multilocus sequence types and to detect the ESBL plasmid-mediated quinolone resistance determinant (PMQR) genes as well as the mutations in the quinolone resistance-determining regions (QRDR) of gyrA and parC. Molecular analysis showed that phylogenic group A and B1 accounted for 66.7% of the ESBL producers. The overall occurrence of virulence genes ranged from 5.1% (cva) to 86.7% (papC). Twenty (44.4%) ESBL producers were considered as biofilm producers with moderate or heavy biofilm formation. The most predominant specific CTX-M subtype was blaCTX-M-14 (n = 19), followed by blaCTX-M-9 (n = 17), blaCTX-M-55 (n = 9), blaCTX-M-15 (n = 6), blaCTX-M-1 (n = 5), and blaCTX-M-65 (n = 4). Additionally, PMQR genes were identified in 86.7% of ESBL producers, qnrS (n = 21) was the most dominant PMQR gene, followed by the aac(6')-Ib-cr (n = 15), qnrB (n = 12), and qnrA (n = 9), and all of them co-expressed with β-lactamase genes. All PMQR-positive isolates harbored simultaneously at least 1 mutation in the QRDR of gyrA and parC. Forty-five ESBL producers were assigned to 33 sequence types, and the most frequent sequence types (STs) was ST10 (n = 5) and followed by ST95 (n = 3). Additionally, ST302, ST88, ST410, ST187, and ST23 were represented by 2 ESBL producers, respectively, and the remaining ones exhibited diverse ST. Moreover, the prevalence of ESBL producers, the biofilm-forming ability, and the occurrence of the QRDR mutations among the E. coli isolates were characterized by gradually increased with advancing age of broiler chickens.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xueqi Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaolan Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhengqi Shao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zilong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinqian Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Barile PJ. Widespread sewage pollution of the Indian River Lagoon system, Florida (USA) resolved by spatial analyses of macroalgal biogeochemistry. MARINE POLLUTION BULLETIN 2018; 128:557-574. [PMID: 29571408 DOI: 10.1016/j.marpolbul.2018.01.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/09/2018] [Accepted: 01/22/2018] [Indexed: 05/26/2023]
Abstract
The Indian River Lagoon (IRL) system, a poorly flushed 240 km long estuary in east-central Florida (USA), previously received 200 MLD of point source municipal wastewater that was largely mitigated by the mid-1990's. Since then, non-point source loads, including septic tank effluent, have become more important. Seventy sites were sampled for bloom-forming macroalgae and analyzed for δ15N, % nitrogen, % phosphorus, carbon:nitrogen, carbon:phosphorus, and nitrogen:phosphorus ratios. Data were fitted to geospatial models showing elevated δ15N values (>+5‰), matching human wastewater in most of the IRL system, with elevated enrichment (δ15N ≥ +7‰ to +10‰) in urbanized portions of the central IRL and Banana River Lagoon. Results suggest increased mobilization of OSDS NH4+ during the wetter 2014 season. Resource managers must improve municipal wastewater treatment infrastructure and commence significant septic-to-sewer conversion to mitigate nitrogen over-enrichment, water quality decline and habitat loss as mandated in the Tampa and Sarasota Bays and the Florida Keys.
Collapse
Affiliation(s)
- Peter J Barile
- Marine Research & Consulting, Inc., P.O. Box 1574, Melbourne, FL 32902, United States.
| |
Collapse
|
11
|
Reif JS, Schaefer AM, Bossart GD, Fair PA. Health and Environmental Risk Assessment Project for bottlenose dolphins Tursiops truncatus from the southeastern USA. II. Environmental aspects. DISEASES OF AQUATIC ORGANISMS 2017; 125:155-166. [PMID: 28737160 DOI: 10.3354/dao03143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bottlenose dolphins Tursiops truncatus are the most common apex predators found in coastal and estuarine ecosystems along the southeastern coast of the USA, where these animals are exposed to multiple chemical pollutants and microbial agents. In this review, we summarize the results of investigations of environmental exposures evaluated in 360 free-ranging dolphins between 2003 and 2015. Bottlenose dolphins inhabiting the Indian River Lagoon, Florida (IRL, n = 246), and coastal waters of Charleston, South Carolina (CHS, n = 114), were captured, given comprehensive health examinations, and released as part of a multidisciplinary and multi-institutional study of individual and population health. High concentrations of persistent organic pollutants including legacy contaminants (DDT and other pesticides, polychlorinated biphenyl compounds) as well as 'emerging' contaminants (polybrominated diphenyl ethers, perfluorinated compounds) were detected in dolphins from CHS, with lower concentrations in the IRL. Conversely, the concentrations of mercury in the blood and skin of IRL dolphins were among the highest reported worldwide and approximately 5 times as high as those found in CHS dolphins. A high prevalence of resistance to antibiotics commonly used in humans and animals was detected in bacteria isolated from fecal, blowhole, and/or gastric samples at both sites, including methicillin-resistant Staphylococcus aureus (MRSA) at CHS. Collectively, these studies illustrate the importance of long-term surveillance of estuarine populations of bottlenose dolphins and reaffirm their important role as sentinels for marine ecosystems and public health.
Collapse
Affiliation(s)
- John S Reif
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
12
|
Mortality of inshore marine mammals in eastern Australia is predicted by freshwater discharge and air temperature. PLoS One 2014; 9:e94849. [PMID: 24740149 PMCID: PMC3989247 DOI: 10.1371/journal.pone.0094849] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/20/2014] [Indexed: 12/03/2022] Open
Abstract
Understanding environmental and climatic drivers of natural mortality of marine mammals is critical for managing populations effectively and for predicting responses to climate change. Here we use a 17-year dataset to demonstrate a clear relationship between environmental forcing and natural mortality of inshore marine mammals across a subtropical-tropical coastline spanning a latitudinal gradient of 13° (>2000 km of coastline). Peak mortality of inshore dolphins and dugongs followed sustained periods of elevated freshwater discharge (9 months) and low air temperature (3 months). At a regional scale, these results translated into a strong relationship between annual mortality and an index of El Niño-Southern Oscillation. The number of cyclones crossing the coastline had a comparatively weak effect on inshore marine mammal mortality, and only in the tropics. Natural mortality of offshore/migratory cetaceans was not predicted by freshwater discharge, but was related to lagged air temperature. These results represent the first quantitative link between environmental forcing and marine mammal mortality in the tropics, and form the basis of a predictive tool for managers to prepare responses to periods of elevated marine mammal mortality.
Collapse
|
13
|
Stewart JR, Townsend FI, Lane SM, Dyar E, Hohn AA, Rowles TK, Staggs LA, Wells RS, Balmer BC, Schwacke LH. Survey of antibiotic-resistant bacteria isolated from bottlenose dolphins Tursiops truncatus in the southeastern USA. DISEASES OF AQUATIC ORGANISMS 2014; 108:91-102. [PMID: 24553415 DOI: 10.3354/dao02705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Contamination of coastal waters can carry pathogens and contaminants that cause diseases in humans and wildlife, and these pathogens can be transported by water to areas where they are not indigenous. Marine mammals may be indicators of potential health effects from such pathogens and toxins. Here we isolated bacterial species of relevance to humans from wild bottlenose dolphins Tursiops truncatus and assayed isolated bacteria for antibiotic resistance. Samples were collected during capture-release dolphin health assessments at multiple coastal and estuarine sites along the US mid-Atlantic coast and the Gulf of Mexico. These samples were transported on ice and evaluated using commercial systems and aerobic culture techniques routinely employed in clinical laboratories. The most common bacteria identified were species belonging to the genus Vibrio, although Escherichia coli, Shewanella putrefaciens, and Pseudomonas fluorescens/putida were also common. Some of the bacterial species identified have been associated with human illness, including a strain of methicillin-resistant Staphylococcus aureus (MRSA) identified in 1 sample. Widespread antibiotic resistance was observed among all sites, although the percentage of resistant isolates varied across sites and across time. These data provide a baseline for future comparisons of the bacteria that colonize bottlenose dolphins in the southeastern USA.
Collapse
Affiliation(s)
- Jill R Stewart
- University of North Carolina, Gillings School of Global Public Health, Department of Environmental Sciences & Engineering, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|