1
|
García de la Mària C, Cañas MA, Fernández-Pittol M, Dahl A, García-González J, Hernández-Meneses M, Cuervo G, Moreno A, Miró JM, Marco F. Emerging issues on Staphylococcus aureus endocarditis and the role in therapy of daptomycin plus fosfomycin. Expert Rev Anti Infect Ther 2023; 21:281-293. [PMID: 36744387 DOI: 10.1080/14787210.2023.2174969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Methicillin-resistant and -susceptible Staphylococcus aureus (MRSA/MSSA) infections are a major global health-care problem. Bacteremia with S. aureus exhibits high rates of morbidity and mortality and can cause complicated infections such as infective endocarditis (IE). The emerging resistance profile of S. aureus is worrisome, and several international agencies have appealed for new treatment approaches to be developed. AREAS COVERED Daptomycin presents a rapid bactericidal effect against MRSA and has been considered at least as effective as vancomycin in treating MRSA bacteremia. However, therapy failure is often related to deep-seated infections, e.g. endocarditis, with high bacterial inocula and daptomycin regimens <10 mg/kg/day. Current antibiotic options for treating invasive S. aureus infections have limitations in monotherapy. Daptomycin in combination with other antibiotics, e.g. fosfomycin, may be effective in improving clinical outcomes in patients with MRSA IE. EXPERT OPINION Exploring therapeutic combinations has shown fosfomycin to have a unique mechanism of action and to be the most effective option in preventing the onset of resistance to and optimizing the efficacy of daptomycin, suggesting the synergistic combination of fosfomycin with daptomycin is a useful alternative treatment option for MSSA or MRSA IE.
Collapse
Affiliation(s)
- Cristina García de la Mària
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Maria-Alexandra Cañas
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | | | - Anders Dahl
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain.,Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Javier García-González
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Marta Hernández-Meneses
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Guillermo Cuervo
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Asunción Moreno
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Jose M Miró
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain.,CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Marco
- Microbiology Department, Centre Diagnòstic Biomèdic (CDB) Hospital Clínic, Barcelona, Spain.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Verification of a Novel Approach to Predicting Effects of Antibiotic Combinations: In Vitro Dynamic Model Study with Daptomycin and Gentamicin against Staphylococcus aureus. Antibiotics (Basel) 2020; 9:antibiotics9090538. [PMID: 32854240 PMCID: PMC7557373 DOI: 10.3390/antibiotics9090538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
To explore whether susceptibility testing with antibiotic combinations at pharmacokinetically derived concentration ratios is predictive of the antimicrobial effect, a Staphylococcus aureus strain was exposed to daptomycin and gentamicin alone or in combination in multiple dosing experiments. The susceptibility of the S. aureus strain to daptomycin and gentamicin in combination was tested at concentration ratios equal to the ratios of 24 h areas under the concentration–time curve (AUC24s) of antibiotics simulated in an in vitro dynamic model in five-day treatments. The MICs of daptomycin and gentamicin decreased in the presence of each other; this led to an increase in the antibiotic AUC24/MIC ratios and the antibacterial effects. Effects of single and combined treatments were plotted against the AUC24/MIC ratios of daptomycin or gentamicin, and a significant sigmoid relationship was obtained. Similarly, when the effects of single and combined treatments were related to the total exposure of both drugs (the sum of AUC24/MIC ratios (∑AUC24/MIC)), a significant sigmoid relationship was obtained. These findings suggest that (1) the effects of antibiotic combinations can be predicted by AUC24/MICs using MICs of each antibacterial determined at pharmacokinetically derived concentration ratios; (2) ∑AUC24/MIC is a reliable predictor of the antibacterial effects of antibiotic combinations.
Collapse
|
3
|
Di Domenico EG, Rimoldi SG, Cavallo I, D’Agosto G, Trento E, Cagnoni G, Palazzin A, Pagani C, Romeri F, De Vecchi E, Schiavini M, Secchi D, Antona C, Rizzardini G, Dichirico RB, Toma L, Kovacs D, Cardinali G, Gallo MT, Gismondo MR, Ensoli F. Microbial biofilm correlates with an increased antibiotic tolerance and poor therapeutic outcome in infective endocarditis. BMC Microbiol 2019; 19:228. [PMID: 31638894 PMCID: PMC6802308 DOI: 10.1186/s12866-019-1596-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infective endocarditis (IE) is associated with high rates of mortality. Prolonged treatments with high-dose intravenous antibiotics often fail to eradicate the infection, frequently leading to high-risk surgical intervention. By providing a mechanism of antibiotic tolerance, which escapes conventional antibiotic susceptibility profiling, microbial biofilm represents a key diagnostic and therapeutic challenge for clinicians. This study aims at assessing a rapid biofilm identification assay and a targeted antimicrobial susceptibility profile of biofilm-growing bacteria in patients with IE, which were unresponsive to antibiotic therapy. RESULTS Staphylococcus aureus was the most common isolate (50%), followed by Enterococcus faecalis (25%) and Streptococcus gallolyticus (25%). All microbial isolates were found to be capable of producing large, structured biofilms in vitro. As expected, antibiotic treatment either administered on the basis of antibiogram or chosen empirically among those considered first-line antibiotics for IE, including ceftriaxone, daptomycin, tigecycline and vancomycin, was not effective at eradicating biofilm-growing bacteria. Conversely, antimicrobial susceptibility profile of biofilm-growing bacteria indicated that teicoplanin, oxacillin and fusidic acid were most effective against S. aureus biofilm, while ampicillin was the most active against S. gallolyticus and E. faecalis biofilm, respectively. CONCLUSIONS This study indicates that biofilm-producing bacteria, from surgically treated IE, display a high tolerance to antibiotics, which is undetected by conventional antibiograms. The rapid identification and antimicrobial tolerance profiling of biofilm-growing bacteria in IE can provide key information for both antimicrobial therapy and prevention strategies.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Sara Giordana Rimoldi
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Giovanna D’Agosto
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Elisabetta Trento
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Giovanni Cagnoni
- UOC Cardiochirurgia, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Alessandro Palazzin
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Cristina Pagani
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Francesca Romeri
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Elena De Vecchi
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy
| | - Monica Schiavini
- Dipartimento di Malattie Infettive, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Daniela Secchi
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Carlo Antona
- UOC Cardiochirurgia, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Giuliano Rizzardini
- Dipartimento di Malattie Infettive, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Rita Barbara Dichirico
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Daniela Kovacs
- Cutaneous Physiopathology Lab, San Gallicano Dermatologic Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Giorgia Cardinali
- Cutaneous Physiopathology Lab, San Gallicano Dermatologic Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Maria Teresa Gallo
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Maria Rita Gismondo
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| |
Collapse
|
4
|
New Insight into Daptomycin Bioavailability and Localization in Staphylococcus aureus Biofilms by Dynamic Fluorescence Imaging. Antimicrob Agents Chemother 2016; 60:4983-90. [PMID: 27297479 DOI: 10.1128/aac.00735-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is one of the most frequent pathogens responsible for biofilm-associated infections (BAI), and the choice of antibiotics to treat these infections remains a challenge for the medical community. In particular, daptomycin has been reported to fail against implant-associated S. aureus infections in clinical practice, while its association with rifampin remains a good candidate for BAI treatment. To improve our understanding of such resistance/tolerance toward daptomycin, we took advantage of the dynamic fluorescence imaging tools (time-lapse imaging and fluorescence recovery after photobleaching [FRAP]) to locally and accurately assess the antibiotic diffusion reaction in methicillin-susceptible and methicillin-resistant S. aureus biofilms. To provide a realistic representation of daptomycin action, we optimized an in vitro model built on the basis of our recently published in vivo mouse model of prosthetic vascular graft infections. We demonstrated that at therapeutic concentrations, daptomycin was inefficient in eradicating biofilms, while the matrix was not a shield to antibiotic diffusion and to its interaction with its bacterial target. In the presence of rifampin, daptomycin was still present in the vicinity of the bacterial cells, allowing prevention of the emergence of rifampin-resistant mutants. Conclusions derived from this study strongly suggest that S. aureus biofilm resistance/tolerance toward daptomycin may be more likely to be related to a physiological change involving structural modifications of the membrane, which is a strain-dependent process.
Collapse
|
5
|
Gonzalez-Ruiz A, Seaton RA, Hamed K. Daptomycin: an evidence-based review of its role in the treatment of Gram-positive infections. Infect Drug Resist 2016; 9:47-58. [PMID: 27143941 PMCID: PMC4846043 DOI: 10.2147/idr.s99046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infections caused by Gram-positive pathogens remain a major public health burden and are associated with high morbidity and mortality. Increasing rates of infection with Gram-positive bacteria and the emergence of resistance to commonly used antibiotics have led to the need for novel antibiotics. Daptomycin, a cyclic lipopeptide with rapid bactericidal activity against a wide range of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus, has been shown to be effective and has a good safety profile for the approved indications of complicated skin and soft tissue infections (4 mg/kg/day), right-sided infective endocarditis caused by S. aureus, and bacteremia associated with complicated skin and soft tissue infections or right-sided infective endocarditis (6 mg/kg/day). Based on its pharmacokinetic profile and concentration-dependent bactericidal activity, high-dose (>6 mg/kg/day) daptomycin is considered an important treatment option in the management of various difficult-to-treat Gram-positive infections. Although daptomycin resistance has been documented, it remains uncommon despite the increasing use of daptomycin. To enhance activity and to minimize resistance, daptomycin in combination with other antibiotics has also been explored and found to be beneficial in certain severe infections. The availability of daptomycin via a 2-minute intravenous bolus facilitates its outpatient administration, providing an opportunity to reduce risk of health care-associated infections, improve patient satisfaction, and minimize health care costs. Daptomycin, not currently approved for use in the pediatric population, has been shown to be widely used for treating Gram-positive infections in children.
Collapse
Affiliation(s)
| | | | - Kamal Hamed
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
6
|
Heterogeneity of genetic pathways toward daptomycin nonsusceptibility in Staphylococcus aureus determined by adjunctive antibiotics. Antimicrob Agents Chemother 2015; 59:2799-806. [PMID: 25733508 DOI: 10.1128/aac.04990-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/24/2015] [Indexed: 01/17/2023] Open
Abstract
Daptomycin is increasingly used in combination with other antibiotics to enhance antimicrobial efficacy and/or to mitigate the emergence of daptomycin nonsusceptibility (DNS). This study used a clinical methicillin-resistant Staphylococcus aureus (MRSA) strain in which DNS emerged upon therapy to examine the influence of antibiotic combinations on the development of mutations in specific genes (mprF, rpoBC, dltA, cls2, and yycFG) previously associated with DNS. Whole genomes of bacteria obtained following 28 days of in vitro exposure to daptomycin with or without adjunctive clarithromycin, linezolid, oxacillin, or trimethoprim-sulfamethoxazole were sequenced, and the sequences were compared to that of the progenitor isolate. The addition of oxacillin to medium containing daptomycin prevented the emergence of mprF mutation but did not prevent rpoBC mutation (P < 0.01). These isolates maintained susceptibility to daptomycin during the combined exposure (median MIC, 1 mg/liter). Daptomycin plus clarithromycin or linezolid resulted in low-level (1.5 to 8 mg/liter) and high-level (12 to 96 mg/liter) DNS, respectively, and did not prevent mprF mutation. However, these same combinations prevented rpoBC mutation. Daptomycin alone or combined with linezolid or trimethoprim-sulfamethoxazole resulted in high-level DNS and mutations in mprF plus rpoBC, cls2, and yycFG. Combining daptomycin with different antimicrobials alters the mutational space available for DNS development, thereby favoring the development of predictable collateral susceptibilities.
Collapse
|
7
|
Mishra B, Lushnikova T, Wang G. Small lipopeptides possess anti-biofilm capability comparable to daptomycin and vancomycin. RSC Adv 2015; 5:59758-59769. [PMID: 26257894 DOI: 10.1039/c5ra07896b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance, to a large extent, is related to the formation of bacterial biofilms. Thus, compounds with anti-biofilm capability are of practical importance. Inspired by the recent discovery of two amino acid lipopeptides from marine bacteria, we constructed a family of small lipopeptides with 2-3 amino acids. While no antimicrobial activity was found for anionic lipopeptides, cationic candidates are potent against Staphylococcus strains, such as methicillin-resistant Staphylococcus aureus (MRSA) USA200, USA300, USA400, UAMS-1, Newman, and Mu50. In the simplest design, two lysines (C14-KK) or three arginines (C14-RRR) attached to an acyl chain of 14 carbons were sufficient to make the compounds antimicrobial. These simple lipopeptides are inherently stable towards S. aureus V8 proteinase and fungal proteinase K, more soluble in water, and more selective than other lipopeptides containing a mixture of hydrophobic and cationic amino acids. Furthermore, the activity of C14-RRR was not compromised by salts, serum, or a change in pH. Live cell experiments revealed that these lipopeptides, with a detergent-like structure, killed bacteria rapidly by targeting cell membranes. Importantly, these compounds were also able to inhibit biofilm formation and could even disrupt preformed biofilms of clinically relevant MRSA strains with an in vitro efficacy comparable to daptomycin and vancomycin. These results indicate that small lipopeptides are potentially useful candidates for preventing or eliminating bacterial biofilms alone or in combination with daptomycin or vancomycin.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| |
Collapse
|
8
|
Combination of alpha-melanocyte stimulating hormone with conventional antibiotics against methicillin resistant Staphylococcus aureus. PLoS One 2013; 8:e73815. [PMID: 24040081 PMCID: PMC3767696 DOI: 10.1371/journal.pone.0073815] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/24/2013] [Indexed: 12/16/2022] Open
Abstract
Our previous studies revealed that alpha-melanocyte stimulating hormone (α-MSH) is strongly active against Staphylococcus aureus (S. aureus) including methicillin resistant S. aureus (MRSA). Killing due to α-MSH occurred by perturbation of the bacterial membrane. In the present study, we investigated the in vitro synergistic potential of α-MSH with five selected conventional antibiotics viz., oxacillin (OX), ciprofloxacin (CF), tetracycline (TC), gentamicin (GM) and rifampicin (RF) against a clinical MRSA strain which carried a type III staphylococcal cassette chromosome mec (SCCmec) element and belonged to the sequence type (ST) 239. The strain was found to be highly resistant to OX (minimum inhibitory concentration (MIC) = 1024 µg/ml) as well as to other selected antimicrobial agents including α-MSH. The possibility of the existence of intracellular target sites of α-MSH was evaluated by examining the DNA, RNA and protein synthesis pathways. We observed a synergistic potential of α-MSH with GM, CF and TC. Remarkably, the supplementation of α-MSH with GM, CF and TC resulted in ≥64-, 8- and 4-fold reductions in their minimum bactericidal concentrations (MBCs), respectively. Apart from membrane perturbation, in this study we found that α-MSH inhibited ∼53% and ∼47% DNA and protein synthesis, respectively, but not RNA synthesis. Thus, the mechanistic analogy between α-MSH and CF or GM or TC appears to be the reason for the observed synergy between them. In contrast, α-MSH did not act synergistically with RF which may be due to its inability to inhibit RNA synthesis (<10%). Nevertheless, the combination of α-MSH with RF and OX showed an enhanced killing by ∼45% and ∼70%, respectively, perhaps due to the membrane disrupting properties of α-MSH. The synergistic activity of α-MSH with antibiotics is encouraging, and promises to restore the lost potency of discarded antibiotics.
Collapse
|
9
|
Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci 2013; 1277:139-58. [PMID: 23215859 PMCID: PMC3556211 DOI: 10.1111/j.1749-6632.2012.06819.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The bactericidal, cell membrane-targeting lipopeptide antibiotic daptomycin (DAP) is an important agent in treating invasive Staphylococcus aureus infections. However, there have been numerous recent reports of development of daptomycin resistance (DAP-R) during therapy with this agent. The mechanisms of DAP-R in S. aureus appear to be quite diverse. DAP-R strains often exhibit progressive accumulation of single nucleotide polymorphisms in the multipeptide resistance factor gene (mprF) and the yycFG components of the yycFGHI operon. Both loci are involved in key cell membrane (CM) events, with mprF being responsible for the synthesis and outer CM translocation of the positively charged phospholipid, lysyl-phosphotidylglycerol (L-PG), while the yyc operon is involved in the generalized response to stressors such as antimicrobials. In addition, other perturbations of the CM have been identified in DAP-R strains, including extremes in CM order, resistance to CM depolarization and permeabilization, and reduced surface binding of DAP. Moreover, modifications of the cell wall (CW) appear to also contribute to DAP-R, including enhanced expression of the dlt operon (involved in d-alanylation of CW teichoic acids) and progressive CW thickening.
Collapse
Affiliation(s)
- Arnold S Bayer
- Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, California 905092, USA.
| | | | | |
Collapse
|
10
|
Arhin FF, Sarmiento I, Parr TR, Moeck G. Activity of oritavancin and comparators in vitro against standard and high inocula of Staphylococcus aureus. Int J Antimicrob Agents 2012; 39:159-62. [DOI: 10.1016/j.ijantimicag.2011.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/20/2011] [Indexed: 11/27/2022]
|