1
|
Stark AAP, Corcini CD, Oliveras MY, Bianchini A, Acosta IB, Costa PG, da Silva Zani G, Junior ASV, França RT. Trachemys dorbigni as a metal(loid) bioindicator: a study in rural and urban areas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1207. [PMID: 39556151 DOI: 10.1007/s10661-024-13384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Metals and metalloids are persistent environmental pollutants with the potential for bioaccumulation, posing significant health risks, including genotoxicity. These contaminants are prevalent in industrial and agricultural runoff. This study utilizes Trachemys dorbigni, an aquatic reptile, as a bioindicator to assess environmental contamination by metals and metalloids in both rural and urban settings in Pelotas, Rio Grande do Sul, Brazil. We captured specimens using pit-type traps with barriers (fyke nets), dividing them into two groups: 15 from a rural area and 15 from an urban area. Each animal underwent physical evaluations, and biometric data (weight, total carapace length and width) were recorded to calculate body condition indices. Biological samples were collected via manual restraint, with blood samples drawn from the supraoccipital venous sinus and linear carapace fragments obtained through manual scraping. Water samples from each location were also analyzed. Using atomic absorption spectrophotometry, concentrations of Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn were measured in the water, carapace fragments, and blood samples. Cellular damage was assessed through flow cytometry and microscopy, examining erythrocyte disruption, reactive oxygen species, membrane fluidity, DNA fragmentation and micronucleus formation. Urban area samples showed concentrations of As, Cd, Cu, Fe, Hg and Ni exceeding national standards set by the Conselho Nacional do Meio Ambiente (CONAMA), with rural areas also showing elevated levels of As, Cd, Hg and Ni. Biometric analysis revealed that rural reptiles had significantly higher weight and carapace dimensions, whereas urban tortoises displayed a higher body condition index and significantly elevated blood levels of Al, Cr, Ni, Pb and Zn. The urban tortoises also exhibited higher concentrations of all tested metal(loid) in carapace samples (p < 0.05) and more pronounced cellular damage (p < 0.05), highlighting severe bioaccumulation and associated deleterious effects. Elevated reactive oxygen species levels were noted in rural specimens. This study underscores the impact of water degradation and metal(loid) pollution in urban environments on T. dorbigni, suggesting that carapace tissue analysis can serve as a chronic exposure indicator to these harmful contaminants.
Collapse
Affiliation(s)
- Amanda Andersson Pereira Stark
- Postgraduate Program in Veterinary Medicine (Veterinary Medical Clinic), Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| | - Carine Dahl Corcini
- Department of Animal Reproduction and Pathology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | | | - Adalto Bianchini
- Department of Physiological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Izani Bonel Acosta
- Postgraduate Program in Veterinary Medicine (Animal Reproduction and Pathology), Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Patrícia Gomes Costa
- Postgraduate Program in Physical, Chemical and Geological Oceanography (Aquatic Toxicology), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Gabriel da Silva Zani
- Postgraduate Program in Veterinary Medicine (One Health), Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | | | | |
Collapse
|
2
|
Szupryczyński K, Czeleń P, Jeliński T, Szefler B. What is the Reason That the Pharmacological Future of Chemotherapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Int J Nanomedicine 2024; 19:9503-9547. [PMID: 39296940 PMCID: PMC11410046 DOI: 10.2147/ijn.s469217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024] Open
Abstract
Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.
Collapse
Affiliation(s)
- Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus, Copernicus University, Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
3
|
Bejckova A, Marel M, Chladkova Z, Fila L, Casas-Mendez LF, Venclicek O, Jakubec P, Cernovska M, Hrnciarik M, Krejci J, Domecky P, Svaton M. Comparison of the efficacy of cisplatin and carboplatin in combination with etoposide in firstline treatment of extensive-stage small cell lung cancer in real-world practice in the Czech Republic - a retrospective analysis of patients from the LUCAS project. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024. [PMID: 38949235 DOI: 10.5507/bp.2024.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Patients with extensive-stage small-cell lung cancer (ES-SCLC) have a poor prognosis. The standard palliative treatment for four decades has been chemotherapy as a combination of etoposide with carboplatin or cisplatin, and in recent years, immunotherapy in addition. AIMS To determine whether there is a difference in the efficacy of palliative chemotherapy as cisplatin or carboplatin in combination with etoposide in patients with ES-SCLC in real-world practice in the Czech Republic. METHODS This was a retrospective analysis of a cohort of 348 patients from the LUCAS project with ES-SCLC. 79 were treated with etoposide plus cisplatin and 265 were treated with etoposide plus carboplatin. Kaplan-Meier curves and the Cox regression model were used for analysis. RESULTS No statistically significant difference in median overall survival (mOS) or median progression free survival (mPFS) was found between groups or between patients grouped according to age and performance status (PS) in mOS. The Cox regression result was similar. CONCLUSION This study shows that cisplatin and carboplatin do not differ in efficacy in a given indication, thus when choosing a treatment, the physician should consider the expected toxicity in a particular patient, assessing the patient's general condition and comorbidities.
Collapse
Affiliation(s)
- Alzbeta Bejckova
- Department of Pulmonology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Miloslav Marel
- Department of Pulmonology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Zdenka Chladkova
- Department of Pulmonology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Libor Fila
- Department of Pulmonology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Luis Fernando Casas-Mendez
- Department of Pulmonology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ondrej Venclicek
- Department of Respiratory Diseases, Faculty of Medicine, Masaryk University and University Hospital, Brno, Czech Republic
| | - Petr Jakubec
- Department of Respiratory Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marketa Cernovska
- Department of Respiratory Medicine, Thomayer Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Hrnciarik
- Pulmonary Department, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jana Krejci
- Department of Pneumology, Bulovka University Hospital and 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Martin Svaton
- Department of Pneumology and Phthiseology, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
4
|
Zavala-Valencia AC, Velasco-Hidalgo L, Martínez-Avalos A, Castillejos-López M, Torres-Espíndola LM. Effect of N-Acetylcysteine on Cisplatin Toxicity: A Review of the Literature. Biologics 2024; 18:7-19. [PMID: 38250216 PMCID: PMC10799624 DOI: 10.2147/btt.s438150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
N-acetylcysteine (NAC) is a membrane-permeable cysteine precursor capable of enhancing the intracellular cysteine pool, enhancing cellular glutathione (GSH) synthesis, and thus potentiating the endogenous antioxidant mechanism. Late administration of NAC after cisplatin has been shown in different in vivo studies to reduce the side effects caused by various toxicities at different levels without affecting the antitumor efficacy of platinum, improving total and enzymatic antioxidant capacity and decreasing oxidative stress markers. These characteristics provide NAC with a rationale as a potentially effective chemo protectant in cisplatin-based therapeutic cycles. NAC represents a potential candidate as a chemoprotective agent to decrease toxicities secondary to cisplatin treatment. It suggests that it could be used in clinical trials, whereby the effective dose, timing, and route should be adjusted to optimize chemoprotection. This review provides an overview of the effect of NAC on cisplatin toxicity, a drug widely used in the clinic in adults and children.
Collapse
Affiliation(s)
- Angeles Citlali Zavala-Valencia
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, Mexico
- Iztacala Faculty of Higher Studies, Tlalnepantla, México
| | | | | | - Manuel Castillejos-López
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | |
Collapse
|
5
|
Zhao G, Zhang T, Li J, Li L, Chen P, Zhang C, Li K, Cui C. Parkin-mediated mitophagy is a potential treatment for oxaliplatin-induced peripheral neuropathy. Am J Physiol Cell Physiol 2024; 326:C214-C228. [PMID: 38073486 PMCID: PMC11192483 DOI: 10.1152/ajpcell.00276.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 01/06/2024]
Abstract
Oxaliplatin-induced peripheral nerve pain (OIPNP) is a common chemotherapy-related complication, but the mechanism is complex. Mitochondria are vital for cellular homeostasis and regulating oxidative stress. Parkin-mediated mitophagy is a cellular process that removes damaged mitochondria, exhibiting a protective effect in various diseases; however, its role in OIPNP remains unclear. In this study, we found that Parkin-mediated mitophagy was decreased, and reactive oxygen species (ROS) was upregulated in OIPNP rat dorsal root ganglion (DRG) in vivo and in PC12 cells stimulated with oxaliplatin (OXA) in vitro. Overexpression of Parkin indicated that OXA might cause mitochondrial and cell damage by inhibiting mitophagy. We also showed that salidroside (SAL) upregulated Parkin-mediated mitophagy to eliminate damaged mitochondria and promote PC12 cell survival. Knockdown of Parkin indicated that mitophagy is crucial for apoptosis and mitochondrial homeostasis in PC12 cells. In vivo study also demonstrated that SAL enhances Parkin-mediated mitophagy in the DRG and alleviates peripheral nerve injury and pain. These results suggest that Parkin-mediated mitophagy is involved in the pathogenesis of OIPNP and may be a potential therapeutic target for OIPNP.NEW & NOTEWORTHY This article discusses the effects and mechanisms of Parkin-mediated mitophagy in oxaliplatin-induced peripheral nerve pain (OIPNP) from both in vivo and in vitro. We believe that our study makes a significant contribution to the literature because OIPNP has always been the focus of clinical medicine, and mitochondrial quality regulation mechanisms especially Parkin-mediated mitophagy, have been deeply studied in recent years. We use a variety of molecular biological techniques and animal experiments to support our argument.
Collapse
Affiliation(s)
- Guoqing Zhao
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Te Zhang
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiannan Li
- Department of Plastic and Reconstructive Microsurgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Longyun Li
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Peng Chen
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Chunlu Zhang
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Kai Li
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Cancan Cui
- Radiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
6
|
Mahmoud Janloo Y, Attari FS, Roshan S, Lotfi H, Pezeshki AH, Hosseinzadeh M, Shakiba-Jam B, Kafami M. Effect of hydro-alcoholic extract of Nigella sativa on cisplatin-induced memory impairment and brain oxidative stress status in male rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:13-22. [PMID: 38948178 PMCID: PMC11210697 DOI: 10.22038/ajp.2023.22789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/11/2022] [Indexed: 07/02/2024]
Abstract
Objective Studies have shown the complications of chemotherapy on learning and memory. Empirical evidence suggests that Nigella sativa (NS) has neuroprotective activities. Therefore, the aim of our study was to investigate the effects of NS on cisplatin-induced memory impairment. Materials and Methods This study was conducted on 40 male rats grouped as: control (saline: 2 ml/kg, intraperitoneally (IP), once weekly/2 weeks), cisplatin (Cis, 2 mg/kg, IP, once weekly/2 weeks), NS (200 mg/kg, IP, once weekly/2 weeks), Cis +NS 200 (2 mg/kg Cis + 200 mg/kg NS, IP, once weekly/2 weeks), and Cis +NS 400 (2 mg/kg Cis + 400 mg/kg NS, IP, once weekly/2 weeks). Morris water maze (MWM) test was used to assess spatial learning and memory. In addition, superoxide dismutase (SOD) activity, and thiol and malondialdehyde (MDA) levels were evaluated in the brain. Results Cis significantly enhanced the traveled distance and time spent in the target quadrant in the MWM test. Additionally, MDA levels increased in the Cis group, while thiol and SOD decreased in this group. As a result of treatment with NS, behavioral results were reversed in the groups receiving NS compared to the Cis group. Also, NS reduced MDA level but improved SOD and thiol levels in brain tissue samples. Conclusion NS could improve memory impairment and oxidative stress in animals receiving Cis. Therefore, NS could be used as a potential food supplement to prevent neurotoxicity in patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Yasin Mahmoud Janloo
- Student Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Sadat Attari
- Student Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sahar Roshan
- Student Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hadi Lotfi
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Amir Hossein Pezeshki
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Hosseinzadeh
- Student Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Batool Shakiba-Jam
- Student Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Marzieh Kafami
- Non-Communicable Disease Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
7
|
Barnett S, Makin G, Tweddle DA, Osborne C, Veal GJ. Generation of evidence-based carboplatin dosing guidelines for neonates and infants. Br J Cancer 2023; 129:1773-1779. [PMID: 37816842 PMCID: PMC10667364 DOI: 10.1038/s41416-023-02456-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND To optimally dose childhood cancer patients it is essential that we apply evidence-based dosing approaches. Carboplatin is commonly dosed to achieve a cumulative target exposure (AUC) in children, with target AUC values of 5.2-7.8 mg/ml.min defined. To achieve these exposures patients are dosed at 6.6 mg/kg/day or 4.4 mg/kg for patients <5 kg. The current study uses real world clinical pharmacology data to optimise body weight-based doses to effectively target AUCs of 5.2-7.8 mg/ml.min in infants. METHODS Carboplatin exposures were determined across 165 treatment cycles in 82 patients ≤10 kg. AUC and clearance values were determined by Bayesian modelling from samples collected on day 1. These parameters were utilised to assess current dosing variability, determine doses required to achieve target AUC values and predict change in AUC using the modified dose. RESULTS No significant differences in clearance were identified between patients <5 kg and 5-10 kg. Consequently, for patients <5 kg, 4.4 mg/kg dosing was not sufficient to achieve a target AUC of 5.2 mg/ml.min, with <55% of patients within 25% of this target. Optimised daily doses for patients ≤10 kg were 6 mg/kg and 9 mg/kg for cumulative carboplatin target exposures of 5.2 and 7.8 mg/ml.min, respectively. CONCLUSIONS Adoption of these evidence-based carboplatin doses in neonates and infants will reduce drug exposure variability and positively impact treatment.
Collapse
Affiliation(s)
- Shelby Barnett
- Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK.
| | - Guy Makin
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester, UK
| | - Deborah A Tweddle
- Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Caroline Osborne
- Pharmacy Department, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Gareth J Veal
- Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Sharma RK, Dey G, Banerjee P, Maity JP, Lu CM, Siddique JA, Wang SC, Chatterjee N, Das K, Chen CY. New aspects of lipopeptide-incorporated nanoparticle synthesis and recent advancements in biomedical and environmental sciences: a review. J Mater Chem B 2022; 11:10-32. [PMID: 36484467 DOI: 10.1039/d2tb01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.
Collapse
Affiliation(s)
- Raju Kumar Sharma
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.,Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Chung-Ming Lu
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | | - Shau-Chun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Nalonda Chatterjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
9
|
Mitrevska K, Cernei N, Michalkova H, Rodrigo MAM, Sivak L, Heger Z, Zitka O, Kopel P, Adam V, Milosavljevic V. Platinum-based drug-induced depletion of amino acids in the kidneys and liver. Front Oncol 2022; 12:986045. [PMID: 36212465 PMCID: PMC9535364 DOI: 10.3389/fonc.2022.986045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum II; CDDP) is a widely used cytostatic agent; however, it tends to promote kidney and liver disease, which are a major signs of drug-induced toxicity. Platinum compounds are often presented as alternative therapeutics and subsequently easily dispersed in the environment as contaminants. Due to the major roles of the liver and kidneys in removing toxic materials from the human body, we performed a comparative study of the amino acid profiles in chicken liver and kidneys before and after the application of CDDP and platinum nanoparticles (PtNPs-10 and PtNPs-40). The treatment of the liver with the selected drugs affected different amino acids; however, Leu and Arg were decreased after all treatments. The treatment of the kidneys with CDDP mostly affected Val; PtNPs-10 decreased Val, Ile and Thr; and PtNPs-40 affected only Pro. In addition, we tested the same drugs on two healthy cell lines, HaCaT and HEK-293, and ultimately explored the amino acid profiles in relation to the tricarboxylic acid cycle (TCA) and methionine cycle, which revealed that in both cell lines, there was a general increase in amino acid concentrations associated with changes in the concentrations of the metabolites of these cycles.
Collapse
Affiliation(s)
- Katerina Mitrevska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | | | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
- *Correspondence: Vedran Milosavljevic,
| |
Collapse
|
10
|
Obreshkova D, Ivanova S, Yordanova-Laleva P. Influence of chemical structure and mechanism of hydrolysis on pharmacological activity and toxicological profile of approved platinum drugs. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e87494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The problems with platinum complexes are resistance and toxicity of anticancer therapy. The aim of current study is the comparison of the influence of chemical structure and mechanism of hydrolysis on pharmacological activity and toxicological profile of approved in platinum drugs: Cisplatin, Carboplatin, Oxaliplatin, Nedaplatin, Lobaplatin, Heptaplatin, Satraplatin. Hydrolysis of Carboplatin and Nedaplatin occurs by double step hydration, to obtain the same active products as with Cisplatin: diaqudiamine-platinum. The similarity in mechanisms of hydrolysis of Oxaliplatin, Lobaplatin Heptaplatin, and Satraplatin is that the first part of the hydrolysis corresponds to the ring-opening and addition of the first water molecule, and in the second step of reaction occur the loss of the ligand and the formation of the di-aquated product by the addition of a second water molecule. Cisplatin, Carboplatin, and Oxaliplatin are nephrotoxic. Cisplatin and Heptaplatin are nephrotoxic. The similar dose-limiting effects of Carboplatin, Oxaliplatin, Nedaplatin, Lobaplatin, and Satraplatin is myelosuppression.
Collapse
|
11
|
Bansal A, Saleh-E-In MM, Kar P, Roy A, Sharma NR. Synthesis of Carvacrol Derivatives as Potential New Anticancer Agent against Lung Cancer. Molecules 2022; 27:molecules27144597. [PMID: 35889476 PMCID: PMC9323284 DOI: 10.3390/molecules27144597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
Lung cancer remains a major public health concern among all cancer diseases due to the toxicity and side-effects of the available commercially synthesized drugs. Natural product-derived synthesized anticancer drugs are now of promising interest to fight against cancer death. Carvacrol is a major component of most essential oil-bearing plants with potential pharmacological activity, especially against various cancer cell lines. Among the other organometallic compounds, copper complexes have been reported to be effective anticancer agents against various cancer cell lines, especially lung and leukemia cancers, due to the nontoxic nature of copper in normal cells since it is an endogenic metal. In this study, we synthesized three carvacrol derivatives, i.e., carvacrol aldehyde, Schiff base, and copper–Schiff base complex, through an established synthesis protocol and characterized the synthesized product using various spectroscopic techniques. The synthesized derivatives were evaluated for in vitro cytotoxic activity against different cancer cell lines, including human lung cancer (A549) and human fibroblast (BALB-3T3). Our findings showed that the copper–Schiff base complex derived from carvacrol inhibited the proliferation and migration of the A549 cell lines in a dose-dependent manner. This activity might be due to the inhibition of cell proliferation and migration at the G2/M cell-cycle phase, as well as apoptosis, possibly through the activation of the mitochondrial apoptotic pathway. To our knowledge, this is the first report on the activity of the copper–Schiff base complex of carvacrol against A549 cell lines. Our result highlights that a new synthesized copper complex from carvacrol could be a novel potential drug in the treatment of lung cancer.
Collapse
Affiliation(s)
- Anu Bansal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Md. Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon 200701, Korea;
| | - Pallab Kar
- B.S. Diagnostic and Pathology Laboratory, Siliguri 734001, India;
| | - Ayan Roy
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
- Correspondence: ; Tel.: +91-828-3921-144
| |
Collapse
|
12
|
Sawhney A, Singhal S, Patel R. Isolated Pyridoxine Deficiency Presenting as Peripheral Neuropathy Post-chemotherapy. Cureus 2022; 14:e26725. [PMID: 35967133 PMCID: PMC9363682 DOI: 10.7759/cureus.26725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/05/2022] Open
|
13
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Buchholz M, Strotmann J, Majchrzak-Stiller B, Hahn S, Peters I, Horn J, Müller T, Höhn P, Uhl W, Braumann C. New Therapy Options for Neuroendocrine Carcinoma of the Pancreas—The Emergent Substance GP-2250 and Gemcitabine Prove to Be Highly Effective without the Development of Secondary Resistances In Vitro and In Vivo. Cancers (Basel) 2022; 14:cancers14112685. [PMID: 35681665 PMCID: PMC9179328 DOI: 10.3390/cancers14112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Neuroendocrine carcinoma of the pancreas is a highly aggressive form of neuroendocrine tumor associated with poor survival and increasing occurrence. GP-2250 is an emergent substance showing antineoplastic properties, especially in combination with Gemcitabine. This study was the first to evaluate the antineoplastic effects of GP-2250 on pancreatic neuroendocrine carcinoma. The combination of GP-2250 and Gemcitabine showed highly synergistic effects in a cell culture model, as well as in mice, without the development of secondary resistances. These findings form the basis for further clinical evaluation of a highly promising combination therapy. Abstract Neuroendocrine carcinoma of the pancreas (pNEC) is an aggressive form of neuroendocrine tumor characterized by a rising incidence without an increase in survival rates. GP-2250 is an oxathiazinane derivate possessing antineoplastic effects, especially in combination with Gemcitabine on the pancreatic adenocarcinoma. The cytotoxic effects of the monotherapy of GP-2250 (GP-2250mono) and Gemcitabine (Gemmono), as well as the combination therapy of both, were studied in vitro using an MTT-assay on the QGP-1 and BON-1 cell lines, along with in vivo studies on a murine xenograft model of QGP-1 and a patient-derived xenograft model (PDX) of Bo99. In vitro, Gemmono and GP-2250mono showed a dose-dependent cytotoxicity. The combination of GP-2250 and Gemcitabine exhibited highly synergistic effects. In vivo, the combination therapy obtained a partial response in QGP-1, while GP-2250mono and Gemmono showed progressive disease or stable disease, respectively. In Bo99 PDX, the combination therapy led to a partial response, while the monotherapy resulted in progressive disease. No development of secondary resistances was observed, as opposed to monotherapy. This study was the first to evaluate the effects of the emerging substance GP-2250 on pNEC. The substance showed synergism in combination with Gemcitabine. The combination therapy proved to be effective in vitro and in vivo, without the development of secondary resistances.
Collapse
Affiliation(s)
- Marie Buchholz
- Department of General and Visceral Surgery, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (J.S.); (B.M.-S.); (I.P.); (J.H.); (P.H.); (W.U.); (C.B.)
- Correspondence: ; Tel.: +49-234-509-6236
| | - Johanna Strotmann
- Department of General and Visceral Surgery, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (J.S.); (B.M.-S.); (I.P.); (J.H.); (P.H.); (W.U.); (C.B.)
| | - Britta Majchrzak-Stiller
- Department of General and Visceral Surgery, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (J.S.); (B.M.-S.); (I.P.); (J.H.); (P.H.); (W.U.); (C.B.)
| | - Stephan Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, 44780 Bochum, Germany;
| | - Ilka Peters
- Department of General and Visceral Surgery, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (J.S.); (B.M.-S.); (I.P.); (J.H.); (P.H.); (W.U.); (C.B.)
| | - Julian Horn
- Department of General and Visceral Surgery, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (J.S.); (B.M.-S.); (I.P.); (J.H.); (P.H.); (W.U.); (C.B.)
| | | | - Philipp Höhn
- Department of General and Visceral Surgery, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (J.S.); (B.M.-S.); (I.P.); (J.H.); (P.H.); (W.U.); (C.B.)
| | - Waldemar Uhl
- Department of General and Visceral Surgery, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (J.S.); (B.M.-S.); (I.P.); (J.H.); (P.H.); (W.U.); (C.B.)
| | - Chris Braumann
- Department of General and Visceral Surgery, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (J.S.); (B.M.-S.); (I.P.); (J.H.); (P.H.); (W.U.); (C.B.)
- Department of General, Visceral and Vascular Surgery, Evangelische Kliniken Gelsenkirchen, Akademisches Lehrkrankenhaus der Universität Duisburg-Essen, 45879 Gelsenkirchen, Germany
| |
Collapse
|
15
|
Carneiro TJ, Vojtek M, Gonçalves-Monteiro S, Neves JR, de Carvalho ALMB, Marques MPM, Diniz C, Gil AM. Metabolic Impact of Anticancer Drugs Pd 2Spermine and Cisplatin on the Brain of Healthy Mice. Pharmaceutics 2022; 14:259. [PMID: 35213994 PMCID: PMC8880159 DOI: 10.3390/pharmaceutics14020259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
The new palladium agent Pd2Spermine (Spm) has been reported to exhibit promising cytotoxic properties, while potentially circumventing the known disadvantages associated to cisplatin therapeutics, namely acquired resistance and high toxicity. This work presents a nuclear magnetic resonance (NMR) metabolomics study of brain extracts obtained from healthy mice, to assess the metabolic impacts of the new Pd2Spm complex in comparison to that of cisplatin. The proton NMR spectra of both polar and nonpolar brain extracts were analyzed by multivariate and univariate statistics, unveiling several metabolite variations during the time course of exposition to each drug (1-48 h). The distinct time-course dependence of such changes revealed useful information on the drug-induced dynamics of metabolic disturbances and recovery periods, namely regarding amino acids, nucleotides, fatty acids, and membrane precursors and phospholipids. Putative biochemical explanations were proposed, based on existing pharmacokinetics data and previously reported metabolic responses elicited by the same metal complexes in the liver of the same animals. Generally, results suggest a more effective response of brain metabolism towards the possible detrimental effects of Pd2Spm, with more rapid recovery back to metabolites' control levels and, thus, indicating that the palladium drug may exert a more beneficial role than cDDP in relation to brain toxicity.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (J.R.N.)
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - João R. Neves
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (J.R.N.)
| | - Ana L. M. Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - Maria Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Ana M. Gil
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (J.R.N.)
| |
Collapse
|
16
|
Sempere-Bigorra M, Julián-Rochina I, Cauli O. Chemotherapy-Induced Neuropathy and Diabetes: A Scoping Review. Curr Oncol 2021; 28:3124-3138. [PMID: 34436039 PMCID: PMC8395481 DOI: 10.3390/curroncol28040273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 08/15/2021] [Indexed: 01/22/2023] Open
Abstract
Although cancer and diabetes are common diseases, the relationship between diabetes, neuropathy and the risk of developing peripheral sensory neuropathy while or after receiving chemotherapy is uncertain. In this review, we highlight the effects of chemotherapy on the onset or progression of neuropathy in diabetic patients. We searched the literature in Medline and Scopus, covering all entries until 31 January 2021. The inclusion and exclusion criteria were: (1) original article (2) full text published in English or Spanish; (3) neuropathy was specifically assessed (4) the authors separately analyzed the outcomes in diabetic patients. A total of 259 papers were retrieved. Finally, eight articles fulfilled the criteria, and four more articles were retrieved from the references of the selected articles. The analysis of the studies covered the information about neuropathy recorded in 768 cancer patients with diabetes and 5247 control cases (non-diabetic patients). The drugs investigated are chemotherapy drugs with high potential to induce neuropathy, such as platinum derivatives and taxanes, which are currently the mainstay of treatment of various cancers. The predisposing effect of co-morbid diabetes on chemotherapy-induced peripheral neuropathy depends on the type of symptoms and drug used, but manifest at any drug regimen dosage, although greater neuropathic signs are also observed at higher dosages in diabetic patients. The deleterious effects of chemotherapy on diabetic patients seem to last longer, since peripheral neuropathy persisted in a higher proportion of diabetic patients than non-diabetic patients for up to two years after treatment. Future studies investigating the risk of developing peripheral neuropathy in cancer patients with comorbid diabetes need to consider the duration of diabetes, cancer-induced neuropathic effects per se (prior chemotherapy administration), and the effects of previous cancer management strategies such as radiotherapy and surgery.
Collapse
Affiliation(s)
- Mar Sempere-Bigorra
- Department of Nursing, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.)
- Frailty Research Organized Group (FROG), University of Valencia, 46010 Valencia, Spain
| | - Iván Julián-Rochina
- Department of Nursing, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.)
- Frailty Research Organized Group (FROG), University of Valencia, 46010 Valencia, Spain
| | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.)
- Frailty Research Organized Group (FROG), University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
17
|
Babra D, Youn S, Devendra S. Postural orthostatic tachycardia syndrome (POTS) occurring during treatment for breast cancer. BMJ Case Rep 2021; 14:e242472. [PMID: 34353826 PMCID: PMC8344319 DOI: 10.1136/bcr-2021-242472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 11/03/2022] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a common condition of orthostatic intolerance in response to changes in position. We report a case of a middle-aged woman presenting with a new onset of POTS likely due to chemotherapy for treatment of breast cancer. She was started on a trial of a beta blocker, which was effective in controlling her symptoms and heart rate. The objective of this report was to encourage clinicians to consider POTS as a differential diagnosis, while managing patients with symptoms of orthostatic intolerance.
Collapse
Affiliation(s)
- Deshveer Babra
- Acute Medicine, Watford General Hospital, Watford, Hertfordshire, UK
| | - Suhyun Youn
- Acute Medicine, Watford General Hospital, Watford, Hertfordshire, UK
| | - Senan Devendra
- Acute Medicine, Watford General Hospital, Watford, Hertfordshire, UK
| |
Collapse
|
18
|
Merheb D, Dib G, Zerdan MB, Nakib CE, Alame S, Assi HI. Drug-Induced Peripheral Neuropathy: Diagnosis and Management. Curr Cancer Drug Targets 2021; 22:49-76. [PMID: 34288840 DOI: 10.2174/1568009621666210720142542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023]
Abstract
Peripheral neuropathy comes in all shapes and forms and is a disorder which is found in the peripheral nervous system. It can have an acute or chronic onset depending on the multitude of pathophysiologic mechanisms involving different parts of nerve fibers. A systematic approach is highly beneficial when it comes to cost-effective diagnosis. More than 30 causes of peripheral neuropathy exist ranging from systemic and auto-immune diseases, vitamin deficiencies, viral infections, diabetes, etc. One of the major causes of peripheral neuropathy is drug induced disease, which can be split into peripheral neuropathy caused by chemotherapy or by other medications. This review deals with the latest causes of drug induced peripheral neuropathy, the population involved, the findings on physical examination and various workups needed and how to manage each case.
Collapse
Affiliation(s)
- Diala Merheb
- Department of Internal Medicine, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Georgette Dib
- Department of Internal Medicine, Division of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada Alame
- Department of Pediatrics, Clemenceau Medical Center, Faculty of Medical Sciences, Lebanese University, Beirut,, Lebanon
| | - Hazem I Assi
- Department of Internal Medicine Naef K. Basile Cancer Institute American University of Beirut Medical Center Riad El Solh 1107 2020 Beirut, Lebanon
| |
Collapse
|
19
|
Kuo A, Corradini L, Nicholson JR, Smith MT. Assessment of the Anti-Allodynic and Anti-Hyperalgesic Efficacy of a Glycine Transporter 2 Inhibitor Relative to Pregabalin, Duloxetine and Indomethacin in a Rat Model of Cisplatin-Induced Peripheral Neuropathy. Biomolecules 2021; 11:biom11070940. [PMID: 34202809 PMCID: PMC8301897 DOI: 10.3390/biom11070940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin, which is a chemotherapy drug listed on the World Health Organisation's List of Essential Medicines, commonly induces dose-limiting side effects including chemotherapy-induced peripheral neuropathy (CIPN) that has a major negative impact on quality of life in cancer survivors. Although adjuvant drugs including anticonvulsants and antidepressants are used for the relief of CIPN, analgesia is often unsatisfactory. Herein, we used a rat model of CIPN (cisplatin) to assess the effect of a glycine transporter 2 (GlyT2) inhibitor, relative to pregabalin, duloxetine, indomethacin and vehicle. Male Sprague-Dawley rats with cisplatin-induced mechanical allodynia and mechanical hyperalgesia in the bilateral hindpaws received oral bolus doses of the GlyT2 inhibitor (3-30 mg/kg), pregabalin (3-100 mg/kg), duloxetine (3-100 mg/kg), indomethacin (1-10 mg/kg) or vehicle. The GlyT2 inhibitor alleviated both mechanical allodynia and hyperalgesia in the bilateral hindpaws at a dose of 10 mg/kg, but not at higher or lower doses. Pregabalin and indomethacin induced dose-dependent relief of mechanical allodynia but duloxetine lacked efficacy. Pregabalin and duloxetine alleviated mechanical hyperalgesia in the bilateral hindpaws while indomethacin lacked efficacy. The mechanism underpinning pain relief induced by the GlyT2 inhibitor at 10 mg/kg is likely due to increased glycinergic inhibition in the lumbar spinal cord, although the bell-shaped dose-response curve warrants further translational considerations.
Collapse
Affiliation(s)
- Andy Kuo
- Centre for Integrated Preclinical Drug Development, Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Laura Corradini
- Boehringer Ingelheim Pharma GmbH and Co. KG, 88400 Biberach, Germany; (L.C.); (J.R.N.)
| | - Janet R. Nicholson
- Boehringer Ingelheim Pharma GmbH and Co. KG, 88400 Biberach, Germany; (L.C.); (J.R.N.)
| | - Maree T. Smith
- Centre for Integrated Preclinical Drug Development, Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
- Correspondence:
| |
Collapse
|
20
|
Eltamany EE, Elhady SS, Nafie MS, Ahmed HA, Abo-Elmatty DM, Ahmed SA, Badr JM, Abdel-Hamed AR. The Antioxidant Carrichtera annua DC. Ethanolic Extract Counteracts Cisplatin Triggered Hepatic and Renal Toxicities. Antioxidants (Basel) 2021; 10:825. [PMID: 34064100 PMCID: PMC8224350 DOI: 10.3390/antiox10060825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cisplatin is a powerful anti-neoplastic drug that displays multi-organ toxicity, especially to the liver and kidneys. Consumption of phytomedicines is a promising strategy to overcome the side effects of chemotherapy. Carrichtera annua extract proved to possess potent antioxidant activity. Its protective potential against cisplatin-induced hepato-nephrotoxicity was scrutinized. Moreover, a phytochemical study was conducted on C. annua ethyl acetate fraction which led to the isolation of five known phenolic compounds. Structure determination was achieved utilizing 1H- and 13C-NMR spectral analyses. The isolated phytochemicals were trans-ferulic acid (1), kaempferol (2), p-coumaric acid (3), luteolin (4) and quercetin (5). Regarding our biological study, C. annua has improved liver and kidney deteriorated functions caused by cisplatin administration and attenuated the histopathological injury in their tissues. Serum levels of ALT, AST, blood urea nitrogen and creatinine were significantly decreased. C. annua has modulated the oxidative stress mediated by cisplatin as it lowered MDA levels while enhanced reduced-GSH concentrations. More importantly, the plant has alleviated cisplatin triggered inflammation, apoptosis via reduction of INFγ, IL-1β and caspase-3 production. Moreover, mitochondrial injury has been ameliorated as remarkable increase of mtDNA was noted. Furthermore, the MTT assay proved the combination of cisplatin-C. annua extract led to growth inhibition of MCF-7 cells in a notable additive way. Additionally, we have investigated the binding affinity of C. annua constituents with caspase-3 and IFN-γ proteins using molecular simulation. All the isolated compounds exhibited good binding affinities toward the target proteins where quercetin possessed the most auspicious caspase-3 and IFN-γ inhibition activities. Our results put forward that C. annua is a promising candidate to counteract chemotherapy side effects and the observed activity could be attributed to the synergism between its phytochemicals.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (S.A.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Haidy A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (S.A.A.)
- Ismailia Health Affairs Directorate, Ismailia 41525, Egypt
| | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (D.M.A.-E.); (A.R.A.-H.)
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (S.A.A.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (S.A.A.)
| | - Asmaa R. Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (D.M.A.-E.); (A.R.A.-H.)
| |
Collapse
|
21
|
Siavashy S, Soltani M, Ghorbani-Bidkorbeh F, Fallah N, Farnam G, Mortazavi SA, Shirazi FH, Tehrani MHH, Hamedi MH. Microfluidic platform for synthesis and optimization of chitosan-coated magnetic nanoparticles in cisplatin delivery. Carbohydr Polym 2021; 265:118027. [PMID: 33966822 DOI: 10.1016/j.carbpol.2021.118027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
In this study, magnetic core/chitosan shell Nanoparticles (NPs) containing cisplatin were synthesized via cisplatin complexation with tripolyphosphate as the chitosan crosslinker using two different procedures: a conventional batch flow method and a microfluidic approach. An integrated microfluidic device composed of three stages was developed to provide precise and highly controllable mixing. The comparison of the results revealed that NPs synthesized in microchannels were monodisperse 104 ± 14.59 nm (n = 3) in size with optimal morphological characteristics, whereas polydisperse 423 ± 53.33 nm (n = 3) nanoparticles were obtained by the conventional method. Furthermore, cisplatin was loaded in NPs without becoming inactivated, and the microfluidic technique demonstrated higher encapsulation efficiency, controlled release, and consequently lower IC50 values during exposure to the A2780 cell line proving that microfluidic synthesized NPs were able to enter the cells and release the drug more efficiently. The developed microfluidic platform presents valuable features that could potentially provide the clinical translation of NPs in drug delivery.
Collapse
Affiliation(s)
- Saeed Siavashy
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
| | - Fatemeh Ghorbani-Bidkorbeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Newsha Fallah
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golrokh Farnam
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirazi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
22
|
Razak S, Afsar T, Bibi N, Abulmeaty M, Qamar W, Almajwal A, Inam A, Al Disi D, Shabbir M, Bhat MA. Molecular docking, pharmacokinetic studies, and in vivo pharmacological study of indole derivative 2-(5-methoxy-2-methyl-1H-indole-3-yl)-N'-[(E)-(3-nitrophenyl) methylidene] acetohydrazide as a promising chemoprotective agent against cisplatin induced organ damage. Sci Rep 2021; 11:6245. [PMID: 33737575 PMCID: PMC7973782 DOI: 10.1038/s41598-021-84748-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Cisplatin is an efficient anticancer drug against various types of cancers however, its usage involves side effects. We investigated the mechanisms of action of indole derivative, 2-(5-methoxy-2-methyl-1H-indol-3-yl)-N'-[(E)-(3-nitrophenyl) methylidene] acetohydrazide (MMINA) against anticancer drug (cisplatin) induced organ damage using a rodent model. MMINA treatment reversed Cisplatin-induced NO and malondialdehyde (MDA) augmentation while boosted the activity of glutathione peroxidase (GPx), and superoxide dismutase (SOD). The animals were divided into five groups (n = 7). Group1: Control (Normal) group, Group 2: DMSO group, Group 3: cisplatin group, Group 4: cisplatin + MMINA group, Group 5: MMINA group. MMINA treatment normalized plasma levels of biochemical enzymes. We observed a significant decrease in CD4+COX-2, STAT3, and TNF-α cell population in whole blood after MMINA dosage. MMINA downregulated the expression of various signal transduction pathways regulating the genes involved in inflammation i.e. NF-κB, STAT-3, IL-1, COX-2, iNOS, and TNF-α. The protein expression of these regulatory factors was also downregulated in the liver, kidney, heart, and brain. In silico docking and dynamic simulations data were in agreement with the experimental findings. The physiochemical properties of MMINA predicted it as a good drug-like molecule and its mechanism of action is predictably through inhibition of ROS and inflammation.
Collapse
Affiliation(s)
- Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Mahmoud Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmocology and Toxicology, Central Laboratory, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Anam Inam
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Dara Al Disi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Maria Shabbir
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Spasić J, Radosavljević D, Nagorni-Obradović L. The influence of genetic polymorphisms on the toxicity of platinum-based chemotherapy in the treatment of non-small cell lung cancer. MEDICINSKI PODMLADAK 2021. [DOI: 10.5937/mp72-31940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains one of the most frequent and the deadliest of malignant diseases throughout the world. Target and immune therapy have revolutionalized the treatment of this disease, but platinum-based chemotherapy still has a place in the treatment algorithm. The toxicity profile of cisplatin is well known and can be a limiting factor in the adequate treatment delivery of the drug. There are important inter-individual differences in the efficacy and the toxicity of all chemotherapy drugs, which cannot be explained solely by the characteristics of the tumor. In order to define predictive factors for the occurrence of toxic effects, numerous genetic alterations have been investigated - especially single nucleotide polymorphisms (SNPs). The investigated genes are those involved in DNA repair mechanisms, signal pathways of apoptosis, DNA synthesis, transport mechanisms, but often with inconclusive and opposing results. It is clear that the effect of SNPs on the occurrence of cisplatin toxicity cannot be explained by investigating just one or several genes alone, but epigenetic interactions must be investigated, as well as interactions with outside factors. The study of SNPs is, however, a relatively simple and inexpensive method and, as such, can be used as one of the prognostic tools for everyday practice.
Collapse
|
24
|
Stankovic JSK, Selakovic D, Mihailovic V, Rosic G. Antioxidant Supplementation in the Treatment of Neurotoxicity Induced by Platinum-Based Chemotherapeutics-A Review. Int J Mol Sci 2020; 21:E7753. [PMID: 33092125 PMCID: PMC7589133 DOI: 10.3390/ijms21207753] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer represents one of the most pernicious public health problems with a high mortality rate among patients worldwide. Chemotherapy is one of the major therapeutic approaches for the treatment of various malignancies. Platinum-based drugs (cisplatin, oxaliplatin, carboplatin, etc.) are highly effective chemotherapeutic drugs used for the treatment of several types of malignancies, but their application and dosage are limited by their toxic effects on various systems, including neurotoxicity. Simultaneously, researchers have tried to improve the survival rate and quality of life of cancer patients and decrease the toxicity of platinum-containing drugs by combining them with non-chemotherapy-based drugs, dietary supplements and/or antioxidants. Additionally, recent studies have shown that the root cause for the many side effects of platinum chemotherapeutics involves the production of reactive oxygen species (ROS) in naive cells. Therefore, suppression of ROS generation and their inactivation with antioxidants represents an appropriate approach for platinum drug-induced toxicities. The aim of this paper is to present an updated review of the protective effects of different antioxidant agents (vitamins, dietary antioxidants and supplements, medicaments, medicinal plants and their bioactive compounds) against the neurotoxicity induced by platinum-based chemotherapeutics. This review highlights the high potential of plant antioxidants as adjuvant strategies in chemotherapy with platinum drugs.
Collapse
Affiliation(s)
- Jelena S. Katanic Stankovic
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia;
| | - Dragica Selakovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Vladimir Mihailovic
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| |
Collapse
|
25
|
Kandeil MA, Gomaa SB, Mahmoud MO. The effect of some natural antioxidants against cisplatin-induced neurotoxicity in rats: behavioral testing. Heliyon 2020; 6:e04708. [PMID: 32885073 PMCID: PMC7452551 DOI: 10.1016/j.heliyon.2020.e04708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/06/2019] [Accepted: 08/10/2020] [Indexed: 11/16/2022] Open
Abstract
Background Cisplatin (CP) is a common antineoplastic agent widely used to treat a broad spectrum of cancers. However, its usage for cancer treatment was restricted due to various side effects such as neurotoxicity, nephrotoxicity, hepatotoxicity and ototoxicity. Neurotoxicity in patients who have undergone a complete course of chemotherapy is clinically evident. CP administration caused problems in rats with memory and learning. Methods The effect of combination of CP with either thymoquinone (TQ) or geraniol (Ger) on cell viability of human breast cancer cells (MCF-7) was detected by MTT assay. Forty male Wistar albino rats, healthy and adult, were divided into four groups: normal control, CP-treated group, CP + TQ-treated group and CP + Ger-treated group. Results Our results demonstrated that prophylactic treatment with either TQ or Ger plus CP enhanced the anticancer effect of CP in MCF-7 cell line. In vivo study showed that CP-treated rats had higher depressives like behavior in open field and Morris water maze test while prophylactic treatment with either TQ or Ger and CP significantly enhanced the performance of depressive-like behavior. Also, histopathological evaluation of brain tissues proved the neurotoxic effect of CP and the possible protective activity of either TQ or Ger. Conclusion The findings of the present work revealed that TQ or Ger along with CP may enhance the antitumor effect of CP. Also, spontaneous administration of CP with either TQ or Ger as natural antioxidants may prevent CP-induced neurotoxicity in rats through diminishing the memory and learning impairment.
Collapse
Affiliation(s)
- Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Safaa B Gomaa
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed O Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
26
|
Thakur S, Singh H, Singh A, Kaur S, Sharma A, Singh SK, kaur S, Kaur G, Jain SK. Thermosensitive injectable hydrogel containing carboplatin loaded nanoparticles: A dual approach for sustained and localized delivery with improved safety and therapeutic efficacy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Trinh T, Park SB, Murray J, Pickering H, Lin CSY, Martin A, Friedlander M, Kiernan MC, Goldstein D, Krishnan AV. Neu-horizons: neuroprotection and therapeutic use of riluzole for the prevention of oxaliplatin-induced neuropathy-a randomised controlled trial. Support Care Cancer 2020; 29:1103-1110. [PMID: 32607598 DOI: 10.1007/s00520-020-05591-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
TRIAL DESIGN Peripheral neuropathy is a commonly reported adverse effect of oxaliplatin treatment, representing a significant limitation which may require discontinuation of effective therapy. The present study investigated the neuroprotective potential of riluzole in patients undergoing oxaliplatin treatment in a randomised-controlled trial comparing riluzole and placebo-control. METHODS Fifty-two patients (17 females, 58.1 ± 12.7 years) receiving oxaliplatin treatment were randomised into either a treatment (50 mg riluzole) or lactose placebo group. The primary outcome measure was the total neuropathy score-reduced (TNSr). Secondary outcome measures include nerve excitability measures, 9-hole pegboard and FACT-GOG NTX questionnaire. Patients were assessed at baseline, pre-cycle 10 or 12, 4-week and 12-week post-treatment. RESULTS Both the treatment and placebo groups developed objective and patient reported evidence of neurotoxicity over the course of oxaliplatin treatment, although there were no significant differences across any parameters between the two groups. However, across follow-up assessments, the treatment group experienced greater neuropathy, represented by a higher TNSr score at 4-week post-chemotherapy of 8.3 ± 2.7 compared with 4.6 ± 3.6 (p = 0.032) which was sustained at 12-week post-treatment (p = 0.089). Similarly, patients in the treatment group reported worse symptoms with a FACT-GOG NTX score of 37.4 ± 10.2 compared with 43.3 ± 7.4 (p = 0.02) in the placebo group at 4-week post-treatment. CONCLUSION This study is the first to provide an objective clinical investigation of riluzole in oxaliplatin-induced peripheral neuropathy employing both functional and neurophysiological measures. Although the recruitment target was not reached, the results do not show any benefit of riluzole in minimising neuropathy and may suggest that riluzole worsens neuropathy associated with oxaliplatin treatment.
Collapse
Affiliation(s)
- Terry Trinh
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Susanna B Park
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Jenna Murray
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Hannah Pickering
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Cindy S-Y Lin
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Andrew Martin
- National Health and Medical Research Centre Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Michael Friedlander
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, Sydney, Australia
| | | | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia.,Department of Medical Oncology, Prince of Wales Hospital, Randwick, Sydney, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia. .,Department of Neurological Sciences, Prince of Wales Hospital, Level 2 High Street, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|
28
|
Bondad N, Boostani R, Barri A, Elyasi S, Allahyari A. Protective effect of N-acetylcysteine on oxaliplatin-induced neurotoxicity in patients with colorectal and gastric cancers: A randomized, double blind, placebo-controlled, clinical trial. J Oncol Pharm Pract 2020; 26:1575-1582. [PMID: 32063109 DOI: 10.1177/1078155219900788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Neuropathy is one of the most prevalent and dose-limiting side effects of platinum chemotherapeutic agents. N-acetylcysteine is an antioxidant thiol which is able to increase whole blood concentration of glutathione, which may be protective against chemotherapy-induced neuropathy. The aim of this study was to evaluate the effect of N-acetylcysteine on neurotoxicity induced by oxaliplatin in patients with gastric or colorectal cancers. METHODS During this randomized, double-blinded, placebo-controlled clinical trial, the preventive effect of N-acetylcysteine effervescent tablets was assessed in comparison with placebo, on neuropathy occurrence. Thirty-two patients with colorectal or gastric cancer randomly received N-acetylcysteine (two 600 mg tablets) or placebo tablets 1 h before receiving oxaliplatin in dose in XELOX (oxaliplatin and capecitabine regimen) for eight courses of chemotherapy. Neuropathy severity was assessed after eight courses of chemotherapy based on National Cancer Institute Common Terminology for Adverse Events (NCI-CTCAE) criteria neuropathy grading scale and also sensory and motor electrophysiological assessment was performed by a neurologist. RESULTS The NCI-CTCAE scale grade of patients in intervention group was significantly lower than placebo group after eight course of oxaliplatin (P = 0.01); however, the sensory electrophysiological assessment result was not significantly different (P = 0.501). No patient in both group had motor electrophysiological changes. CONCLUSION The results of this study showed that N-acetylcysteine could reduce the incidence of the neuropathy induced by oxaliplatin and delay its occurrence in patients with gastric or colorectal cancers.
Collapse
Affiliation(s)
- Nazanin Bondad
- Department of Internal Medicine, Mashhad University of Medical sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Barri
- Department of Hematology and Medical Oncology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences, Mashhad, Iran
| | - Abolghasem Allahyari
- Department of Hematology and Medical Oncology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Porceddu SV, Scotté F, Aapro M, Salmio S, Castro A, Launay-Vacher V, Licitra L. Treating Patients With Locally Advanced Squamous Cell Carcinoma of the Head and Neck Unsuitable to Receive Cisplatin-Based Therapy. Front Oncol 2020; 9:1522. [PMID: 32039012 PMCID: PMC6987395 DOI: 10.3389/fonc.2019.01522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Concurrent chemoradiotherapy with high-dose cisplatin (100 mg/m2 every 3 weeks) is the preferred regimen with curative intent for patients with unresected locally advanced squamous cell carcinoma of the head and neck (LA SCCHN). This treatment is associated with acute and late toxicities, including myelosuppression, severe nausea/vomiting, irreversible renal failure, hearing loss, and neurotoxicity. Because of cisplatin's safety profile, treatment adherence to high-dose cisplatin can be suboptimal. Patients commonly receive less than the total cumulative target dose of 300 mg/m2 or the minimum recommended dose of 200 mg/m2, which can have a negative impact on locoregional control and survival. Alternatively, cetuximab plus radiotherapy may be most suitable for patients at high risk of non-adherence to high-dose cisplatin. We discuss the baseline characteristics dictating the unsuitability/borderline unsuitability of cisplatin and the available alternative evidence-based treatment regimens for patients with LA SCCHN. We non-systematically reviewed published phase II and III trials and retrospective analyses of high-dose cisplatin-based chemoradiation in LA SCCHN conducted between 1987 and 2018, focusing on recent key phase III studies. We defined the baseline characteristics and associated prescreening tests to determine unsuitability and borderline unsuitability for high-dose cisplatin in combination with radiotherapy in patients with LA SCCHN. Patients with any pre-existing comorbidities that may be exacerbated by high-dose cisplatin treatment can be redirected to a non-cisplatin-based option to minimize the risk of treatment non-adherence. High-dose cisplatin plus radiotherapy remains the preferred treatment for fit patients with unresected LA SCCHN; patients who are unsuitable or borderline unsuitable for high-dose cisplatin could be identified using available tests for potential comorbidities and should be offered alternative treatments, such as cetuximab plus radiotherapy.
Collapse
Affiliation(s)
- Sandro V Porceddu
- University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Florian Scotté
- Department of Medical Oncology and Supportive Care, Hôpital Foch, Suresnes, France
| | - Matti Aapro
- Genolier Cancer Center, Genolier, Switzerland
| | | | - Ana Castro
- Lenitudes Medical Center & Research, Santa Maria da Feira, Portugal
| | | | - Lisa Licitra
- Fondazione IRCCS Istituto Nazionale Tumori and University of Milan, Milan, Italy
| |
Collapse
|
30
|
Ruggiero A, Trombatore G, Triarico S, Capozza MA, Coccia P, Attina G, Mastrangelo S, Maurizi P. Cisplatin Toxicity in Children with Malignancy. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2019; 12:1603-1611. [DOI: 10.13005/bpj/1791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Platinum’ derivates are antineoplastic agents widely adopted for their efficacy for the treatment of many pediatric cancers. The use of cisplatin has positively influenced the results of the cure of different childhood malignancies. However, cisplatin-based treatments are limited by the risk of severe and progressive toxicities, such as oto- or nephrotoxicity, that can be more serious in very young children expecially when high cumulative doses and/or radiotherapy is administered. A correct knowledge of the cisplatin’ pharmacological features might be of interest for clinicians in order to manage its potential toxicities. Based on the positive trend in the cure of children with cancer, it is crucial that all children receiving cisplatin-based chemotherapy have and appropriate and long-term follow-up to improve their quality of life.
Collapse
Affiliation(s)
- Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| | - Giovanna Trombatore
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| | - Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| | - Michele Antonio Capozza
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| | - Paola Coccia
- Pediatric Hemato-oncology Unit, Ospedale Salesi, Azienda Ospedali Riuniti Ancona, Ancona, Italy
| | - Giorgio Attina
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A .Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Roma, Italy
| |
Collapse
|
31
|
Pokhriyal R, Hariprasad R, Kumar L, Hariprasad G. Chemotherapy Resistance in Advanced Ovarian Cancer Patients. BIOMARKERS IN CANCER 2019; 11:1179299X19860815. [PMID: 31308780 PMCID: PMC6613062 DOI: 10.1177/1179299x19860815] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022]
Abstract
Ovarian cancer is the seventh most common gynaecologic malignancy seen in women. Majority of the patients with ovarian cancer are diagnosed at the advanced stage making prognosis poor. The standard management of advanced ovarian cancer includes tumour debulking surgery followed by chemotherapy. Various types of chemotherapeutic regimens have been used to treat advanced ovarian cancer, but the most promising and the currently used standard first-line treatment is carboplatin and paclitaxel. Despite improved clinical response and survival to this combination of chemotherapy, numerous patients either undergo relapse or succumb to the disease as a result of chemotherapy resistance. To understand this phenomenon at a cellular level, various macromolecules such as DNA, messenger RNA and proteins have been developed as biomarkers for chemotherapy response. This review comprehensively summarizes the problem that pertains to chemotherapy resistance in advanced ovarian cancer and provides a good overview of the various biomarkers that have been developed in this field.
Collapse
Affiliation(s)
- Ruchika Pokhriyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Roopa Hariprasad
- Division of Clinical Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Lalit Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
32
|
Gattoni G, Bernocchi G. Calcium-Binding Proteins in the Nervous System during Hibernation: Neuroprotective Strategies in Hypometabolic Conditions? Int J Mol Sci 2019; 20:E2364. [PMID: 31086053 PMCID: PMC6540041 DOI: 10.3390/ijms20092364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium-binding proteins (CBPs) can influence and react to Ca2+ transients and modulate the activity of proteins involved in both maintaining homeostatic conditions and protecting cells in harsh environmental conditions. Hibernation is a strategy that evolved in vertebrate and invertebrate species to survive in cold environments; it relies on molecular, cellular, and behavioral adaptations guided by the neuroendocrine system that together ensure unmatched tolerance to hypothermia, hypometabolism, and hypoxia. Therefore, hibernation is a useful model to study molecular neuroprotective adaptations to extreme conditions, and can reveal useful applications to human pathological conditions. In this review, we describe the known changes in Ca2+-signaling and the detection and activity of CBPs in the nervous system of vertebrate and invertebrate models during hibernation, focusing on cytosolic Ca2+ buffers and calmodulin. Then, we discuss these findings in the context of the neuroprotective and neural plasticity mechanisms in the central nervous system: in particular, those associated with cytoskeletal proteins. Finally, we compare the expression of CBPs in the hibernating nervous system with two different conditions of neurodegeneration, i.e., platinum-induced neurotoxicity and Alzheimer's disease, to highlight the similarities and differences and demonstrate the potential of hibernation to shed light into part of the molecular mechanisms behind neurodegenerative diseases.
Collapse
Affiliation(s)
- Giacomo Gattoni
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Graziella Bernocchi
- Former Full Professor of Zoology, Neurogenesis and Comparative Neuromorphology, (Residence address) Viale Matteotti 73, I-27100 Pavia, Italy.
| |
Collapse
|
33
|
Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem 2019; 88:102925. [PMID: 31003078 DOI: 10.1016/j.bioorg.2019.102925] [Citation(s) in RCA: 996] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022]
Abstract
Cisplatin or (SP-4-2)-diamminedichloridoplatinum(II) is one of the most potential and widely used drugs for the treatment of various solid cancers such as testicular, ovarian, head and neck, bladder, lung, cervical cancer, melanoma, lymphomas and several others. Cisplatin exerts anticancer activity via multiple mechanisms but its most acceptable mechanism involves generation of DNA lesions by interacting with purine bases on DNA followed by activation of several signal transduction pathways which finally lead to apoptosis. However, side effects and drug resistance are the two inherent challenges of cisplatin which limit its application and effectiveness. Reduction of drug accumulation inside cancer cells, inactivation of drug by reacting with glutathione and metallothioneins and faster repairing of DNA lesions are responsible for cisplatin resistance. To minimize cisplatin side effects and resistance, combination therapies are used and have proven more effective to defect cancers. This article highlights a systematic description on cisplatin which includes a brief history, synthesis, action mechanism, resistance, uses, side effects and modulation of side effects. It also briefly describes development of platinum drugs from very small cisplatin complex to very large next generation nanocarriers conjugated platinum complexes.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
34
|
Artiaga G, Iglesias-Jiménez A, Moreno-Gordaliza E, Mena ML, Gómez-Gómez MM. Differences in binding kinetics, bond strength and adduct formation between Pt-based drugs and S- or N-donor groups: A comparative study using mass spectrometry techniques. Eur J Pharm Sci 2019; 132:96-105. [PMID: 30844436 DOI: 10.1016/j.ejps.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 10/27/2022]
Abstract
Pt-S and Pt-N interactions resulting from the coordination of cisplatin, oxaliplatin and carboplatin to two synthetic peptides that differ from each other in one amino acid (Met or His) have been thoroughly studied in this work. The degree of Pt-binding was determined by inductively coupled plasma mass spectrometry after the separation of the Pt-complexes from the unreacted drugs by size exclusion chromatography. Cisplatin and oxaliplatin showed high affinity for the peptides from the first hours of incubation, although the peptides required longer incubation times to obtain the same platination degrees with cisplatin than with oxaliplatin. Once the reactions reached their maximum binding degrees, the complexes with oxaliplatin began to dissociate, revealing binding reversibility, while a pseudo steady-state was observed for cisplatin until the last day of incubation. Conversely, the equilibrium was not reached for carboplatin and the His-peptide after 30 days, showing a binding degree of 16%, versus 78% for the Met-peptide. The S-donor group also presented an important influence on the reactivity and the adduct formation. The reaction rate for the Met-peptide was faster than the hydrolysis of oxaliplatin and carboplatin, and all the drugs, except oxaliplatin, were able to coordinate up to 3 different donor groups, which were identified by nanospray mass spectrometry. Since structural characterization of metal-complexes often represents an analytical challenge during electrophoretic separations, the strength of Pt-Met and Pt-His bonds was also evaluated under these conditions. The nature of the electrophoretic agents and the incubation times used were the parameters that most affected the stability. Higher Pt losses were found for the Met-peptide (35-90%) than for the His-peptide (16-48%), indicating that Pt-Met bonds were kinetically preferred while Pt-His interactions were thermodynamically favored.
Collapse
Affiliation(s)
- G Artiaga
- Analytical Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - A Iglesias-Jiménez
- Analytical Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - E Moreno-Gordaliza
- Analytical Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - M L Mena
- Analytical Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - M M Gómez-Gómez
- Analytical Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
35
|
Heuvel SASVD, Doorduin J, Steegers MAH, Bronkhorst EM, Radema SA, Vissers KCP, Wal SEIVD, Alfen NV. Simple surface EMG recording as a noninvasive screening method for the detection of acute oxaliplatin-induced neurotoxicity: a feasibility pilot study. Neurosci Lett 2019; 699:184-188. [PMID: 30753911 DOI: 10.1016/j.neulet.2019.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/30/2019] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Oxaliplatin-induced neurotoxicity can be a dose-limiting side effect to effective chemotherapy. Acute hyperexcitability causes cold-evoked sensory and motor symptoms, which resemble neuromyotonia. An accessible and non-invasive technique for early detection could help select patients for potential treatments. We assessed the use of a simple surface electromyography (sEMG) in patients directly after oxaliplatin infusion. METHODS In patients with colorectal cancer, acute neurotoxicity was evaluated by means of a physical examination, a questionnaire, and sEMG directly after the second and fourth cycle of oxaliplatin. Questionnaires were also assessed 1 day after infusion. RESULTS 14 patients were measured after the second cycle and 8 patients were also measured after the fourth cycle of oxaliplatin. All patients reported to a variable degree oxaliplatin induced neurotoxicity symptoms: sensitivity to touching cold or swallowing cold items were reported as most severe. Clinical signs of hyperexcitability were observed in 55% of the measurements. Spontaneous activity compatible with neuromyotonia was observed in 82% of the sEMG recordings. CONCLUSIONS Patient reported symptoms, physical examination and simple sEMG are complementary measurements to detect acute oxaliplatin induced neurotoxicity. After further validation, sEMG recording can be used as a simple objective screenings tool to detect nerve hyperexcitability directly after oxaliplatin administration.
Collapse
Affiliation(s)
- Sandra A S van den Heuvel
- Expertise center for Pain and Palliative Medicine, Department of Anesthesiology and Pain Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jonne Doorduin
- Donders Institute for Brain Cognition and Behavior, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique A H Steegers
- Expertise center for Pain and Palliative Medicine, Department of Anesthesiology and Pain Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewald M Bronkhorst
- Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra A Radema
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kris C P Vissers
- Expertise center for Pain and Palliative Medicine, Department of Anesthesiology and Pain Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Selina E I van der Wal
- Expertise center for Pain and Palliative Medicine, Department of Anesthesiology and Pain Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nens van Alfen
- Donders Institute for Brain Cognition and Behavior, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Trendowski MR, El Charif O, Dinh PC, Travis LB, Dolan ME. Genetic and Modifiable Risk Factors Contributing to Cisplatin-induced Toxicities. Clin Cancer Res 2018; 25:1147-1155. [PMID: 30305294 DOI: 10.1158/1078-0432.ccr-18-2244] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/07/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022]
Abstract
Effective administration of traditional cytotoxic chemotherapy is often limited by off-target toxicities. This clinical dilemma is epitomized by cisplatin, a platinating agent, which has potent antineoplastic activity due to its affinity for DNA and other intracellular nucleophiles. Despite its efficacy against many adult-onset and pediatric malignancies, cisplatin elicits multiple off-target toxicities that can not only severely impact a patient's quality of life but also lead to dose reductions or the selection of alternative therapies that can ultimately affect outcomes. Without an effective therapeutic measure by which to successfully mitigate many of these symptoms, there have been attempts to identify a priori those individuals who are more susceptible to developing these sequelae through studies of genetic and nongenetic risk factors. Older age is associated with cisplatin-induced ototoxicity, neurotoxicity, and nephrotoxicity. Traditional genome-wide association studies have identified single-nucleotide polymorphisms in ACYP2 and WFS1 associated with cisplatin-induced hearing loss. However, validating associations between specific genotypes and cisplatin-induced toxicities with enough stringency to warrant clinical application remains challenging. This review summarizes the current state of knowledge with regard to specific adverse sequelae following cisplatin-based therapy, with a focus on ototoxicity, neurotoxicity, nephrotoxicity, myelosuppression, and nausea/emesis. We discuss variables (genetic and nongenetic) contributing to these detrimental toxicities and currently available means to prevent or treat their occurrence.
Collapse
Affiliation(s)
- Matthew R Trendowski
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Omar El Charif
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Paul C Dinh
- Indiana University, Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Lois B Travis
- Indiana University, Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
37
|
Stevens SM, McClelland CM, Trusheim JE, Lee MS. Carboplatin-associated Cranial Neuropathy. Neuroophthalmology 2018; 42:302-305. [PMID: 30258477 PMCID: PMC6152513 DOI: 10.1080/01658107.2017.1419367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/20/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022] Open
Abstract
Carboplatin is a platinum-based chemotherapeutic agent used for the treatment of many solid tumors. Peripheral neuropathy is a common side effect; but, to our knowledge, ocular motor cranial neuropathies have not been reported in the literature. We describe a case of persistent third and fourth nerve palsies after systemic administration of intra-arterial carboplatin for glioblastoma multiforme. Neither nerve regained function after carboplatin was stopped.
Collapse
Affiliation(s)
- Shanlee M. Stevens
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Collin M. McClelland
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - John E. Trusheim
- Department of Neuro-Oncology, Abbott Northwestern Hospital, Minneapolis, Minnesota, USA
| | - Michael S. Lee
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
38
|
Mondal J, Patra M, Panigrahi AK, Khuda-Bukhsh AR. Improved drug carriage and protective potential against Cisplatin-induced toxicity using Boldine-loaded PLGA nanoparticles. J Ayurveda Integr Med 2018; 11:24-36. [PMID: 30115410 PMCID: PMC7125378 DOI: 10.1016/j.jaim.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/06/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Background Cisplatin is a widely-used potent anti-cancer drug having severe side-effects precluding its sustained use. Objectives Poly (lactide-co-glycolide) (PLGA)-nanoparticles loaded Boldine, an antioxidant ingredient of ethanolic extract of Boldo plant (Peumus boldus) was tested in cancer mice model, Mus musculus to examine if it could reduce unwanted Cisplatin-induced toxicity in normal tissue. Material and methods Nano-encapsulation of Boldine was done by following the standardized solvent displacement method. Physico-chemical characterization of PLGA-encapsulated nano-Boldine (NBol) was accomplished through analyses of various spectroscopic techniques. Status of major antioxidant enzymes, functional markers, and lipid peroxidation (LPO) was also determined in certain tissue and serum samples. Percentage of cells undergoing cytotoxic death, Reactive oxygen species (ROS) accumulation and mitochondrial functioning were analyzed in both normal and cancer mice. Nanoscale changes in chromatin organization were assessed by Transmission electron microscopy (TEM). mRNA and protein expressions of Top II, Bax, Bcl-2, Cyt c, caspase 3 were studied by RT-PCR, immunoblot and immunofluorescence. Results NBol had faster mobility, site-specific action and ability of sustained particle release. NBol readily entered cells, prevented Cisplatin to intercalate with dsDNA resulting in reduction of chromatin condensation, with corresponding changes in ROS levels, mitochondrial functioning and antioxidant enzyme activities, leading to reduction in Deoxyribose nucleic acid (DNA) damage and cytotoxic cell death. Expression pattern of apoptotic genes like Top II, p53, Bax, Bcl-2, cytochrome c and caspase-3 suggested greater cytoprotective potentials of NBol in normal tissues. Conclusions Compared to Boldine (Bol), NBol had better ability of drug carriage and protective potentials (29.00% approximately) against Cisplatin-induced toxicity. Combinational therapeutic use of PLGA-NBol can reduce unwanted Cisplatin-induced cellular toxicity facilitating use of Cisplatin. PLGA-nano Boldine (NBol) has been physico-chemically and functionally studied. NBol has faster cellular entry, mobility, action and can cross blood–brain-barrier. Toxicity biomarkers studied suggest NBol to protect liver and kidney toxicity. NBol intercalates with DNA competitively and hinders Cisplatin intercalation. NBol presumably acts through p53 dependent Bax/Bcl2 signalling pathway.
Collapse
Affiliation(s)
- Jesmin Mondal
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, India
| | - Mousumi Patra
- Molecular Biology Laboratory, Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, India
| | - Ashis Kumar Panigrahi
- Fisheries and Aquaculture Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, India
| | - Anisur Rahman Khuda-Bukhsh
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, India.
| |
Collapse
|
39
|
Donertas B, Unel CC, Erol K. Cannabinoids and agmatine as potential therapeutic alternatives for cisplatin-induced peripheral neuropathy. J Exp Pharmacol 2018; 10:19-28. [PMID: 29950907 PMCID: PMC6018893 DOI: 10.2147/jep.s162059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cisplatin is a widely used antineoplastic agent in the treatment of various cancers. Peripheral neuropathy is a well-known side effect of cisplatin and has the potential to result in limiting and/or reducing the dose, decreasing the quality of life. Unfortunately, the mechanism for cisplatin-induced neuropathy has not been completely elucidated. Currently, available treatments for neuropathic pain (NP) are mostly symptomatic, insufficient and are often linked with several detrimental side effects; thus, effective treatments are needed. Cannabinoids and agmatine are endogenous modulators that are implicated in painful states. This review explains the cisplatin-induced neuropathy and antinociceptive effects of cannabinoids and agmatine in animal models of NP and their putative therapeutic potential in cisplatin-induced neuropathy.
Collapse
Affiliation(s)
- Basak Donertas
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Cigdem Cengelli Unel
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Kevser Erol
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
40
|
Harris HM, Gul W, ElSohly MA, Sufka KJ. Effects of Cannabidiol and a Novel Cannabidiol Analog against Tactile Allodynia in a Murine Model of Cisplatin-Induced Neuropathy: Enhanced Effects of Sub-Analgesic Doses of Morphine. Med Cannabis Cannabinoids 2018; 1:54-59. [PMID: 34676322 DOI: 10.1159/000489077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/10/2018] [Indexed: 11/19/2022] Open
Abstract
Objective This research examined whether a cannabidiol (CBD)-opioid pharmacotherapy could attenuate cisplatin-induced tactile allodynia. Methods Mice (C57BL/6) were given 6 doses of 2.3 mg/kg cisplatin intraperitoneally (IP) on alternating days to induce tactile allodynia as quantified using an electric von Frey (eVF). Test groups in Experiment 1 received either vehicle, 0.1 or 2.5 mg/kg morphine, 1.0 or 2.0 CBD, or the 2 drugs in combination. Test groups in Experiment 2 received either vehicle, 0.1 or 2.5 mg/kg morphine, 1.0, 2.0, 3.0, or 4.0 mg/kg NB2111 (a long-acting CBD analogue), or the 2 drugs in combination. Drugs were administered IP 45 min before eVF assessment. Results Cisplatin produced tactile allodynia that was attenuated by 2.5 mg/kg morphine. Both CBD and NB2111 produced dose-dependent attenuation of tactile allodynia. CBD and NB2111, given in combination with sub-analgesic doses of morphine, produced attenuation of tactile allodynia equivalent to 2.5 mg/kg morphine. Conclusions While both CBD and NB2111, either alone or in combination with sub-analgesic doses of opioids, exhibited analgesic effects, NB2111 could be capable of superior analgesia over time by virtue of enhanced pharmacokinetics.
Collapse
Affiliation(s)
- Hannah Marie Harris
- Department of Psychology, University of Mississippi, Oxford, Mississippi, USA
| | - Waseem Gul
- National Center for Natural Products Research, University of Mississippi, Oxford, Mississippi, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, Oxford, Mississippi, USA.,Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Kenneth J Sufka
- Department of Psychology, University of Mississippi, Oxford, Mississippi, USA.,National Center for Natural Products Research, University of Mississippi, Oxford, Mississippi, USA
| |
Collapse
|
41
|
Liu Jun Zi Tang-A Potential, Multi-Herbal Complementary Therapy for Chemotherapy-Induced Neurotoxicity. Int J Mol Sci 2018; 19:ijms19041258. [PMID: 29690597 PMCID: PMC5979528 DOI: 10.3390/ijms19041258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/25/2022] Open
Abstract
Liu Jun Zi Tang (LJZT) has been used to treat functional dyspepsia and depression, suggesting its effects on gastrointestinal and neurological functions. LJZT is currently used as a complementary therapy to attenuate cisplatin-induced side effects, such as dyspepsia. However, its effect on chemotherapy-induced neuropathic pain or neurotoxicity has rarely been studied. Thus, we explored potential mechanisms underlying LJZT protection against cisplatin-induced neurotoxicity. We observed that LJZT attenuated cisplatin-induced thermal hyperalgesia in mice and apoptosis in human neuroblastoma SH-SY5Y cells. Furthermore, it also attenuated cisplatin-induced cytosolic and mitochondrial free radical formation, reversed the cisplatin-induced decrease in mitochondrial membrane potential, and increased the release of mitochondrial pro-apoptotic factors. LJZT not only activated the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) promoter region, but also attenuated the cisplatin-induced reduction of PGC-1α expression. Silencing of the PGC-1α gene counteracted the protection of LJZT. Taken together, LJZT mediated, through anti-oxidative effect and mitochondrial function regulation, to prevent cisplatin-induced neurotoxicity.
Collapse
|
42
|
In Vivo 6-([ 18F]Fluoroacetamido)-1-hexanoicanilide PET Imaging of Altered Histone Deacetylase Activity in Chemotherapy-Induced Neurotoxicity. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:3612027. [PMID: 29755299 PMCID: PMC5884410 DOI: 10.1155/2018/3612027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 12/26/2022]
Abstract
Background Histone deacetylases (HDACs) regulate gene expression by changing histone deacetylation status. Neurotoxicity is one of the major side effects of cisplatin, which reacts with deoxyribonucleic acid (DNA) and has excellent antitumor effects. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor with neuroprotective effects against cisplatin-induced neurotoxicity. Purpose We investigated how cisplatin with and without SAHA pretreatment affects HDAC expression/activity in the brain by using 6-([18F]fluoroacetamido)-1-hexanoicanilide ([18F]FAHA) as a positron emission tomography (PET) imaging agent for HDAC IIa. Materials and Methods [18F]FAHA and [18F]fluoro-2-deoxy-2-D-glucose ([18F]FDG) PET studies were done in 24 mice on 2 consecutive days and again 1 week later. The mice were divided into three groups according to drug administration between the first and second imaging sessions (Group A: cisplatin 2 mg/kg, twice; Group B: cisplatin 4 mg/kg, twice; Group C: cisplatin 4 mg/kg, twice, and SAHA 300 mg/kg pretreatment, 4 times). Results The Ki value of [18F]FAHA was increased and the percentage of injected dose/tissue g (% ID/g) of [18F]FDG was decreased in the brains of animals in Groups A and B. The Ki value of [18F]FAHA and % ID/g of [18F]FDG were not significantly different in Group C. Conclusions [18F]FAHA PET clearly showed increased HDAC activity suggestive of cisplatin neurotoxicity in vivo, which was blocked by SAHA pretreatment.
Collapse
|
43
|
Neurotoxic effect of oxaliplatin: Comparison with its oxalate-free analogue cis-[PtII(1R,2R-DACH)(3-acetoxy-1,1-cyclobutanedicarboxylato)] (LLC-1402) in mice. Toxicol Appl Pharmacol 2018; 340:77-84. [PMID: 29307816 DOI: 10.1016/j.taap.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
Abstract
Studies suggest that oxalate is involved in the development oxaliplatin-induced peripheral sensory neuropathy (OPSN). This study aimed to compare the neurotoxic effects of oxaliplatin with its oxalate-free cytotoxic analogue cis-[PtII(1R,2R-DACH)(3-acetoxy-1,1-cyclobutanedicarboxylato)] (LLC-1402) in mice. Oxaliplatin and LLC-1402 were intravenously injected in male Swiss mice with a total of nine injections. Oxalate was intraperitoneally injected in other animals. The development of OPSN was evaluated using mechanical and thermal sensitivity tests. Dorsal root ganglia of the mice were removed to evaluate c-Fos, ATF3 and iNOS expression and a sample of blood was collected for leukocyte count and hepatic and renal biochemical function tests. Oxaliplatin and LLC-1402 decreased the mechanical and thermal nociceptive threshold, whilst oxalate lead to a partial and later increase in the mechanical sensitivity (P<0.05). c-Fos, ATF3 and iNOS expressions were increased in neuronal cells during and after the end of the injections in animals treated with oxaliplatin and LLC-1402 (P<0.05), even though oxaliplatin lead to an earlier increase. Only c-Fos expression was elevated during the period of injections in the oxalate group (P<0.05), but this expression reduced after the end of the treatment. c-Fos expression was also shown in glial satellite cells only in the oxaliplatin-treated animals. Oxaliplatin and LLC-1402 reduced leukocyte count (P<0.05), but did not change renal and liver functions. In conclusion, oxalate may contribute to an earlier development of peripheral sensory neuropathy. However, the antitumor cytotoxic mechanism of oxaliplatin seems to be the main responsible by its neurotoxic effect.
Collapse
|
44
|
Cytoprotective Effects of Cell-Permeable Bifunctional Antioxidant Enzyme, GST-TAT-SOD, against Cisplatin-Induced Cell Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9530791. [PMID: 29333214 PMCID: PMC5733192 DOI: 10.1155/2017/9530791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/30/2017] [Accepted: 08/29/2017] [Indexed: 11/28/2022]
Abstract
GST-TAT-SOD, a cell-permeable bifunctional antioxidant enzyme, is a potential selective radioprotector. This study aimed to investigate the cytoprotective activity of GST-TAT-SOD against cisplatin-induced damage. The current study showed that cisplatin induced the formation of reactive oxygen species in normal L-02 cells. GST-TAT-SOD (2000 U/mL) executed its antioxidant role by directly scavenging excess intracellular free radicals and augmenting cellular antioxidant defense such as reducing MDA level, enhancing the SOD activity, GST activity, and T-AOC. Thus, it suppressed the growth inhibition and apoptosis of cisplatin-treated normal cells. Meanwhile, the growth inhibition of tumor cells (SMMC-7721) caused by cisplatin was unaffected by GST-TAT-SOD pretreatment. GST-SOD, as a comparison, seemed to be powerless for related indicators as it could not enter into cells without cell-permeating peptide. These results suggest that GST-TAT-SOD might be a potential cytoprotective agent for cisplatin-induced side effects.
Collapse
|
45
|
Kanat O, Ertas H, Caner B. Platinum-induced neurotoxicity: A review of possible mechanisms. World J Clin Oncol 2017; 8:329-335. [PMID: 28848699 PMCID: PMC5554876 DOI: 10.5306/wjco.v8.i4.329] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Patients treated with platinum-based chemotherapy frequently experience neurotoxic symptoms, which may lead to premature discontinuation of therapy. Despite discontinuation of platinum drugs, these symptoms can persist over a long period of time. Cisplatin and oxaliplatin, among all platinum drugs, have significant neurotoxic potential. A distal dose-dependent symmetrical sensory neuropathy is the most common presentation of platinum neurotoxicity. DNA damage-induced apoptosis of dorsal root ganglion (DRG) neurons seems to be the principal cause of neurological symptoms. However, DRG injury alone cannot explain some unique symptoms such as cold-aggravated burning pain affecting distal extremities that is observed with oxaliplatin administration. In this article, we briefly reviewed potential mechanisms for the development of platinum drugs-associated neurological manifestations.
Collapse
|
46
|
Starobova H, Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci 2017; 10:174. [PMID: 28620280 PMCID: PMC5450696 DOI: 10.3389/fnmol.2017.00174] [Citation(s) in RCA: 380] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle-leading to cell death and tumor degradation-and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches.
Collapse
Affiliation(s)
- Hana Starobova
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia.,School of Pharmacy, University of QueenslandSt Lucia, QLD, Australia
| |
Collapse
|
47
|
Selected Risk Nutritional Factors for Chemotherapy-Induced Polyneuropathy. Nutrients 2017; 9:nu9060535. [PMID: 28587059 PMCID: PMC5490514 DOI: 10.3390/nu9060535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
The present study seeks to identify the nutritional risk factors involved in the development of neuropathies induced by chemotherapeutic treatments. Unlike the gastrointestinal or hematological adverse effects of chemotherapy there is no protective treatment strategy for polyneuropathy. The aim of this study was to find possible deficiencies in nutritional factors, which can be used for supplementation in the future for prevention of chemotherapy-induced neuropathy development. We analyzed 70 patients undergoing paclitaxel chemotherapy and evaluated the risk factors involved in chemotherapy-induced peripheral neuropathy (CIPN). Several risk factors were considered in the development of CIPN, including deficiency of vitamin B1, B6, and D and fatty acids. The occurrence of CIPN complication in 60% cases was observed. We found significant differences in vitamin D and saturated fatty acid concentration. Vitamin D levels in the group without CIPN were estimated to be 38.2 (24.95, 47.63) nmol/L, whereas in the group with CIPN it was determined to be 25.6 (19.7, 32.55) nmol/L, p = 0.008. The level of total saturated fatty acids in the group without CIPN was of 32.613 Area % (31.322; 36.262), whereas in the group with CIPN it was of 34.209 Area % (32.86; 39.386), p = 0.01. The obtained results suggest a diet lower in saturated fatty acid content during chemotherapy. The most significant finding was that supplementation of vitamin D before chemotherapy could be an efficient neuroprotective in CIPN prophylaxis, as significantly lower levels 25OH derivative of vitamin D were observed in the CIPN group throughout the study period.
Collapse
|
48
|
Lee M, Cho S, Roh K, Chae J, Park JH, Park J, Lee MA, Kim J, Auh CK, Yeom CH, Lee S. Glutathione alleviated peripheral neuropathy in oxaliplatin-treated mice by removing aluminum from dorsal root ganglia. Am J Transl Res 2017; 9:926-939. [PMID: 28386322 PMCID: PMC5375987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/09/2017] [Indexed: 06/07/2023]
Abstract
Oxaliplatin, a platinum-based anti-cancer drug, induces peripheral neuropathy as a side effect and causes cold hyperalgesia in cancer patients receiving anti-cancer chemotherapy. In oxaliplatin-treated mice, aluminum was accumulated in the dorsal root ganglia (DRG), and accumulated aluminum in DRG or other organs aggravated oxaliplatin-induced neuropathic pain. To investigate whether aluminum oxalate, which is the compound of aluminum and oxaliplatin, might be the peripheral neuropathy inducer, the withdrawal responses of mice to coldness, the expression of transient receptor potential ankyrin 1 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays in DRG were analyzed in mice administered with aluminum oxalate. In addition, the concentrations of aluminum in aluminum oxalate-treated mice were significantly increased compared to those of mice treated with aluminum chloride. To alleviate neuropathic pain, glutathione (GSH), known as an antioxidant and a metal chelator, was injected into oxaliplatin-treated mice. The concentrations of aluminum in the DRG were decreased by the chelation action of GSH. Taken together, behavioral and molecular analyses also supported that aluminum accumulation on the DRG might be a factor for neuropathic pain. This result also suggested that the aluminum chelation by GSH can provide an alleviatory remedy of neuropathic pain for cancer patients with oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Minji Lee
- Department of Genetic Engineering, Sungkyunkwan UniversitySuwon 16419, Korea
| | - Sungrae Cho
- Department of Genetic Engineering, Sungkyunkwan UniversitySuwon 16419, Korea
| | - Kangsan Roh
- Department of Genetic Engineering, Sungkyunkwan UniversitySuwon 16419, Korea
| | - Jisook Chae
- Department of Genetic Engineering, Sungkyunkwan UniversitySuwon 16419, Korea
| | - Jin-Hee Park
- Department of Genetic Engineering, Sungkyunkwan UniversitySuwon 16419, Korea
| | - Jaehyun Park
- Department of Genetic Engineering, Sungkyunkwan UniversitySuwon 16419, Korea
| | - Myung-Ah Lee
- Department of Internal Medicine, St. Mary’s Hospital, Catholic University of KoreaSeoul 06591, Korea
| | - Jinheung Kim
- Department of Chemistry and Nano Science, EwhaWomans UniversitySeoul 03760, Korea
| | - Chung-Kyoon Auh
- Department of Biological Science, Mokpo National UniversityMuan 58554 Korea
| | - Chang-Hwan Yeom
- Department of Family Medicine, Yeomchanghwan HospitalSeoul 06605, Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan UniversitySuwon 16419, Korea
| |
Collapse
|
49
|
Non-cytotoxic Concentration of Cisplatin Decreases Neuroplasticity-Related Proteins and Neurite Outgrowth Without Affecting the Expression of NGF in PC12 Cells. Neurochem Res 2016; 41:2993-3003. [DOI: 10.1007/s11064-016-2019-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
|
50
|
Crone B, Aschner M, Schwerdtle T, Karst U, Bornhorst J. Elemental bioimaging of Cisplatin in Caenorhabditis elegans by LA-ICP-MS. Metallomics 2016; 7:1189-95. [PMID: 25996669 DOI: 10.1039/c5mt00096c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
cis-Diamminedichloroplatinum(II) (Cisplatin) is one of the most important and frequently used cytostatic drugs for the treatment of various solid tumors. Herein, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method incorporating a fast and simple sample preparation protocol was developed for the elemental mapping of Cisplatin in the model organism Caenorhabditis elegans (C. elegans). The method allows imaging of the spatially-resolved elemental distribution of platinum in the whole organism with respect to the anatomic structure in L4 stage worms at a lateral resolution of 5 μm. In addition, a dose- and time-dependent Cisplatin uptake was corroborated quantitatively by a total reflection X-ray fluorescence spectroscopy (TXRF) method, and the elemental mapping indicated that Cisplatin is located in the intestine and in the head of the worms. Better understanding of the distribution of Cisplatin in this well-established model organism will be instrumental in deciphering Cisplatin toxicity and pharmacokinetics. Since the cytostatic effect of Cisplatin is based on binding the DNA by forming intra- and interstrand crosslinks, the response of poly(ADP-ribose)metabolism enzyme 1 (pme-1) deletion mutants to Cisplatin was also examined. Loss of pme-1, which is the C. elegans ortholog of human poly(ADP-ribose) polymerase 1 (PARP-1) led to disturbed DNA damage response. With respect to survival and brood size, pme-1 deletion mutants were more sensitive to Cisplatin as compared to wildtype worms, while Cisplatin uptake was indistinguishable.
Collapse
Affiliation(s)
- Barbara Crone
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|