1
|
Abstract
PURPOSE OF REVIEW Novel 3D organoid culture techniques have enabled long-term expansion of pancreatic tissue. This review comprehensively summarizes and evaluates the applications of primary tissue-derived pancreatic organoids in regenerative studies, disease modelling, and personalized medicine. RECENT FINDINGS Organoids derived from human fetal and adult pancreatic tissue have been used to study pancreas development and repair. Generated adult human pancreatic organoids harbor the capacity for clonal expansion and endocrine cell formation. In addition, organoids have been generated from human pancreatic ductal adenocarcinoma in order to study tumor behavior and assess drug responses. Pancreatic organoids constitute an important translational bridge between in vitro and in vivo models, enhancing our understanding of pancreatic cell biology. Current applications for pancreatic organoid technology include studies on tissue regeneration, disease modelling, and drug screening.
Collapse
Affiliation(s)
- Jeetindra R. A. Balak
- 0000000089452978grid.10419.3dDepartment of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Juri Juksar
- 0000 0000 9471 3191grid.419927.0Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Françoise Carlotti
- 0000000089452978grid.10419.3dDepartment of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Antonio Lo Nigro
- 0000 0000 9471 3191grid.419927.0Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Eelco J. P. de Koning
- 0000000089452978grid.10419.3dDepartment of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- 0000 0000 9471 3191grid.419927.0Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| |
Collapse
|
2
|
Highly efficient ex vivo lentiviral transduction of primary human pancreatic exocrine cells. Sci Rep 2019; 9:15870. [PMID: 31676849 PMCID: PMC6825235 DOI: 10.1038/s41598-019-51763-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023] Open
Abstract
The lack of efficient gene transfer methods into primary human pancreatic exocrine cells hampers studies on the plasticity of these cells and their possible role in beta cell regeneration. Therefore, improved gene transfer protocols are needed. Lentiviral vectors are widely used to drive ectopic gene expression in mammalian cells, including primary human islet cells. Here we aimed to optimize gene transfer into primary human exocrine cells using modified lentiviral vectors or transduction conditions. We evaluated different promoters, viral envelopes, medium composition and transduction adjuvants. Transduction efficiency of a reporter vector was evaluated by fluorescence microscopy and flow cytometry. We show that protamine sulfate-assisted transduction of a VSV-G-pseudotyped vector expressing eGFP under the control of a CMV promoter in a serum-free environment resulted in the best transduction efficiency of exocrine cells, reaching up to 90% of GFP-positive cells 5 days after transduction. Our findings will enable further studies on pancreas (patho)physiology that require gene transfer such as gene overexpression, gene knockdown or lineage tracing studies.
Collapse
|
3
|
Roefs MM, Carlotti F, Jones K, Wills H, Hamilton A, Verschoor M, Durkin JMW, Garcia-Perez L, Brereton MF, McCulloch L, Engelse MA, Johnson PRV, Hansen BC, Docherty K, de Koning EJP, Clark A. Increased vimentin in human α- and β-cells in type 2 diabetes. J Endocrinol 2017; 233:217-227. [PMID: 28348116 DOI: 10.1530/joe-16-0588] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes (T2DM) is associated with pancreatic islet dysfunction. Loss of β-cell identity has been implicated via dedifferentiation or conversion to other pancreatic endocrine cell types. How these transitions contribute to the onset and progression of T2DM in vivo is unknown. The aims of this study were to determine the degree of epithelial-to-mesenchymal transition occurring in α and β cells in vivo and to relate this to diabetes-associated (patho)physiological conditions. The proportion of islet cells expressing the mesenchymal marker vimentin was determined by immunohistochemistry and quantitative morphometry in specimens of pancreas from human donors with T2DM (n = 28) and without diabetes (ND, n = 38) and in non-human primates at different stages of the diabetic syndrome: normoglycaemic (ND, n = 4), obese, hyperinsulinaemic (HI, n = 4) and hyperglycaemic (DM, n = 8). Vimentin co-localised more frequently with glucagon (α-cells) than with insulin (β-cells) in the human ND group (1.43% total α-cells, 0.98% total β-cells, median; P < 0.05); these proportions were higher in T2DM than ND (median 4.53% α-, 2.53% β-cells; P < 0.05). Vimentin-positive β-cells were not apoptotic, had reduced expression of Nkx6.1 and Pdx1, and were not associated with islet amyloidosis or with bihormonal expression (insulin + glucagon). In non-human primates, vimentin-positive β-cell proportion was larger in the diabetic than the ND group (6.85 vs 0.50%, medians respectively, P < 0.05), but was similar in ND and HI groups. In conclusion, islet cell expression of vimentin indicates a degree of plasticity and dedifferentiation with potential loss of cellular identity in diabetes. This could contribute to α- and β-cell dysfunction in T2DM.
Collapse
Affiliation(s)
- Maaike M Roefs
- Department of Internal MedicineLeiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Françoise Carlotti
- Department of Internal MedicineLeiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Katherine Jones
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM), Oxford, UK
| | - Hannah Wills
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM), Oxford, UK
| | - Alexander Hamilton
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM), Oxford, UK
| | - Michael Verschoor
- Department of Internal MedicineLeiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Laura Garcia-Perez
- Department of Internal MedicineLeiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Melissa F Brereton
- Department of PhysiologyAnatomy and Genetics, University of Oxford, Oxford, UK
| | - Laura McCulloch
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM), Oxford, UK
| | - Marten A Engelse
- Department of Internal MedicineLeiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Paul R V Johnson
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM), Oxford, UK
- Nuffield Department of Surgical SciencesJohn Radcliffe Hospital, Oxford, UK
| | - Barbara C Hansen
- Departments of Internal Medicine and PediatricsMorsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | | | - Eelco J P de Koning
- Department of Internal MedicineLeiden University Medical Center (LUMC), Leiden, the Netherlands
- Hubrecht InstituteUtrecht, the Netherlands
| | - Anne Clark
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM), Oxford, UK
| |
Collapse
|
4
|
Roost MS, van Iperen L, de Melo Bernardo A, Mummery CL, Carlotti F, de Koning EJ, Chuva de Sousa Lopes SM. Lymphangiogenesis and angiogenesis during human fetal pancreas development. Vasc Cell 2014; 6:22. [PMID: 25785186 PMCID: PMC4362646 DOI: 10.1186/2045-824x-6-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/26/2014] [Indexed: 12/26/2022] Open
Abstract
Background The complex endocrine and exocrine functionality of the human pancreas depends on an efficient fluid transport through the blood and the lymphatic vascular systems. The lymphatic vasculature has key roles in the physiology of the pancreas and in regulating the immune response, both important for developing successful transplantation and cell-replacement therapies to treat diabetes. However, little is known about how the lymphatic and blood systems develop in humans. Here, we investigated the establishment of these two vascular systems in human pancreas organogenesis in order to understand neovascularization in the context of emerging regenerative therapies. Methods We examined angiogenesis and lymphangiogenesis during human pancreas development between 9 and 22 weeks of gestation (W9-W22) by immunohistochemistry. Results As early as W9, the peri-pancreatic mesenchyme was populated by CD31-expressing blood vessels as well as LYVE1- and PDPN-expressing lymphatic vessels. The appearance of smooth muscle cell-coated blood vessels in the intra-pancreatic mesenchyme occurred only several weeks later and from W14.5 onwards the islets of Langerhans also became heavily irrigated by blood vessels. In contrast to blood vessels, LYVE1- and PDPN-expressing lymphatic vessels were restricted to the peri-pancreatic mesenchyme until later in development (W14.5-W17), and some of these invading lymphatic vessels contained smooth muscle cells at W17. Interestingly, between W11-W22, most large caliber lymphatic vessels were lined with a characteristic, discontinuous, collagen type IV-rich basement membrane. Whilst lymphatic vessels did not directly intrude the islets of Langerhans, three-dimensional reconstruction revealed that they were present in the vicinity of islets of Langerhans between W17-W22. Conclusion Our data suggest that the blood and lymphatic machinery in the human pancreas is in place to support endocrine function from W17-W22 onwards. Our study provides the first systematic assessment of the progression of lymphangiogenesis during human pancreatic development. Electronic supplementary material The online version of this article (doi:10.1186/2045-824X-6-22) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias S Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Ana de Melo Bernardo
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Eelco Jp de Koning
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands ; Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Center, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands ; Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Längle D, Halver J, Rathmer B, Willems E, Schade D. Small molecules targeting in vivo tissue regeneration. ACS Chem Biol 2014; 9:57-71. [PMID: 24372447 DOI: 10.1021/cb4008277] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The field of regenerative medicine has boomed in recent years thanks to milestone discoveries in stem cell biology and tissue engineering, which has been driving paradigm shifts in the pharmacotherapy of degenerative and ischemic diseases. Small molecule-mediated replenishment of lost and/or dysfunctional tissue in vivo, however, is still in its infancy due to a limited understanding of mechanisms that control such endogenous processes of tissue homeostasis or regeneration. Here, we discuss current progress using small molecules targeting in vivo aspects of regeneration, including adult stem cells, stem cell niches, and mechanisms of homing, mobilization, and engraftment as well as somatic cell proliferation. Many of these compounds derived from both knowledge-based design and screening campaigns, illustrating the feasibility of translating in vitro discovery to in vivo regeneration. These early examples of drug-mediated in vivo regeneration provide a glimpse of the future directions of in vivo regenerative medicine approaches.
Collapse
Affiliation(s)
- Daniel Längle
- Faculty of Chemistry & Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Jonas Halver
- Faculty of Chemistry & Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Bernd Rathmer
- Faculty of Chemistry & Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Erik Willems
- Muscle
Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dennis Schade
- Faculty of Chemistry & Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Levetan CS, Pierce SM. Distinctions between the islets of mice and men: implications for new therapies for type 1 and 2 diabetes. Endocr Pract 2013. [PMID: 23186955 DOI: 10.4158/ep12138.ra] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To elucidate why diabetes is so difficult to treat despite the present tools and pharmacologic armamentarium and to provide insights into emerging therapies by describing human and rodent data that demonstrates the ability to transform progenitor cells within the adult pancreas into new islets. METHODS A literature review focused on the distinctions between human and rodent islets. RESULTS We are beginning to elucidate important differences between the architecture and composition of the islets of Langerhans in humans and rodents. In contrast to rodent islets, human islets are more heterogeneous in cellular composition and have more prominent intra-islet vascularity, with smooth muscle-containing blood vessels that are not present in rodent islets. Some studies report that more than 70% of human beta cells have direct physical contact with other cell types, whereas others describe that smaller human islets possess features more typical of rodents, while larger islets exhibit greater vascularity and a cellular distribution distinct from centrally clustered beta cells surrounded by a mantle of alpha and delta cells found in rodents. CONCLUSIONS The differences between the islets of mice and men may influence why treatments hailed as reversing diabetes among rodents have not been successfully translated into humans. Increased understanding of the complexities within the human islet may yield unique insights into reversing diabetes in humans.
Collapse
Affiliation(s)
- Claresa S Levetan
- Division of Diabetes, Endocrinology and Metabolism, Chestnut Hill Hospital, Philadelphia, PA 19118, USA.
| | | |
Collapse
|
7
|
Abstract
Evidence that the pool of insulin-producing β cells in the pancreas is reduced in both major forms of diabetes mellitus has led to efforts to understand β cell turnover in the adult pancreas. Unfortunately, previous studies have reached opposing conclusions regarding the source of new β cells during regeneration in the adult pancreas. In this issue of the JCI, Xiao et al. use a novel mouse model for detecting new β cells derived from non-β cells to demonstrate the absence of β cell neogenesis from non-β cells during normal postnatal growth and in models of β cell regeneration. This work adds to mounting evidence that in most physiological and pathological conditions, β cell neogenesis may not make large contributions to the postnatal β cell pool - at least not in rodents.
Collapse
Affiliation(s)
- Michael S German
- Diabetes Center, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA.
| |
Collapse
|
8
|
Abstract
Preservation and regeneration of β cell endocrine function is a long-sought goal in diabetes research. Defective insulin secretion from β cells underlies both type 1 and type 2 diabetes, thus fueling considerable interest in molecules capable of rebuilding β cell secretion capacity. Though early work in rodents suggested that regeneration might be possible, recent studies have revealed that aging powerfully restricts cell cycle entry of β cells, which may limit regeneration capacity. Consequently, aging has emerged as an enigmatic challenge that might limit β cell regeneration therapies. This Review summarizes recent data regarding the role of aging in β cell regeneration and proposes models explaining these phenomena.
Collapse
Affiliation(s)
- Jake A Kushner
- McNair Medical Institute, Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
9
|
Adenoviral vectors stimulate glucagon transcription in human mesenchymal stem cells expressing pancreatic transcription factors. PLoS One 2012; 7:e48093. [PMID: 23110179 PMCID: PMC3482184 DOI: 10.1371/journal.pone.0048093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/20/2012] [Indexed: 01/09/2023] Open
Abstract
Viral gene carriers are being widely used as gene transfer systems in (trans)differentiation and reprogramming strategies. Forced expression of key regulators of pancreatic differentiation in stem cells, liver cells, pancreatic duct cells, or cells from the exocrine pancreas, can lead to the initiation of endocrine pancreatic differentiation. While several viral vector systems have been employed in such studies, the results reported with adenovirus vectors have been the most promising in vitro and in vivo. In this study, we examined whether the viral vector system itself could impact the differentiation capacity of human bone-marrow derived mesenchymal stem cells (hMSCs) toward the endocrine lineage. Lentivirus-mediated expression of Pdx-1, Ngn-3, and Maf-A alone or in combination does not lead to robust expression of any of the endocrine hormones (i.e. insulin, glucagon and somatostatin) in hMSCs. Remarkably, subsequent transduction of these genetically modified cells with an irrelevant early region 1 (E1)-deleted adenoviral vector potentiates the differentiation stimulus and promotes glucagon gene expression in hMSCs by affecting the chromatin structure. This adenovirus stimulation was observed upon infection with an E1-deleted adenovirus vector, but not after exposure to helper-dependent adenovirus vectors, pointing at the involvement of genes retained in the E1-deleted adenovirus vector in this phenomenon. Lentivirus mediated expression of the adenovirus E4-ORF3 mimics the adenovirus effect. From these data we conclude that E1-deleted adenoviral vectors are not inert gene-transfer vectors and contribute to the modulation of the cellular differentiation pathways.
Collapse
|
10
|
Thole A, Rodrigues-Cunha A, Carvalho S, Garcia-Souza E, Cortez E, Stumbo A, Carvalho L, Moura A. Progenitor cells and TNF-alpha involvement during morphological changes in pancreatic islets of obese mice. Tissue Cell 2012; 44:238-48. [DOI: 10.1016/j.tice.2012.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 12/28/2022]
|
11
|
Karadimos MJ, Kapoor A, El Khattabi I, Sharma A. β-cell preservation and regeneration for diabetes treatment: where are we now? ACTA ACUST UNITED AC 2012; 2:213-222. [PMID: 23049620 DOI: 10.2217/dmt.12.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the last decade, our knowledge of β-cell biology has expanded with the use of new scientific techniques and strategies. Growth factors, hormones and small molecules have been shown to enhance β-cell proliferation and function. Stem cell technology and research into the developmental biology of the pancreas have yielded new methods for in vivo and in vitro regeneration of β cells from stem cells and endogenous progenitors as well as transdifferentiation of non-β cells. Novel pharmacological approaches have been developed to preserve and enhance β-cell function. Strategies to increase expression of insulin gene transcription factors in dysfunctional and immature β cells have ameliorated these impairments. Hence, we suggest that strategies to minimize β-cell loss and to increase their function and regeneration will ultimately lead to therapy for both Type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Michael J Karadimos
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA ; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
12
|
Saito Y, Chan NK, Hathout E. Partial hepatectomy improves the outcome of intraportal islet transplantation by promoting revascularization. Islets 2012; 4:138-44. [PMID: 22622159 PMCID: PMC3396702 DOI: 10.4161/isl.19491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Revascularization of grafts is one of the important key factors for the success of islet transplantation. After partial hepatectomy, many growth factors such as hepatocyte growth factor and vascular endothelial growth factor are increased in the remnant liver. These growth factors have properties that promote angiogenesis. This might be an optimal environment for revascularization of islets transplanted intraportally. To verify this hypothesis, syngeneic islets (330 per recipient) were transplanted into the right hepatic lobes of streptozotocin-induced diabetic Balb/c mice with (hepatectomy group) or without (control group) left liver resection. Blood glucose was monitored for 28 d after transplantation. Glucose tolerance test was performed on post-operative day (POD) 30, and histological assessments were performed on POD 7 and 30 respectively. Analysis revealed that 36.7% of the control and 90.0% of the hepatectomy mice attained normoglycemia during the observation period (*p = 0.0142). Glucose tolerance was improved in the hepatectomy group (Area under the curve of intraperitoneal glucose tolerance tests on POD 30, Control; 47,700 ± 5,890 min*mg/dl, Hepatectomy; 26,000 ± 2,060 min*mg/dl: **p = 0.00314). Revascularization of grafted islets was more pronounced in the hepatectomy group (Vessel number per islet area on POD 7, Control; 3.20 ± 0.463 × 10 (-4) /µm ( 2) , Hepatectomy; 7.08 ± 0.513 × 10 (-4) /µm ( 2) : **p < 0.01). In the present study, partial hepatectomy (30%) improved the outcome of intraportal islet transplantation. Revascularization of islets transplanted into the liver may have been promoted by the induction of liver regeneration.
Collapse
Affiliation(s)
- Yukihiko Saito
- Islet Transplant Laboratory; Department of Pediatrics; Loma Linda University School of Medicine; Loma Linda, CA USA
- Division of Advanced Surgical Science and Technology; Tohoku University; Sendai, Japan
| | - Nathaniel K. Chan
- Islet Transplant Laboratory; Department of Pediatrics; Loma Linda University School of Medicine; Loma Linda, CA USA
| | - Eba Hathout
- Islet Transplant Laboratory; Department of Pediatrics; Loma Linda University School of Medicine; Loma Linda, CA USA
- Correspondence to: Eba Hathout,
| |
Collapse
|