1
|
Tanner T, Medhavi FNU, Richardson S, Omosun YO, Eko FO. In silico design and analysis of a multiepitope vaccine against Chlamydia. Pathog Dis 2024; 82:ftae015. [PMID: 38889932 PMCID: PMC11234648 DOI: 10.1093/femspd/ftae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024] Open
Abstract
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial infection worldwide, potentially leading to severe pathologies including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility if left untreated. Current strategies, including screening and antibiotics, have limited effectiveness due to high rates of asymptomatic cases and logistical challenges. A multiepitope prophylactic vaccine could afford long-term protection against infection. Immunoinformatic analyses were employed to design a multiepitope Chlamydia vaccine antigen. B- and T-cell epitopes from five highly conserved and immunogenic Ct antigens were predicted and selected for the vaccine design. The final construct, adjuvanted with cholera toxin A1 subunit (CTA1), was further screened for immunogenicity. CTA1-MECA (multiepitope Chlamydia trachomatis antigen) was identified as antigenic and nonallergenic. A tertiary structure was predicted, refined, and validated as a good quality model. Molecular docking exhibited strong interactions between the vaccine and toll-like receptor 4 (TLR4). Additionally, immune responses consistent with protection including IFN-γ, IgG + IgM antibodies, and T- and B-cell responses were predicted following vaccination in an immune simulation. Expression of the construct in an Escherichia coli expression vector proved efficient. To further validate the vaccine efficacy, we assessed its immunogenicity in mice. Immunization with CTA1-MECA elicited high levels of Chlamydia-specific antibodies in mucosal and systemic compartments.
Collapse
Affiliation(s)
- Tayhlor Tanner
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - F N U Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - Yusuf O Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - Francis O Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| |
Collapse
|
2
|
Debrine AM, Karplus PA, Rockey DD. A structural foundation for studying chlamydial polymorphic membrane proteins. Microbiol Spectr 2023; 11:e0324223. [PMID: 37882824 PMCID: PMC10715098 DOI: 10.1128/spectrum.03242-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Infections by bacteria in the genus Chlamydia cause a range of widespread and potentially debilitating conditions in humans and other animals. We analyzed predicted structures of a family of proteins that are potential vaccine targets found in all Chlamydia spp. Our findings deepen the understanding of protein structure, provide a descriptive framework for discussion of the protein structure, and outline regions of the proteins that may be key targets in host-microbe interactions and anti-chlamydial immunity.
Collapse
Affiliation(s)
- Abigail M. Debrine
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - P. Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Daniel D. Rockey
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
3
|
Marques PX, Wand H, Nandy M, Tan C, Shou H, Terplan M, Mark K, Brotman RM, Wilson DP, Ravel J, Hsia RC, Bavoil PM. Serum antibodies to surface proteins of Chlamydia trachomatis as candidate biomarkers of disease: results from the Baltimore Chlamydia Adolescent/Young Adult Reproductive Management (CHARM) cohort. FEMS MICROBES 2022; 3:xtac004. [PMID: 37332497 PMCID: PMC10117858 DOI: 10.1093/femsmc/xtac004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/18/2022] [Accepted: 02/25/2022] [Indexed: 06/30/2024] Open
Abstract
We previously observed that the nine-member family of autotransported polymorphic membrane proteins (Pmps) of Chlamydia trachomatis is variably expressed in cell culture. Additionally, C. trachomatis-infected patients display variable Pmp-specific serum antibody profiles indirectly suggesting expression of unique Pmp profiles is an adaptive response to host-specific stimuli during infection. Here, we propose that the host response to Pmps and other outer surface proteins may correlate with disease severity. This study tests this hypothesis using an ELISA that measures serum IgG antibodies specific for the nine C. trachomatis Pmp subtypes and four immunodominant antigens (MOMP, OmcB, Hsp60, ClpP) in 265 participants of the Chlamydia Adolescent/Young Adult Reproductive Management (CHARM) cohort. More C. trachomatis-infected females displayed high Pmp-specific antibody levels (cut-off Indexes) than males (35.9%-40.7% of females vs. 24.2%-30.0% of males), with statistical significance for PmpC, F and H (P < 0.05). Differences in Pmp-specific antibody profiles were not observed between C. trachomatis-infected females with a clinical diagnosis of pelvic inflammatory disease (PID) and those without. However, a statistically significant association between high levels of OmcB-specific antibody and a PID diagnosis (P< 0.05) was observed. Using antibody levels as an indirect measure of antigen expression, our results suggest that gender- and/or site-specific (cervix in females vs. urethra in males) stimuli may control pmp expression in infected patients. They also support the possible existence of immune biomarkers of chlamydial infection associated with disease and underline the need for high resolution screening in human serum.
Collapse
Affiliation(s)
- Patricia X Marques
- Department of Microbial Pathogenesis, University of Maryland, 650 W. Baltimore St, Baltimore, MD 21201, USA
| | - Handan Wand
- The Kirby Institute, Wallace Wurth Bldg, High St., UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Melissa Nandy
- Institute for Genome Science, University of Maryland, 670 W. Baltimore St, Baltimore, MD 21201, USA
| | - Chun Tan
- Department of Microbial Pathogenesis, University of Maryland, 650 W. Baltimore St, Baltimore, MD 21201, USA
| | - Huizhong Shou
- Department of Microbial Pathogenesis, University of Maryland, 650 W. Baltimore St, Baltimore, MD 21201, USA
| | - Mishka Terplan
- Department of Obstetrics & Gynecology, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Katrina Mark
- Department of Pediatrics, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Rebecca M Brotman
- Institute for Genome Science, University of Maryland, 670 W. Baltimore St, Baltimore, MD 21201, USA
| | - David P Wilson
- Department of Infectious Disease Modelling, The Burnet Institute, 85 Commercial Rd, Melbourne, VIC, 3004, Australia
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland, 685 W. Baltimore St, Baltimore, MD 21201, USA
- Institute for Genome Science, University of Maryland, 670 W. Baltimore St, Baltimore, MD 21201, USA
| | - Ru-ching Hsia
- Electron Microscopy Core Imaging Facility, University of Maryland, 660 W. Redwood St, Baltimore, MD 21201, USA
| | - Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland, 650 W. Baltimore St, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Antibodies to Variable Domain 4 Linear Epitopes of the Chlamydia trachomatis Major Outer Membrane Protein Are Not Associated with Chlamydia Resolution or Reinfection in Women. mSphere 2020; 5:5/5/e00654-20. [PMID: 32968007 PMCID: PMC7568647 DOI: 10.1128/msphere.00654-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
C. trachomatis infection is the most common bacterial sexually transmitted infection, and infection in women can lead to pelvic inflammatory disease and infertility. No licensed vaccine exists to prevent C. trachomatis infection, and investigations of the natural immune response may inform the design of targeted vaccines for C. trachomatis. Our study fills a gap in knowledge regarding the epitope specificity of antibody responses that are elicited in response to C. trachomatis infection in women. We identified several new B cell epitopes for C. trachomatis antigens and confirmed B cell epitopes that have been identified by other methods. Our finding that women produce antibodies to the VD4-MOMP regardless of infection outcome provides insight into vaccine development, suggesting that vaccines targeting VD4-MOMP may need to elicit higher-titer antibody responses than natural infection imparts or that additional vaccine targets should be pursued in the future. Chlamydia trachomatis is an obligate intracellular bacterium. C. trachomatis infection is the most prevalent bacterial sexually transmitted infection and can lead to pelvic inflammatory disease and infertility in women. There is no licensed vaccine for C. trachomatis prevention, in part due to gaps in our knowledge of C. trachomatis-specific immune responses elicited during human infections. Previous investigations of the antibody response to C. trachomatis have identified immunodominant antigens and antibodies that can neutralize infection in cell culture. However, epitope-specific responses to C. trachomatis are not well characterized, and the impact of these antibodies on infection outcome is unknown. We recently developed a technology called deep sequence-coupled biopanning that uses bacteriophage virus-like particles to display peptides from antigens and affinity select against human serum IgG. Here, we used this technology to map C. trachomatis-specific antibodies in groups of women with defined outcomes following C. trachomatis infection: (i) C. trachomatis negative upon presentation for treatment (“spontaneous resolvers”), (ii) C. trachomatis negative at a 3-month follow-up visit after treatment (“nonreinfected”), and (iii) C. trachomatis positive at a 3-month follow-up after treatment (“reinfected”). This analysis yielded immunodominant epitopes that had been previously described but also identified new epitopes targeted by human antibody responses to C. trachomatis. We focused on human antibody responses to the C. trachomatis variable domain 4 serovar-conserved region of the major outer membrane protein (VD4-MOMP), a previously described immunodominant epitope. All three groups of women produced IgG to the VD4-MOMP, suggesting that detection of serum antibodies to VD4-MOMP in women with urogenital C. trachomatis infection is not associated with protection against reinfection. IMPORTANCEC. trachomatis infection is the most common bacterial sexually transmitted infection, and infection in women can lead to pelvic inflammatory disease and infertility. No licensed vaccine exists to prevent C. trachomatis infection, and investigations of the natural immune response may inform the design of targeted vaccines for C. trachomatis. Our study fills a gap in knowledge regarding the epitope specificity of antibody responses that are elicited in response to C. trachomatis infection in women. We identified several new B cell epitopes for C. trachomatis antigens and confirmed B cell epitopes that have been identified by other methods. Our finding that women produce antibodies to the VD4-MOMP regardless of infection outcome provides insight into vaccine development, suggesting that vaccines targeting VD4-MOMP may need to elicit higher-titer antibody responses than natural infection imparts or that additional vaccine targets should be pursued in the future.
Collapse
|
5
|
Gitsels A, Van Lent S, Sanders N, Vanrompay D. Chlamydia: what is on the outside does matter. Crit Rev Microbiol 2020; 46:100-119. [PMID: 32093536 DOI: 10.1080/1040841x.2020.1730300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review summarises major highlights on the structural biology of the chlamydial envelope. Chlamydiae are obligate intracellular bacteria, characterised by a unique biphasic developmental cycle. Depending on the stage of their lifecycle, they appear in the form of elementary or reticulate bodies. Since these particles have distinctive functions, it is not surprising that their envelope differs in lipid as well as in protein content. Vice versa, by identifying surface proteins, specific characteristics of the particles such as rigidity or immunogenicity may be deduced. Detailed information on the bacterial membranes will increase our understanding on the host-pathogen interactions chlamydiae employ to survive and grow and might lead to new strategies to battle chlamydial infections.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah Van Lent
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Identification of proteins differentially expressed by Chlamydia trachomatis treated with chlamydiaphage capsid protein VP1 during intracellular growth. Arch Microbiol 2017; 199:1121-1131. [PMID: 28444417 PMCID: PMC5596044 DOI: 10.1007/s00203-017-1381-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/21/2017] [Accepted: 04/17/2017] [Indexed: 01/31/2023]
Abstract
Chlamydia trachomatis infection is one of the most prevalent sexually transmitted diseases. Our research pertains to the inhibitory effect and molecular mechanism of the chlamydiaphage capsid protein VP1 on the growth of Chlamydia trachomatis. In this research, the capsid protein VP1 of the guinea-pig conjunctivitis chlamydiaphage phiCPG1 was expressed, purified and identified, and then, it was applied to the cultivation of different serovars of Chlamydia trachomatis and Chlamydia psittaci. The inhibitory effect was observed in each serovar of Chlamydia trachomatis (D, E, F, G, H, I, K, and L2) and Chlamydia psittaci inoculated with VP1 protein. The inhibition affection of VP1 on the growth of Chlamydia trachomatis was caused by the changes of expressions of some related proteins including 36 proteins up-regulated and 81 proteins down-regulated in the development cycle of Ct through the label-free test, and the transcription levels of these proteins, including Hc1, pmpD, and MOMP, were confirmed by RT-PCR. It provides information that is essential for understanding the mechanism of chlamydiaphage capsid protein VP1 on chlamydia and a new direction for further clinical treatment of chlamydial infection.
Collapse
|
7
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
8
|
Pal S, Favaroni A, Tifrea DF, Hanisch PT, Luczak SET, Hegemann JH, de la Maza LM. Comparison of the nine polymorphic membrane proteins of Chlamydia trachomatis for their ability to induce protective immune responses in mice against a C. muridarum challenge. Vaccine 2017; 35:2543-2549. [PMID: 28385608 DOI: 10.1016/j.vaccine.2017.03.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To test vaccines, formulated with novel antigens, to protect mice against Chlamydia infections. METHODS To determine the ability of polymorphic membrane proteins (Pmps) to induce cross-species protective immune responses, recombinant fragments from all nine C. trachomatis serovar E Pmps were used to vaccinate BALB/c mice utilizing CpG-1826 and Montanide ISA 720 as adjuvants. C. muridarum recombinant MOMP and PBS, formulated with the same adjuvants, were used as positive and negative controls, respectively. Mice were challenged intranasally with 104 inclusion-forming units (IFU) of C. muridarum. Animals were weighed daily and at 10days post-challenge, they were euthanized, their lungs harvested, weighed and the number of chlamydial IFU counted. RESULTS Following vaccination the nine Pmps elicited immune responses. Based on body weight changes, or number of IFU recovered from lungs, mice vaccinated with Pmp C, G or H were the best protected. For example, over the 10-day period, the negative control group vaccinated with PBS lost significantly more body weight than mice immunized with PmpC or G (P<0.05). C. muridarum MOMP vaccinated mice were better protected against body weight losses than any group immunized with Pmps. Also, the median number of IFU recovered from the lungs of mice vaccinated with PmpC (72×106) or PmpH (61×106) was significantly less than from mice immunized with PBS (620×106; P<0.05). As determined by the number of IFU, all Pmps elicited less protection than C. muridarum MOMP (0.078×106 IFU; P<0.05). CONCLUSIONS This is the first time PmpC has been shown to elicit cross-species protection against a respiratory challenge. Additional work with Pmps C, G and H is recommended to determine their ability to protect animal models against genital and ocular challenges.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Alison Favaroni
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Philipp T Hanisch
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sören E T Luczak
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Johannes H Hegemann
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Mihailovic J, Inic-Kanada A, Smiljanic K, Stein E, Barisani-Asenbauer T, Cirkovic Velickovic T. Lysine acetylation of major Chlamydia trachomatis antigens. EUPA OPEN PROTEOMICS 2016; 10:63-69. [PMID: 29900103 PMCID: PMC5988610 DOI: 10.1016/j.euprot.2016.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/06/2016] [Accepted: 01/25/2016] [Indexed: 11/05/2022]
Abstract
Chlamydia trachomatis causes trachoma and sexually transmitted diseases. Molecular mechanisms of chlamydial pathogenesis and immunity remain unclear. Acetylation of lysine is a post-translational modification that occurs in prokaryotes. Lysine acetylation sites were discovered in major chlamydial antigens. 60 kDa chaperonin, EF-G and PmpB showed the highest degree of acetylation.
Chlamydia trachomatis (Ct) is a human pathogen causing trachoma and infertility. We investigated acetylation at lysine residues of chlamydial antigenic proteins: major outer membrane protein (MOMP), 60 kDa chaperonin (chlamydial Hsp60), elongation factor G (EF-G), enolase and the polymorphic membrane proteins PmpB, PmpE and PmpF. 60 kDa chaperonin, EF-G and PmpB showed the highest degree of acetylation. Our data show that important Ct antigens could be post-translationally modified by acetylation of lysine residues at multiple sites. Further studies are needed to investigate total acetylome of Ct and the impact PTMs might have on Ct biology and pathogenicity.
Collapse
Affiliation(s)
- Jelena Mihailovic
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of BelgradeFaculty of Chemistry, Belgrade, Serbia
| | - Aleksandra Inic-Kanada
- OCUVACCenter of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katarina Smiljanic
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of BelgradeFaculty of Chemistry, Belgrade, Serbia
| | - Elisabeth Stein
- OCUVACCenter of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Talin Barisani-Asenbauer
- OCUVACCenter of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of BelgradeFaculty of Chemistry, Belgrade, Serbia
| |
Collapse
|
10
|
Vasilevsky S, Stojanov M, Greub G, Baud D. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates. Virulence 2015; 7:11-22. [PMID: 26580416 DOI: 10.1080/21505594.2015.1111509] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pmps (Polymorphic Membrane Proteins) are a group of membrane bound surface exposed chlamydial proteins that have been characterized as autotransporter adhesins and are important in the initial phase of chlamydial infection. These proteins all contain conserved GGA (I, L, V) and FxxN tetrapeptide motifs in the N-terminal portion of each protein. All chlamydial species express Pmps. Even in the chlamydia-related bacteria Waddlia chondrophila, a Pmp-like adhesin has been identified, demonstrating the importance of Pmps in Chlamydiales biology. Chlamydial species vary in the number of pmp genes and their differentially regulated expression during the infectious cycle or in response to stress. Studies have also demonstrated that Pmps are able to induce innate immune functional responses in infected cells, including production of IL-8, IL-6 and MCP-1, by activating the transcription factor NF-κB. Human serum studies have indicated that although anti-Pmp specific antibodies are produced in response to a chlamydial infection, the response is variable depending on the Pmp protein. In C. trachomatis, PmpB, PmpC, PmpD and PmpI were the proteins eliciting the strongest immune response among adolescents with and without pelvic inflammatory disease (PID). In contrast, PmpA and PmpE elicited the weakest antibody response. Interestingly, there seems to be a gender bias for Pmp recognition with a stronger anti-Pmp reactivity in male patients. Furthermore, anti-PmpA antibodies might contribute to adverse pregnancy outcomes, at least among women with PID. In vitro studies indicated that dendritic cells infected with C. muridarum were able to present PmpG and PmpF on their MHC class II receptors and T cells were able to recognize the MHC class-II bound peptides. In addition, vaccination with PmpEFGH and Major Outer Membrane Protein (MOMP) significantly protected mice against a genital tract C. muridarum infection, suggesting that Pmps may be an important component of a multi-subunit chlamydial vaccine. Thus, Pmps might be important not only for the pathogenesis of chlamydial infection, but also as potential candidate vaccine proteins.
Collapse
Affiliation(s)
- Sam Vasilevsky
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| | - Milos Stojanov
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| | - Gilbert Greub
- b Center for Research on Intracellular Bacteria; Institute of Microbiology; Faculty of Biology and Medicine; University of Lausanne and University Hospital ; Lausanne , Switzerland
| | - David Baud
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| |
Collapse
|
11
|
|
12
|
Ziller V, Heilmaier C, Kostev K. Time to pregnancy in subfertile women in German gynecological practices: analysis of a representative cohort of more than 60,000 patients. Arch Gynecol Obstet 2014; 291:657-62. [DOI: 10.1007/s00404-014-3449-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
13
|
Frohlich KM, Hua Z, Quayle AJ, Wang J, Lewis ME, Chou CW, Luo M, Buckner LR, Shen L. Membrane vesicle production by Chlamydia trachomatis as an adaptive response. Front Cell Infect Microbiol 2014; 4:73. [PMID: 24959424 PMCID: PMC4050530 DOI: 10.3389/fcimb.2014.00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023] Open
Abstract
Bacteria have evolved specific adaptive responses to cope with changing environments. These adaptations include stress response phenotypes with dynamic modifications of the bacterial cell envelope and generation of membrane vesicles (MVs). The obligate intracellular bacterium, Chlamydia trachomatis, typically has a biphasic lifestyle, but can enter into an altered growth state typified by morphologically aberrant chlamydial forms, termed persistent growth forms, when induced by stress in vitro. How C. trachomatis can adapt to a persistent growth state in host epithelial cells in vivo is not well understood, but is an important question, since it extends the host-bacterial relationship in vitro and has thus been indicated as a survival mechanism in chronic chlamydial infections. Here, we review recent findings on the mechanistic aspects of bacterial adaptation to stress with a focus on how C. trachomatis remodels its envelope, produces MVs, and the potential important consequences of MV production with respect to host-pathogen interactions. Emerging data suggest that the generation of MVs may be an important mechanism for C. trachomatis intracellular survival of stress, and thus may aid in the establishment of a chronic infection in human genital epithelial cells.
Collapse
Affiliation(s)
- Kyla M Frohlich
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Ziyu Hua
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorder, The Children's Hospital, Chongqing Medical University Chongqing, China
| | - Alison J Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Jin Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Maria E Lewis
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Chau-wen Chou
- Department of Chemistry, University of Georgia Athens, GA, USA
| | - Miao Luo
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Lyndsey R Buckner
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
14
|
Carter JD, Gerard HC, Whittum-Hudson JA, Hudson AP. The molecular basis for disease phenotype in chronic Chlamydia-induced arthritis. ACTA ACUST UNITED AC 2012; 7:627-640. [PMID: 23440251 DOI: 10.2217/ijr.12.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genital Chlamydia trachomatis infections can elicit an inflammatory arthritis in some individuals, and recent surprising studies have demonstrated that only ocular (trachoma) strains, not genital strains, of the organism are present in the synovial tissues of patients with the disease. This observation suggests an explanation for the small proportion of genitally-infected patients who develop Chlamydia-induced arthritis. Other recent studies have begun to identify the specific chlamydial gene products that elicit the synovial inflammatory response during both active and quiescent disease, although much more study will be required to complete the understanding of that complex process of host-pathogen interaction. Several newly developed experimental methods and approaches for study of the process will enable identification of new therapeutic targets, and possibly strategies for prevention of the disease altogether.
Collapse
Affiliation(s)
- John D Carter
- Department of Medicine/Division of Rheumatology, University of South Florida College of Medicine, Tampa, FL, USA
| | | | | | | |
Collapse
|
15
|
Rodriguez-Cerdeira C, Sanchez-Blanco E, Molares-Vila A, Alba A. Unveiling New Molecular Factors Useful for Detection of Pelvic Inflammatory Disease due to Chlamydia trachomatis Infection. ISRN OBSTETRICS AND GYNECOLOGY 2012; 2012:581725. [PMID: 23097713 PMCID: PMC3477744 DOI: 10.5402/2012/581725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 08/31/2012] [Indexed: 11/23/2022]
Abstract
Background. Untreated Chlamydia trachomatis infections in women can result in disease sequelae such as pelvic inflammatory disease (PID), ultimately culminating in tubal occlusion and infertility. While nucleic acid amplification tests can effectively diagnose uncomplicated lower genital tract infections, they are not suitable for diagnosing upper genital tract pathological sequelae. Objective. The purpose of this paper was to provide a comprehensive review of new molecular factors associated with the diagnosis and prognosis of PID. Material and Methods. The literature was searched using the key words “Chlamydia trachomatis infections,” “pelvic inflammatory disease,” and “molecular factors” in the PubMed database. Relevant articles published between 1996 and 2012 were evaluated. Conclusions. The use of new molecular factors could potentially facilitate earlier diagnosis and prognosis in women with PID due to C. trachomatis infection.
Collapse
|