1
|
Burnett M, Abuetabh Y, Wronski A, Shen F, Persad S, Leng R, Eisenstat D, Sergi C. Graphene Oxide Nanoparticles Induce Apoptosis in wild-type and CRISPR/Cas9-IGF/IGFBP3 knocked-out Osteosarcoma Cells. J Cancer 2020; 11:5007-5023. [PMID: 32742448 PMCID: PMC7378933 DOI: 10.7150/jca.46464] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma affects both adolescents and adults, and some improvement in the survival rate for affected patients has been reached in the last decade. Still, non-specificity and systemic toxicity may limit traditional therapeutic approaches to some extent. The insulin growth factor 1 (IGF1) and its binding protein (IGFBP3) have been implicated in the tumorigenesis. Nanoparticles, such as graphene oxide (GO), can provide an effective treatment for cancer as they can specifically target cancer cells while reducing undesired side effects. This study aimed to evaluate the toxicity of GO on osteosarcoma in vitro using tumor cell lines with and without knocking out the IGF and IGFBP3 genes. Human osteosarcoma cell lines, U2OS and SAOS2, and the normal osteoblast cell line hFOB1.19 were used. The IGF1 and IGFBP3 genes were eliminated using CRISPR/Cas9. Tumor cells were cultured and treated with GO. Apoptosis and reactive oxygen species (ROS) were analyzed by Annexin V-FITC and ROS assays. The nuclear factor erythroid 2-related factor 2 (NRF2), which is a crucial regulator of cellular resistance to oxidants, was investigated by Western blotting. We found a significantly higher rate of apoptosis in the OS than hFOB1.19, especially in U2OS cells in which IGF1 and IGFBP3 were knocked out. ROS increase due to GO exposure was remarkably time and concentration-dependent. Based on the rate of apoptosis, ROS, Nrf-2 decrease, and cytomorphological changes, GO has a significant cytotoxic effect against OS. Targeting the IGF1 and IGFBP3 signaling pathway may strengthen GO-related cytotoxicity with the potential to increase the survival of patients affected by this tumor.
Collapse
Affiliation(s)
- Mervin Burnett
- Department of Laboratory Medicine and Pathology, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Yasser Abuetabh
- Department of Laboratory Medicine and Pathology, Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | - Fan Shen
- Department of Laboratory Medicine and Pathology, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Sujata Persad
- Department of Paediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Roger Leng
- Department of Laboratory Medicine and Pathology, Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - David Eisenstat
- Department of Paediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada.,Department of Paediatrics, University of Alberta, Edmonton, Alberta, Canada.,National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, P.R. China.,Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
2
|
Kwak HH, Woo HM, Park KM. The degree of major histocompatibility complex matching between purebred Maltese and mongrel dogs using microsatellite markers. J Vet Sci 2019; 20:e5. [PMID: 30944528 PMCID: PMC6441805 DOI: 10.4142/jvs.2019.20.e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/09/2019] [Accepted: 02/27/2019] [Indexed: 02/02/2023] Open
Abstract
Long-term maintenance of transplanted organs is one of the major factors that increases survival time of recipients. Although obtaining a major histocompatibility complex (MHC)-matched donor with the recipient is essential for successful organ transplantation, there have been limited reports on MHC matching between dogs. In this study, we analyzed the canine MHC matching rates using Maltese, one of the most popular purebred dogs, and mongrel dogs in Korea. Genomic DNA was extracted from blood leukocytes and DNA was amplified by polymerase chain reaction with primers specific to MHC microsatellite markers. The MHC matching degree was confirmed by the microsatellite markers using polyacrylamide gel electrophoresis. The MHC matching rates of each donor-recipient groups including Maltese-Maltese, mongrel-mongrel and Maltese-mongrel were 4.76%, 5.13% and 6.67%, respectively. There were no significant differences in the MHC matching degree between each group. These results demonstrate that MHC-matched donors could be selected from other breeds as much as from the same breed for transplantation. Knowledge of the MHC matching degree of purebred and mongrel dogs would offer valuable information not only for improving the success rate of organ transplantation surgery in canine patients but also for transplantation research using experimental canine models.
Collapse
Affiliation(s)
- Ho-Hyun Kwak
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Heung-Myong Woo
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
3
|
Hall AR, Le H, Arnold C, Brunton J, Bertolo R, Miller GG, Zello GA, Sergi C. Aluminum Exposure from Parenteral Nutrition: Early Bile Canaliculus Changes of the Hepatocyte. Nutrients 2018; 10:723. [PMID: 29867048 PMCID: PMC6024673 DOI: 10.3390/nu10060723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/27/2018] [Accepted: 06/01/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Neonates on long-term parenteral nutrition (PN) may develop parenteral nutrition-associated liver disease (PNALD). Aluminum (Al) is a known contaminant of infant PN, and we hypothesize that it substantially contributes to PNALD. In this study, we aim to assess the impact of Al on hepatocytes in a piglet model. Methods: We conducted a randomized control trial using a Yucatan piglet PN model. Piglets, aged 3⁻6 days, were placed into two groups. The high Al group (n = 8) received PN with 63 µg/kg/day of Al, while the low Al group (n = 7) received PN with 24 µg/kg/day of Al. Serum samples for total bile acids (TBA) were collected over two weeks, and liver tissue was obtained at the end of the experiment. Bile canaliculus morphometry were studied by transmission electron microscopy (TEM) and ImageJ software analysis. Results: The canalicular space was smaller and the microvilli were shorter in the high Al group than in the low Al group. There was no difference in the TBA between the groups. Conclusions: Al causes structural changes in the hepatocytes despite unaltered serum bile acids. High Al in PN is associated with short microvilli, which could decrease the functional excretion area of the hepatocytes and impair bile flow.
Collapse
Affiliation(s)
- Amanda R Hall
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada.
| | - Ha Le
- Department of Community Health & Epidemiology, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada.
| | - Chris Arnold
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada.
| | - Janet Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Robert Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Grant G Miller
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada.
| | - Gordon A Zello
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada.
| | - Consolato Sergi
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada.
- Department of Pediatrics, Stollery Children's Hospital, Edmonton, AB T6G 2B7, Canada.
| |
Collapse
|
4
|
Effect of heme oxygenase-1 on the protection of ischemia reperfusion injury of bile duct in rats after liver transplantation. Clin Res Hepatol Gastroenterol 2018; 42:245-254. [PMID: 29174380 DOI: 10.1016/j.clinre.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the effect of heme oxygenase-1 (HO-1) on the ischemic reperfusion injury (IRI) of bile duct in rat models after liver transplantation. METHODS 320 SD rats were equally and randomly divided into 5 groups, which were group A receiving injection of 3×108/pfu/ml adenovirus (adv), group B with donor receiving Adv-HO-1 and recipient receiving Adv-HO-1-siRNA, group C with donor and recipient both receiving Adv-HO-1, group D with donor receiving Adv-HO-1-siRNA and recipient receiving Adv-HO-1, and group E with donor and recipient both receiving Adv-HO-1-siRNA at 24h before liver transplantation. Donor liver was stored in UW liquid at 4°C followed by measuring HO-1 level by western blot before transplantation. On d1, d3, d7 and d14, serum and liver was isolated for analysis of liver function, inflammatory cell infiltration by H&E staining, ultrastructure of liver by transmission electron microscopy as well as the expression of HO-1, Bsep, Mrp2 and Ntcp by western blot. RESULTS Compared with group D and E, group B and C displayed improved liver function as demonstrated by lower level of ALT, AST, LDH, TBIL, ALP and GGT, increased secretion of TBA and PL as well as expression of transporter proteins (Bsep, Mrp2 and Ntcp), reduced inflammatory cells infiltration and liver injury. CONCLUSION Our study demonstrated that overexpression of HO-1 in donor liver can ameliorate the damage to bile duct and liver, and improved liver function, suggesting HO-1 might be a new therapeutic target in the treatment of IRI after liver transplantation.
Collapse
|
5
|
Ren W, Hou X, Wang Y, Badgery W, Li X, Ding Y, Guo H, Wu Z, Hu N, Kong L, Chang C, Jiang C, Zhang J. Overgrazing induces alterations in the hepatic proteome of sheep ( Ovis aries): an iTRAQ-based quantitative proteomic analysis. Proteome Sci 2017; 15:2. [PMID: 28149202 PMCID: PMC5267464 DOI: 10.1186/s12953-016-0111-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Background The degradation of the steppe of Inner Mongolia, due to overgrazing, has resulted in ecosystem damage as well as extensive reductions in sheep production. The growth performance of sheep is greatly reduced because of overgrazing, which triggers massive economic losses every year. The liver is an essential organ that has very important roles in multiple functions, such as nutrient metabolism, immunity and others, which are closely related to animal growth. However, to our knowledge, no detailed studies have evaluated hepatic metabolism adaption in sheep due to overgrazing. The molecular mechanisms that underlie these effects remain unclear. Methods In the present study, our group applied isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis to investigate changes in the protein profiles of sheep hepatic tissues when nutrition was reduced due to overgrazing (12.0 sheep/ha), with the goal of characterizing the molecular mechanisms of hepatic metabolism adaption in sheep in an overgrazing condition. Results The body weight daily gain of sheep was greatly decreased due to overgrazing. Overall, 41 proteins were found to be differentially abundant in the hepatic tissue between a light grazing group and an overgrazing group. Most of the differentially expressed proteins identified are involved in protein metabolism, transcriptional and translational regulation, and immune response. In particular, the altered abundance of kynureninase (KYNU) and HAL (histidine ammonia-lyase) involved in protein metabolic function, integrated with the changes of serum levels of blood urea nitrogen (BUN) and glucose (GLU), suggest that overgrazing triggers a shift in energy resources from carbohydrates to proteins, causing poorer nitrogen utilization efficiency. Altogether, these results suggest that the reductions in animal growth induced by overgrazing are associated with liver proteomic changes, especially the proteins involved in nitrogen compounds metabolism and immunity. Conclusions This provides new information that can be used for nutritional supplementation to improve the growth performance of sheep in an overgrazing condition. Electronic supplementary material The online version of this article (doi:10.1186/s12953-016-0111-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weibo Ren
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Xiangyang Hou
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Yuqing Wang
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Warwick Badgery
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800 Australia
| | - Xiliang Li
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Yong Ding
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Huiqin Guo
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010019 Inner Mongolia China
| | - Zinian Wu
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Ningning Hu
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Lingqi Kong
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Chun Chang
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Chao Jiang
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| | - Jize Zhang
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010 Inner Mongolia China
| |
Collapse
|
6
|
Bejaoui M, Pantazi E, Calvo M, Folch-Puy E, Serafín A, Pasut G, Panisello A, Adam R, Roselló-Catafau J. Polyethylene Glycol Preconditioning: An Effective Strategy to Prevent Liver Ischemia Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9096549. [PMID: 26981166 PMCID: PMC4770158 DOI: 10.1155/2016/9096549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia reperfusion injury (IRI) is an inevitable clinical problem for liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proven their effectiveness in various in vivo and in vitro models of tissue injury. The present study aims to investigate whether the intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) could be an effective strategy for rat liver preconditioning against IRI. PEG 35 was intravenously administered at 2 and 10 mg/kg to male Sprague Dawley rats. Then, rats were subjected to one hour of partial ischemia (70%) followed by two hours of reperfusion. The results demonstrated that PEG 35 injected intravenously at 10 mg/kg protected efficiently rat liver against the deleterious effects of IRI. This was evidenced by the significant decrease in transaminases levels and the better preservation of mitochondrial membrane polarization. Also, PEG 35 preserved hepatocyte morphology as reflected by an increased F-actin/G-actin ratio and confocal microscopy findings. In addition, PEG 35 protective mechanisms were correlated with the activation of the prosurvival kinase Akt and the cytoprotective factor AMPK and the inhibition of apoptosis. Thus, PEG may become a suitable agent to attempt pharmacological preconditioning against hepatic IRI.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| | - Eirini Pantazi
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| | - Maria Calvo
- Advanced Optical Microscopy Unit CCiTUB, Science and Technology Center, Faculty of Medicine, University of Barcelona, C/Casanova 143, Barcelona, 08036 Catalonia, Spain
| | - Emma Folch-Puy
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| | - Anna Serafín
- Platform of Laboratory Animal Applied Research, Barcelona Science Park, Barcelona, 08028 Catalonia, Spain
| | - Gianfranco Pasut
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35131 Padova, Italy
- Veneto Institute of Oncology (IOV), IRCCS, 35128 Padova, Italy
| | - Arnau Panisello
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| | - René Adam
- Hepato-Biliary Centre, Paul Brousse Hospital, Inserm U776, Paris-Sud University, Villejuif, 75008 Paris, France
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| |
Collapse
|