1
|
Pacheco-Castillo H, Zagal-Huerta EE, Acevedo-Fernández JJ, Negrete-León E, Nishigaki T, Beltrán C. Hyperglycemia adversely affects critical physiological events related to rat sperm capacitation. Biochem Biophys Res Commun 2024; 734:150610. [PMID: 39217810 DOI: 10.1016/j.bbrc.2024.150610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hyperglycemia, the hallmark of diabetes mellitus (DM), is the main cause of DM-related systemic complications, including reproductive issues. Furthermore, the incidence of DM in males of reproductive ages is becoming an increasing concern, as the complexity of sperm capacitation (an essential process for fertilizing the egg) extends beyond conventional sperm parameters such as count, viability, and motility. Capacitation defects cause male infertility, and DM-related hyperglycemia may affect this process. We explore the effects of uncontrolled hyperglycemia on sperm using alloxan-induced hyperglycemic Wistar rats. In addition to assessing conventional sperm parameters, we also evaluated functional indicators, including hyperactivation (HA) with a pharmacological approach and assessed its effects with a computer-assisted sperm analysis (CASA); fluorescence indicators to monitor membrane potential (EmR, DiSC3(5)) and mitochondrial membrane potential (Ψ, JC-1); CatSper activity, using its ability to permeate Na+ ions, and ATP levels with the luciferin-luciferase reaction. We confirmed previous findings with our hyperglycemic model, which replicated the typical reduction on conventional sperm parameters. In sperm from hyperglycemic rats, we observed increased motility and HA levels after pharmacological treatment. Additionally, CatSper activity was unaffected by hyperglycemia, while EmR was hyperpolarized under non-capacitating condition. Finally, we noted a low percentage of hyperpolarized Ψ and reduced ATP content. This study highlights the significance of impact of hyperglycemia on sperm physiology and capacitation. We proposed that low ATP levels perturb energy state, signaling pathways, ion channels activity, motility, and HA. Our findings offer insight into DM-associated infertility and potential treatment strategies.
Collapse
Affiliation(s)
- Hiram Pacheco-Castillo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Erika Elena Zagal-Huerta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Juan José Acevedo-Fernández
- Laboratorio de Electrofisiología y Bioevaluación Farmacológica, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Leñeros S/N, Los Volcanes, Cuernavaca, Morelos, 62350, Mexico.
| | - Elizabeth Negrete-León
- Laboratorio de Electrofisiología y Bioevaluación Farmacológica, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Leñeros S/N, Los Volcanes, Cuernavaca, Morelos, 62350, Mexico.
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Carmen Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
2
|
Wang X, Kang C, Guo W, Yuan L, Zhang H, Zhang Q, Xiao Q, Hao W. Chlormequat chloride induced activation of calmodulin mediated PI3K/AKT signaling pathway led to impaired sperm quality in pubertal mice. Food Chem Toxicol 2024; 185:114475. [PMID: 38286265 DOI: 10.1016/j.fct.2024.114475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Chlormequat chloride (CCC), as a widely used plant growth regulator, can cause impaired sperm quality and decreased testosterone synthesis in pubertal rats, but the underlying mechanism remains unclear. The purpose of this study was to elucidate the toxicokinetics and tissue distribution of CCC, as well as the possible mechanism of CCC-induced impairment in sperm quality. The concentration of CCC reached its peak 1 h after a single dose (200 mg/kg·bw) administration in mice plasma, and a bimodal phenomenon appeared in the testes, liver, and epididymis. In vivo, 200 mg/kg CCC caused testicular damage and impaired sperm quality in pubertal mice, and the expression of p-tyrosine and GSK3α decreased in cauda epididymidis, sperm and testes. CCC also caused the down-regulation of AKAP4 and the up-regulation of calmodulin (CaM), and activated the PI3K/AKT signaling pathway in the testes. In vitro, CCC reduced the levels of p-tyrosine, AKAP4 and GSK3α, increased the level of CaM and activated the PI3K/AKT signaling pathway in GC-1 cells. CaM antagonist (W-7 hydrochloride) and PI3K inhibitor (LY294002) can effectively improve the expression of GSK3α and AKAP4 by suppressing the PI3K/AKT signaling pathway in GC-1 cells treated with CCC. It was indicated that CCC induced impairment in sperm quality might be partially related to the activation of PI3K/AKT signaling pathway mediated by CaM.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
3
|
Abril-Parreño L, Carthy TR, Keogh K, Štiavnická M, O'Meara C, Lonergan P, Kenny DA, Fair S. Genome-wide association study reveals candidate markers related to field fertility and semen quality traits in Holstein-Friesian bulls. Animal 2023; 17:100841. [PMID: 37224615 DOI: 10.1016/j.animal.2023.100841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023] Open
Abstract
In vitro assessment of bull semen quality is routinely used in bull semen processing centres in order to ensure that semen destined to be used in the field has passed minimum standards. Despite these stringent quality control checks, individual bulls that pass the quality control checks can still vary in field fertility by up to 25%. A genome-wide association study was undertaken to determine genetic markers associated with prefreeze and post-thaw bull sperm quality traits as well as field fertility. Genome-wide association analysis was performed using a single nucleotide polymorphism (SNP) regression mixed linear model in WOMBAT. Genes within a 250 Kb span of a suggestive (P ≤ 1 × 10-5) SNP were considered as candidate genes. One SNP was associated with adjusted pregnancy rate, and 21 SNPs were associated across the seven semen quality traits (P ≤ 1 × 10-5). Functional candidate genes include SIPA1L2 which was associated with adjusted pregnancy rate. This encodes a Rap GTPase-activating protein involved in Rap1 signalling pathway and was previously found to play a role in the process of sperm differentiation. Gene ontology (GO) analysis also identified significantly enriched biological processes involved protein tyrosine kinase activity including genes such as DYRK1A, TEC and TXK that were associated with sperm motility prior to freezing. Another candidate gene associated with post-thaw sperm motility was FHDC1 which coordinates actin filament and microtubule dynamics. The induced 11 GO terms in the ejaculates rejected after freezing trait were related to ATPase, phosphatase and hydrolase activity. These results reveal novel specific genomic regions and candidate genes associated with economically important phenotypes such as field fertility and semen quality traits.
Collapse
Affiliation(s)
- Laura Abril-Parreño
- Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Tara R Carthy
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Co. Meath C15 PW93, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Co. Meath C15 PW93, Ireland
| | - Miriama Štiavnická
- Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Ciara O'Meara
- National Cattle Breeding Centre, Naas, Co. Kildare W91 WF59, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 W6F6, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Co. Meath C15 PW93, Ireland
| | - Sean Fair
- Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
4
|
Male contraceptive development: A medicinal chemistry perspective. Eur J Med Chem 2022; 243:114709. [DOI: 10.1016/j.ejmech.2022.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
|
5
|
X chromosome-linked genes in the mature sperm influence semen quality and fertility of breeding bulls. Gene 2022; 839:146727. [PMID: 35835407 DOI: 10.1016/j.gene.2022.146727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
The role of sperm expressed X-linked genes on bull fertility has not been studied in detail. The objective of the present study was to assess the influence of X-linked genes on the sperm functional parameters and field fertility rate in the Holstein Friesian cattle (n = 12) and Murrah buffalo (n = 7) bulls. The enrichment analysis (cattle = 8; buffalo = 8) of the X-linked genes was carried out using retrospective RNA-seq data and mRNA expression levels of functionally relevant genes were validated using the RT-qPCR. The mRNA expression levels of these genes were functionally associated with sperm attributes and field fertility rate. The sperm transcriptome studies revealed that the total number of expressed genes and the transcript content of the X-linked genes in the mature sperm were very low in both species, and only 23.31% of these genes were commonly expressed between them. The transcript pool corresponding to the X-linked genes represents embryonic organ development (p = 0.03) and reproduction (p = 0.02) processes in cattle and buffalo sperm, respectively. The mRNA expression levels of X-linked genes, RPL10 and ZCCHC13 in cattle; AKAP4, TSPAN6, RPL10 and RPS4X in buffalo were significantly (p < 0.05) correlated with sperm kinematics. Importantly, the mRNA expression levels of the genes RPL10 (r = -0.68) and RPS4X (r = 0.81) had a significant correlation with the field fertility rate in cattle and buffalo, respectively. Multivariate regression models and receiver operating curve analysis suggest that the mRNA expression levels of X-linked genes may be useful in predicting bull fertility. The study indicates that sperm-expressed X-linked genes influence semen quality and field fertility rate in both cattle and buffalo.
Collapse
|
6
|
Ma D, Marey MA, Shimada M, Miyamoto A. Toll-like Receptor 2 is Involved in Calcium Influx and Acrosome Reaction to Facilitate Sperm Penetration to Oocytes During in vitro Fertilization in Cattle. Front Cell Dev Biol 2022; 10:810961. [PMID: 35281105 PMCID: PMC8907135 DOI: 10.3389/fcell.2022.810961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cumulus cells of ovulated cumulus-oocyte complexes (COCs) express Toll-like receptor 2 (TLR2), pathogen recognition receptors, to recognize and react to sperm signals during fertilization. Sperm also express TLR2, but its contribution to the sperm-oocytes crosstalk is still unclear. Here, we adapted the in vitro fertilization (IVF) model to characterize the potential relevance of sperm TLR2 in sperm-oocytes interactions during fertilization in bovine. The IVF results showed that the ligation of sperm TLR2 with its specific antagonist/agonist resulted in down/up-regulation of the cleavage and blastocyst rates either in COCs or cumulus-free oocytes, but not in zona pellucida (ZP)-free oocytes. The computer-assisted sperm analysis (CASA) system revealed that sperm motility parameters were not affected in TLR2 antagonist/agonist-treated sperm. However, fluorescence imaging of sperm-ZP interactions revealed that the blockage or activation of the TLR2 system in sperm reduced or enhanced both binding and penetration abilities of sperm to ZP compared to control, respectively. Flow cytometrical analysis of acrosome reaction (AR) demonstrated that the TLR2 system adjusted the occurrence of AR in ZP-attached sperm, suggesting that sperm TLR2 plays physiological impacts on the sperm-oocyte crosstalk via regulating ZP-triggered AR in sperm. Given that calcium (Ca2+) influx is a pre-requisite step for the induction of AR, we investigated the impact of the TLR2 system on the ionophore A23187-induced Ca2+ influx into sperm. Notably, the exposure of sperm to TLR2 antagonist/agonist reduced/increased the intracellular Ca2+ level in sperm. Together, these findings shed new light that the TLR2 system is involved in sperm AR induction which enables sperm to penetrate and fertilize oocytes during the fertilization, at least in vitro, in cows. This suggests that sperm possibly developed a quite flexible sensing mechanism simultaneously against pathogens as well as COCs toward fertilization with the same TLR2 of the innate immune system.
Collapse
Affiliation(s)
- Dongxue Ma
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Ali Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Akio Miyamoto,
| |
Collapse
|
7
|
Xu Y, Han Q, Ma C, Wang Y, Zhang P, Li C, Cheng X, Xu H. Comparative Proteomics and Phosphoproteomics Analysis Reveal the Possible Breed Difference in Yorkshire and Duroc Boar Spermatozoa. Front Cell Dev Biol 2021; 9:652809. [PMID: 34336820 PMCID: PMC8322956 DOI: 10.3389/fcell.2021.652809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Sperm cells are of unique elongated structure and function, the development of which is tightly regulated by the existing proteins and the posttranslational modifications (PTM) of these proteins. Based on the phylogenetic relationships of various swine breeds, Yorkshire boar is believed to be distinctly different from Duroc boar. The comprehensive differential proteomics and phosphoproteomics profilings were performed on spermatozoa from both Yorkshire and Duroc boars. By both peptide and PTM peptide quantification followed by statistical analyses, 167 differentially expressed proteins were identified from 1,745 proteins, and 283 differentially expressed phosphopeptides corresponding to 102 unique differentially phosphorylated proteins were measured from 1,140 identified phosphopeptides derived from 363 phosphorylated proteins. The representative results were validated by Western blots. Pathway enrichment analyses revealed that majority of differential expression proteins and differential phosphorylation proteins were primarily concerned with spermatogenesis, male gamete generation, sperm motility, energy metabolism, cilium morphogenesis, axonemal dynein complex assembly, sperm–egg recognition, and capacitation. Remarkably, axonemal dynein complex assembly related proteins, such as SMCP, SUN5, ODF1, AKAP3, and AKAP4 that play a key regulatory role in the sperm physiological functions, were significantly higher in Duroc spermatozoa than that of Yorkshire. Furthermore, phosphorylation of sperm-specific proteins, such as CABYR, ROPN1, CALM1, PRKAR2A, and PRKAR1A, participates in regulation of the boar sperm motility mainly through the cAMP/PKA signal pathway in different breeds, demonstrating that protein phosphorylation may be an important mechanism underlying the sperm diversity. Protein–protein interaction analysis revealed that the 14 overlapped proteins between differential expression proteins and differential phosphorylation proteins potentially played a key role in sperm development and motility of the flagellum, including the proteins ODF1, SMCP, AKAP4, FSIP2, and SUN5. Taken together, these physiologically and functionally differentially expressed proteins (DEPs) and differentially expressed phosphorylated proteins (DPPs) may constitute the proteomic backgrounds between the two different boar breeds. The validation will be performed to delineate the roles of these PTM proteins as modulators of Yorkshire and Duroc boar spermatozoa.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Qiu Han
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Chaofeng Ma
- Xinyang Animal Disease Control and Prevention Center, Xinyang, China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
8
|
Improving Sperm Oxidative Stress and Embryo Quality in Advanced Paternal Age Using Idebenone In Vitro-A Proof-of-Concept Study. Antioxidants (Basel) 2021; 10:antiox10071079. [PMID: 34356315 PMCID: PMC8301200 DOI: 10.3390/antiox10071079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022] Open
Abstract
Advanced paternal age is associated with increased sperm reactive oxygen species (ROS) and decreased fertilization and pregnancy rates. Sperm washing during infertility treatment provides an opportunity to reduce high sperm ROS concentrations associated with advanced paternal age through the addition of idebenone. Sperm from men aged >40 years and older CBAF1 mice (12–18 months), were treated with 5 µM and 50 µM of idebenone and intracellular and superoxide ROS concentrations assessed. Following in vitro fertilization (IVF), embryo development, blastocyst differentiation, DNA damage and cryosurvival, pregnancy and implantation rates and fetal and placental weights were assessed. Five µM of idebenone given to aged human and mouse sperm reduced superoxide concentrations ~20% (p < 0.05), while both 5 and 50 µM reduced sperm intracellular ROS concentrations in mice ~30% (p < 0.05). Following IVF, 5 µM of idebenone to aged sperm increased fertilization rates (65% vs. 60%, p < 0.05), blastocyst total, trophectoderm and inner cell mass cell numbers (73 vs. 66, 53 vs. 47 and 27 vs. 24, respectively, p < 0.01). Treatment with idebenone also increased blastocyst cryosurvival rates (96% vs. 78%, p < 0.01) and implantation rates following embryo transfer (35% vs. 18%, p < 0.01). Placental weights were smaller (107 mg vs. 138 mg, p < 0.05), resulting in a larger fetal to placental weight ratio (8.3 vs. 6.3, p = 0.07) after sperm idebenone treatment. Increased sperm ROS concentrations associated with advanced paternal age are reduced with the addition of idebenone in vitro, and are associated with improved fertilization rates, embryo quality and implantation rates after IVF.
Collapse
|
9
|
Nasimi M, Jorsaraei SGA, Fattahi E, Tabari MG, Neyshaburi EZ. SCF Improves In Vitro Differentiation of SSCs Through Transcriptionally Up-regulating PRTM1, STRA8, c-KIT, PIWIL2, and OCT4 Genes. Reprod Sci 2021; 28:963-972. [PMID: 33492648 DOI: 10.1007/s43032-020-00326-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
Several lines of evidence strongly suggest that retinoic acid (RA) and stem cell factor (SCF)/c-Kit signal transduction pathways are involved in the differentiation of spermatogonial stem cells (SSCs). This study was aimed to investigate the effect of RA and SCF on in vitro differentiation of SSCs via evaluation of the mRNA expression of meiosis-specific genes in cultured testicular tissues. Testicular tissue samples were obtained from bilaterally vasectomized rats and also healthy adult rats and then were cultured for 25, 30, and 35 days on different conditions. The cultured testicular pieces were sectioned and stained with PAS to histological analysis. The total RNA was extracted from cultured testicular samples, and the expression of ACR, PRTM1, SYCP3, STRA8, c-KIT, PIWIL2, and OCT4 genes at mRNA level was quantified using real-time polymerase chain reaction (qPCR) procedure. After 1-month surgery, bilateral testicular weight showed a significant decrease in vasectomized adult rats compared with healthy adult rats (P < 0.05). Reduction in the diameter of the seminiferous tubules and depletion of advanced germinal elements in vasectomized rats compared with healthy adult rats were also observed. Our findings also demonstrated that the mRNA expression level of PRTM1, STRA8, c-KIT, PIWIL2, and OCT4 genes in cultured testicular tissues significantly up-regulated in experimental group II compared with the control group (P < 0.001). Our findings lead us to conclude that SCF improves in vitro differentiation of SSCs in the OA rats, at least partially, by transcriptionally upregulating PRTM1, STRA8, c-KIT, PIWIL2, and OCT4 genes.
Collapse
Affiliation(s)
- Mahnaz Nasimi
- Department of Biology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Seyed Gholam Ali Jorsaraei
- Department of Anatomy and Embryology, Infertility and Health Reproductive Research Center, Babol University of Medical Sciences, P.O. Box: 4136747176, Babol, Iran.
| | - Esmail Fattahi
- Department of Biology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | | | - Ebrahim Zabihi Neyshaburi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
10
|
Engel KM, Baumann S, Rolle-Kampczyk U, Schiller J, von Bergen M, Grunewald S. Metabolomic profiling reveals correlations between spermiogram parameters and the metabolites present in human spermatozoa and seminal plasma. PLoS One 2019; 14:e0211679. [PMID: 30785892 PMCID: PMC6382115 DOI: 10.1371/journal.pone.0211679] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/20/2019] [Indexed: 01/07/2023] Open
Abstract
In 50% of all infertility cases, the male is subfertile or infertile, however, the underlying mechanisms are often unknown. Even when assisted reproductive procedures such as in vitro fertilization and intracytoplasmic sperm injection are performed, the causes of male factor infertility frequently remain elusive. Since the overall activity of cells is closely linked to their metabolic capacity, we analyzed a panel of 180 metabolites in human sperm and seminal plasma and elucidated their associations with spermiogram parameters. Therefore, metabolites from a group of 20 healthy donors were investigated using a targeted LC-MS/MS approach. The correlation analyses of the amino acids, biogenic amines, acylcarnitines, lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and sugars from sperm and seminal plasma with standard spermiogram parameters revealed that metabolites in sperm are closely related to sperm motility, whereas those in seminal plasma are closely related to sperm concentration and morphology. This study provides essential insights into the metabolome of human sperm and seminal plasma and its associations with sperm functions. This metabolomics technique could be a promising screening tool to detect the factors of male infertility in cases where the cause of infertility is unclear.
Collapse
Affiliation(s)
- Kathrin M. Engel
- Training Center of the European Academy of Andrology (EAA), Dermatology, Venerology and Allergology Clinic, University Hospital Leipzig, Leipzig, Germany
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Sven Baumann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Sonja Grunewald
- Training Center of the European Academy of Andrology (EAA), Dermatology, Venerology and Allergology Clinic, University Hospital Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
11
|
Evaluation of protein phosphorylation in bull sperm during their maturation in the epididymis. Cell Tissue Res 2017; 371:365-373. [DOI: 10.1007/s00441-017-2705-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/17/2022]
|
12
|
Alvau A, Battistone MA, Gervasi MG, Navarrete FA, Xu X, Sánchez-Cárdenas C, De la Vega-Beltran JL, Da Ros VG, Greer PA, Darszon A, Krapf D, Salicioni AM, Cuasnicu PS, Visconti PE. The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm. Development 2016; 143:2325-33. [PMID: 27226326 DOI: 10.1242/dev.136499] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022]
Abstract
Sperm capacitation is required for fertilization. At the molecular level, this process is associated with fast activation of protein kinase A. Downstream of this event, capacitating conditions lead to an increase in tyrosine phosphorylation. The identity of the tyrosine kinase(s) mediating this process has not been conclusively demonstrated. Recent experiments using stallion and human sperm have suggested a role for PYK2 based on the use of small molecule inhibitors directed against this kinase. However, crucially, loss-of-function experiments have not been reported. Here, we used both pharmacological inhibitors and genetically modified mice models to investigate the identity of the tyrosine kinase(s) mediating the increase in tyrosine phosphorylation in mouse sperm. Similar to stallion and human, PF431396 blocks the capacitation-associated increase in tyrosine phosphorylation. Yet, sperm from Pyk2(-/-) mice displayed a normal increase in tyrosine phosphorylation, implying that PYK2 is not responsible for this phosphorylation process. Here, we show that PF431396 can also inhibit FER, a tyrosine kinase known to be present in sperm. Sperm from mice targeted with a kinase-inactivating mutation in Fer failed to undergo capacitation-associated increases in tyrosine phosphorylation. Although these mice are fertile, their sperm displayed a reduced ability to fertilize metaphase II-arrested eggs in vitro.
Collapse
Affiliation(s)
- Antonio Alvau
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Maria Gracia Gervasi
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Felipe A Navarrete
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Xinran Xu
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80521, USA
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, IBT-UNAM, Cuernavaca 62210, México
| | | | - Vanina G Da Ros
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires C1428ADN, Argentina
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, IBT-UNAM, Cuernavaca 62210, México
| | - Diego Krapf
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80521, USA
| | - Ana Maria Salicioni
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Patricia S Cuasnicu
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires C1428ADN, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
13
|
Fang DA, Duan JR, Zhou YF, Zhang MY, Xu DP, Liu K, Xu P. Molecular Characteristic, Protein Distribution and Potential Regulation of HSP90AA1 in the Anadromous Fish Coilia nasus. Genes (Basel) 2016; 7:genes7020008. [PMID: 26828521 PMCID: PMC4773752 DOI: 10.3390/genes7020008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Heat shock proteins play essential roles in basic cellular events. Spawning migration is a complex process, with significant structural and biochemical changes taking place in the adult gonad. To date, the molecular mechanisms underlying migration reproductive biology remain undetermined. In this regard, a full length HSP90AA1 comprising 2608 nucleotides from the anadromous fish Coilia nasus was characterized, encoding 742 amino acid (aa) residues with potential phosphorylation sites. HSP90AA1 mRNA transcripts were detected in all organs, especially in the gonad. Furthermore, the greatest transcript levels were found during the developmental phase, while the lowest levels were found during the resting phase. In addition, the strongest immunolabeling positive signal was found in the primary spermatocyte and oocyte, with lower positive staining in secondary germ cells, and a weak or absent level in the mature sperm and oocyte. Interestingly, HSP90AA1 was mainly located in the cytoplasm of germ cells. These results are important for understanding the molecular mechanism of anadromous migration reproductive biology. In combination with data from other fish species, the result of this present study may facilitate further investigations on the spawning migration mechanism.
Collapse
Affiliation(s)
- Di-An Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture, Xuejiali 69, Wuxi 214128, China.
| | - Jin-Rong Duan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| | - Yan-Feng Zhou
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| | - Min-Ying Zhang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| | - Dong-Po Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture, Xuejiali 69, Wuxi 214128, China.
| | - Kai Liu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| | - Pao Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| |
Collapse
|
14
|
Bernabò N, Ordinelli A, Di Agostino R, Mattioli M, Barboni B. Network analyses of sperm-egg recognition and binding: ready to rethink fertility mechanisms? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 18:740-53. [PMID: 25454512 DOI: 10.1089/omi.2014.0128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The rapid growth of published literature makes biomedical text mining increasingly invaluable for unpacking implicit knowledge hidden in unstructured text. We employed biomedical text mining and biological networks analyses to research the process of sperm egg recognition and binding (SERB). We selected from the literature the molecules expressed either on spermatozoa or on oocytes thought to be involved in SERB and, using an automated literature search software (Agilent Literature Search), we realized a network, SERBN, characterized by a hierarchical scale free and a small world topology. We used an integrated approach, either based on selection of hubs or by a cluster analysis, to discern the key molecules of SERB. We found that in most cases some of them are not directly situated on spermatozoa and oocyte, but are dispersed in oviductal fluid or embedded in exosomes present in the perivitelline space. To confirm and validate our results, we performed further analyses using STRING and Reactome FI software. Our findings underscore that the fertility is not a property of gametes in isolation, but rather depends on the functional integrity of the entire reproductive system. These observations collectively underscore the importance of integrative biology in exploring biological systems and in rethinking of fertility mechanisms in the light of this innovative approach.
Collapse
Affiliation(s)
- Nicola Bernabò
- Faculty of Veterinary Medicine, University of Teramo , Teramo, Italy
| | | | | | | | | |
Collapse
|
15
|
Jenardhanan P, Mathur PP. Kinases as targets for chemical modulators: Structural aspects and their role in spermatogenesis. SPERMATOGENESIS 2015; 4:e979113. [PMID: 26413395 DOI: 10.4161/21565562.2014.979113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 01/18/2023]
Abstract
Protein phosphorylation and de-phosphorylation events are crucial in deciding the fate of cells. They regulate cellular growth, differentiation and cell death, and kinases are the key players of these events. The members of ser/thr kinases and tyrosine kinases form the majority of protein kinase family, exerting their regulatory mechanism in almost all cells. In testis, they impact signal transduction events, regulate all stages of sperm development from mitosis through fertilization. Understanding the function of these kinases at the structural level and studying their interactions with inhibitors can help in understanding the machinery of spermatogenesis. In view of this, we have reviewed some of the prominent kinases that are known to play a role in spermatogenesis. A better understanding of the impacts of kinase inhibition on spermatogenesis should aid in the interpretation of lesions and hopefully further the development of more efficient and potent drug candidates.
Collapse
Affiliation(s)
- Pranitha Jenardhanan
- Centre for Bioinformatics; School of Life Sciences; Pondicherry University ; Puducherry, India
| | - Premendu P Mathur
- Centre for Bioinformatics; School of Life Sciences; Pondicherry University ; Puducherry, India ; Department of Biochemistry & Molecular Biology; School of Life Sciences; Pondicherry University ; Puducherry, India ; KIIT University ; Bhubaneshwar, Odisha, India
| |
Collapse
|
16
|
Hydroxyflutamide alters the characteristics of live boar spermatozoa. Theriogenology 2014; 82:988-96. [DOI: 10.1016/j.theriogenology.2014.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/10/2014] [Accepted: 07/10/2014] [Indexed: 11/23/2022]
|
17
|
Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update 2013; 20:40-62. [DOI: 10.1093/humupd/dmt046] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Sati L, Cayli S, Delpiano E, Sakkas D, Huszar G. The pattern of tyrosine phosphorylation in human sperm in response to binding to zona pellucida or hyaluronic acid. Reprod Sci 2013; 21:573-81. [PMID: 24077441 DOI: 10.1177/1933719113504467] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In mammalian species, acquisition of sperm fertilization competence is dependent on the phenomenon of sperm capacitation. One of the key elements of capacitation is protein tyrosine phosphorylation (TP) in various sperm membrane regions. In previous studies performed, the pattern of TP was examined in human sperm bound to zona pellucida of oocytes. In the present comparative study, TP patterns upon sperm binding to the zona pellucida or hyaluronic acid (HA) were investigated in spermatozoa arising from the same semen samples. Tyrosine phosphorylation, visualized by immunofluorescence, was localized within the acrosomal cap, equatorial head region, neck, and the principal piece. Tyrosine phosphorylation has increased in a time-related manner as capacitation progressed, and the phosphorylation pattern was identical within the principal piece and neck, regardless of the sperm bound to the zona pellucida or HA. Thus, the data demonstrated that the patterns of sperm activation-related TP were similar regardless of the spermatozoa bound to zona pellucida or HA. Further, sperm with incomplete development, as detected by excess cytoplasmic retention, failed to exhibit TP.
Collapse
Affiliation(s)
- Leyla Sati
- 1Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | | | | | | | | |
Collapse
|