1
|
Wang K, Dropulic L, Bozekowski J, Pietz HL, Jegaskanda S, Dowdell K, Vogel JS, Garabedian D, Oestreich M, Nguyen H, Ali MA, Lumbard K, Hunsberger S, Reifert J, Haynes WA, Sawyer JR, Shon JC, Daugherty PS, Cohen JI. Serum and Cervicovaginal Fluid Antibody Profiling in Herpes Simplex Virus (HSV) Seronegative Recipients of the HSV529 Vaccine. J Infect Dis 2021; 224:1509-1519. [PMID: 33718970 DOI: 10.1093/infdis/jiab139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/12/2021] [Indexed: 11/14/2022] Open
Abstract
Previous HSV2 vaccines have not prevented genital herpes. Concerns have been raised about the choice of antigen, the type of antibody induced by the vaccine, and whether antibody is present in the genital tract where infection occurs. We reported results of a trial of an HSV2 replication-defective vaccine, HSV529, that induced serum neutralizing antibody responses in 78% of HSV1 -/HSV2 - vaccine recipients. Here we show that HSV1 -/HSV2 - vaccine recipients developed antibodies to epitopes of several viral proteins; however, fewer antibody epitopes were detected in vaccine recipients compared with naturally infected persons. HSV529 induced antibodies that mediated HSV2-specific NK cell activation. Depletion of gD-binding antibody from sera reduced neutralizing titers by 62% and NK cell activation by 81%. HSV2 gD antibody was detected in cervicovaginal fluid at about one-third the level of that in serum. A vaccine that induces potent serum antibodies transported to the genital tract might reduce HSV genital infection.
Collapse
Affiliation(s)
- Kening Wang
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lesia Dropulic
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Harlan L Pietz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sinthujan Jegaskanda
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kennichi Dowdell
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua S Vogel
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Doreen Garabedian
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Makinna Oestreich
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanh Nguyen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mir A Ali
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keith Lumbard
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Paull ML, Johnston T, Ibsen KN, Bozekowski JD, Daugherty PS. A general approach for predicting protein epitopes targeted by antibody repertoires using whole proteomes. PLoS One 2019; 14:e0217668. [PMID: 31490930 PMCID: PMC6730857 DOI: 10.1371/journal.pone.0217668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022] Open
Abstract
Antibodies are essential to functional immunity, yet the epitopes targeted by antibody repertoires remain largely uncharacterized. To aid in characterization, we developed a generalizable strategy to predict antibody-binding epitopes within individual proteins and entire proteomes. Specifically, we selected antibody-binding peptides for 273 distinct sera out of a random library and identified the peptides using next-generation sequencing. To predict antibody-binding epitopes and the antigens from which these epitopes were derived, we tiled the sequences of candidate antigens into short overlapping subsequences of length k (k-mers). We used the enrichment over background of these k-mers in the antibody-binding peptide dataset to predict antibody-binding epitopes. As a positive control, we used this approach, termed K-mer Tiling of Protein Epitopes (K-TOPE), to predict epitopes targeted by monoclonal and polyclonal antibodies of well-characterized specificity, accurately recovering their known epitopes. K-TOPE characterized a commonly targeted antigen from Rhinovirus A, predicting four epitopes recognized by antibodies present in 87% of sera (n = 250). An analysis of 2,908 proteins from 400 viral taxa that infect humans predicted seven enterovirus epitopes and five Epstein-Barr virus epitopes recognized by >30% of specimens. Analysis of Staphylococcus and Streptococcus proteomes similarly predicted 22 epitopes recognized by >30% of specimens. Twelve of these common viral and bacterial epitopes agreed with previously mapped epitopes with p-values < 0.05. Additionally, we predicted 30 HSV2-specific epitopes that were 100% specific against HSV1 in novel and previously reported antigens. Experimentally validating these candidate epitopes could help identify diagnostic biomarkers, vaccine components, and therapeutic targets. The K-TOPE approach thus provides a powerful new tool to elucidate the organisms, antigens, and epitopes targeted by human antibody repertoires.
Collapse
Affiliation(s)
- Michael L. Paull
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
- * E-mail: (MLP); (PSD)
| | - Tim Johnston
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
| | - Kelly N. Ibsen
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
| | - Joel D. Bozekowski
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
| | - Patrick S. Daugherty
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
- * E-mail: (MLP); (PSD)
| |
Collapse
|
3
|
Neuromyelitis Optica and Herpes Simplex Virus 2: A Viral Trigger for Aquaporin-4 Autoimmunity? Neurologist 2018; 23:92-93. [PMID: 29722742 DOI: 10.1097/nrl.0000000000000172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The clinical and radiographic spectrum of Neuromyelitis optica spectrum disorder has broadened following the description of the aquaporin-4 antibody. The initial triggering event and reason for disease quiescence between relapses is unclear. We present a case of myeloradiculitis associated with aquaporin-4 antibody and concomitant herpes simplex virus 2 infection.
Collapse
|
4
|
Sharma M, Dash P, Sahoo PK, Dixit A. Th2-biased immune response and agglutinating antibodies generation by a chimeric protein comprising OmpC epitope (323–336) of Aeromonas hydrophila and LTB. Immunol Res 2017; 66:187-199. [DOI: 10.1007/s12026-017-8953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Risinger C, Sørensen KK, Jensen KJ, Olofsson S, Bergström T, Blixt O. Linear Multiepitope (Glyco)peptides for Type-Specific Serology of Herpes Simplex Virus (HSV) Infections. ACS Infect Dis 2017; 3:360-367. [PMID: 28238255 DOI: 10.1021/acsinfecdis.7b00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Detection of type-specific antibodies is an important and essential part of accurate diagnosis, even in silent carriers of herpes simplex virus (HSV)-1 (oral) and HSV-2 (genital) infections. Serologic assays that identify HSV-1 and HSV-2 type-specific antibodies have been commercially available for more than a decade but often face problems related to cross-reactivity and similar issues. Attempts to identify type-specific peptide epitopes for use in serology for both HSV-1 and HSV-2 have been limited. We recently demonstrated epitope mapping of envelope glycoprotein G2 and identified a type-specific glycopeptide epitope that broadly recognized HSV-2 infected individuals. In the present work we have performed a comprehensive glycopeptide synthesis and microarray epitope mapping of 14 envelope proteins from HSV-1 and HSV-2, namely, gB, gC, gD, gE, gG, gH, and gI, using sera from HSV-1- and HSV-2-infected individuals and control sera. Several unique type-specific peptide epitopes with high sensitivity were identified and synthesized as one large linear multiepitope sequence using microwave-assisted solid-phase (glyco)peptide synthesis. Microarray validation with clinically defined HSV and Varicella Zoster (VZV) sera confirmed excellent cumulative specificities and sensitivities.
Collapse
Affiliation(s)
- Christian Risinger
- Department of Chemistry,
Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Kasper K. Sørensen
- Department of Chemistry,
Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Knud J. Jensen
- Department of Chemistry,
Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Sigvard Olofsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Ola Blixt
- Department of Chemistry,
Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
6
|
Sharma M, Dixit A. Immune response characterization and vaccine potential of a recombinant chimera comprising B-cell epitope of Aeromonas hydrophila outer membrane protein C and LTB. Vaccine 2016; 34:6259-6266. [PMID: 27832917 DOI: 10.1016/j.vaccine.2016.10.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Aeromonas hydrophila is one of the most virulent fish pathogens, causing colossal economic losses to the aquaculture industry annually. The absence of a safe and effective vaccine makes it very difficult to control this infection. Outer membrane proteins have been widely illustrated to confer protective immunity against a broad spectrum of gram negative bacteria. In the current study, we have analyzed the ability of B-cell epitopes of A. hydrophila's outer membrane protein C (OmpC) to confer protection against bacterial virulence. Bioinformatic algorithms were used to predict linear B-cell epitopes of OmpC and the corresponding nucleotide sequences were cloned in translational fusion with heat labile enterotoxin B subunit (LTB) of E. coli. Of the three recombinant LTB.epitope fusion proteins evaluated, antisera against the fusion protein comprising the epitope stretch of 143-175 amino acids gave maximum cross reactivity with the parent protein OmpC. The anti-fusion protein antisera contained both OmpC- and LTB-specific antibodies. The fusion proteins' LTB moiety retained its ability to bind to the GM1 ganglioside receptor, an essential requirement for its adjuvanicity. Antibody isotyping, cytokine ELISA, and cytokine array analysis revealed a Th2 skewed type immune response along with the presence of some relevant Th17 and Th1 cytokines involved in conferring protective immunity. Surface exposure of the epitope143-175 on live A. hydrophila membrane was investigated and validated using bacterial agglutination and flow cytometry analysis using anti-fusion protein antisera. Our results strongly support the potential of B-cell epitope143-175 of OmpC of A. hydrophila, in fusion with the LTB, as an effective and promising vaccine candidate against this bacterium.
Collapse
Affiliation(s)
- Mahima Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
7
|
Sharma M, Dixit A. Identification and immunogenic potential of B cell epitopes of outer membrane protein OmpF of Aeromonas hydrophila in translational fusion with a carrier protein. Appl Microbiol Biotechnol 2015; 99:6277-91. [DOI: 10.1007/s00253-015-6398-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 01/10/2023]
|
8
|
Animal models of herpes simplex virus immunity and pathogenesis. J Neurovirol 2014; 21:8-23. [PMID: 25388226 DOI: 10.1007/s13365-014-0302-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are ubiquitous human pathogens represented by two distinct serotypes: herpes simplex virus (HSV) type 1 (HSV-1); and HSV type 2 (HSV-2). In the general population, adult seropositivity rates approach 90% for HSV-1 and 20-25% for HSV-2. These viruses cause significant morbidity, primarily as mucosal membrane lesions in the form of facial cold sores and genital ulcers, with much less common but more severe manifestations causing death from encephalitis. HSV infections in humans are difficult to study in many cases because many primary infections are asymptomatic. Moreover, the neurotropic properties of HSV make it much more difficult to study the immune mechanisms controlling reactivation of latent infection within the corresponding sensory ganglia and crossover into the central nervous system of infected humans. This is because samples from the nervous system can only be routinely obtained at the time of autopsy. Thus, animal models have been developed whose use has led to a better understanding of multiple aspects of HSV biology, molecular biology, pathogenesis, disease, and immunity. The course of HSV infection in a spectrum of animal models depends on important experimental parameters including animal species, age, and genotype; route of infection; and viral serotype, strain, and dose. This review summarizes the animal models most commonly used to study HSV pathogenesis and its establishment, maintenance, and reactivation from latency. It focuses particularly on the immune response to HSV during acute primary infection and the initial invasion of the ganglion with comparisons to the events governing maintenance of viral latency.
Collapse
|
9
|
Ikram A, Anjum S, Tahir M. In Silico Identification and Conservation Analysis of B-cell and T-Cell Epitopes of Hepatitis C Virus 3a Genotype Enveloped Glycoprotein 2 From Pakistan: A Step Towards Heterologous Vaccine Design. HEPATITIS MONTHLY 2014; 14:e9832. [PMID: 24976845 PMCID: PMC4071360 DOI: 10.5812/hepatmon.9832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/22/2013] [Accepted: 10/17/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is known for the eminent global disease burden responsible for encumbering public health. Development of an effective vaccine is the major need of the day; however, several obstacles loom ahead of this objective. One of the major barriers is that as a RNA virus, it mutates rapidly resulting in high sequence divergence and several viral isolates in the world. Theglycoprotein 2 (gpE2) is the primary component of HCV envelope with direct interaction with the host cell surface receptors; it is an indispensable target of neutralizing antibodies and hence, should be a fundamental component of vaccine design. OBJECTIVES This study focused on B-cells and T-cells epitopes prediction in HCV gpE2, particularly in 3a genotype, in Pakistan and identification of the conserved epitopes among various 3a isolates at global level, principally conserved across HCV major genotypes. MATERIALS AND METHODS Epitope finding was done by using online available bioinformatics tools including Immune Epitope Database (IEDB), ProPred-I, and ProPred. Conservation of these epitopes was found by aligning selected gpE2 sequences using MultAlin online software and conservancy analysis tool available at IEDB. RESULTS Many B-cell and T-cell epitopes predicted in gpE2 were found conserved among HCV 3a genotypes whereas few were conserved in other genotypes anticipating these epitopes as potential candidates of producing strong B-cell and T-cell response against HCV 3a and other genotypes. CONCLUSIONS HCV gpE2 is an ideal target for HCV vaccine. Prediction of epitope immunogenicity and characterization on the basis of peptide sequences will be significantly helpful for development of a heterologous vaccine against HCV variants.
Collapse
Affiliation(s)
- Aqsa Ikram
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadia Anjum
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Corresponding Author: Sadia Anjum, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan. Tel: +92-5190856152 Fax+92-5190856102, E-mail:
| | - Muhammad Tahir
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
10
|
Coleman JL, Shukla D. Recent advances in vaccine development for herpes simplex virus types I and II. Hum Vaccin Immunother 2013; 9:729-35. [PMID: 23442925 DOI: 10.4161/hv.23289] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite recent advances in vaccine design and strategies, latent infection with herpes simplex virus (HSV) remains a formidable challenge. Approaches involving live-attenuated viruses and inactivated viral preparations were popular throughout the twentieth century. In the past ten years, many vaccine types, both prophylactic or therapeutic, have contained a replication-defective HSV, viral DNA or glycoproteins. New research focused on the mechanism of immune evasion by the virus has involved developing vaccines with various gene deletions and manipulations combined with the use of new and more specific adjuvants. In addition, new "prime-boost" methods of strengthening the vaccine efficacy have proven effective, but there have also been flaws with some recent strategies that appear to have compromised vaccine efficacy in humans. Given the complicated lifecycle of HSV and its unique way of spreading from cell-to-cell, it can be concluded that the development of an ideal vaccine needs new focus on cell-mediated immunity, better understanding of the latent viral genome and serious consideration of gender-based differences in immunity development among humans. This review summarizes recent developments made in the field and sheds light on some potentially new ways to conquer the problem including development of dual-action prophylactic microbicides that prohibit viral entry and, in addition, induce a strong antigen response.
Collapse
Affiliation(s)
- Jeffrey L Coleman
- Department of Ophthalmology and Visual Sciences; College of Medicine, University of Illinois at Chicago; Chicago, IL USA; Whitney M. Young Magnet High School; Chicago, IL USA
| | | |
Collapse
|