1
|
Dowrick JM, Taberner AJ, Han JC, Tran K. Methods for assessing cardiac myofilament calcium sensitivity. Front Physiol 2023; 14:1323768. [PMID: 38116581 PMCID: PMC10728676 DOI: 10.3389/fphys.2023.1323768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Myofilament calcium (Ca2+) sensitivity is one of several mechanisms by which force production of cardiac muscle is modulated to meet the ever-changing demands placed on the heart. Compromised Ca2+ sensitivity is associated with pathologies, which makes it a parameter of interest for researchers. Ca2+ Sensitivity is the ratio of the association and dissociation rates between troponin C (TnC) and Ca2+. As it is not currently possible to measure these rates in tissue preparations directly, methods have been developed to infer myofilament sensitivity, typically using some combination of force and Ca2+ measurements. The current gold-standard approach constructs a steady-state force-Ca2+ relation by exposing permeabilised muscle samples to a range of Ca2+ concentrations and uses the half-maximal concentration as a proxy for sensitivity. While a valuable method for steady-state investigations, the permeabilisation process makes the method unsuitable when examining dynamic, i.e., twitch-to-twitch, changes in myofilament sensitivity. The ability of the heart to transiently adapt to changes in load is an important consideration when evaluating the impact of disease states. Alternative methods have been proffered, including force-Ca2+ phase loops, potassium contracture, hybrid experimental-modelling and conformation-based fluorophore approaches. This review provides an overview of the mechanisms underlying myofilament Ca2+ sensitivity, summarises existing methods, and explores, with modelling, whether any of them are suited to investigating dynamic changes in sensitivity. We conclude that a method that equips researchers to investigate the transient change of myofilament Ca2+ sensitivity is still needed. We propose that such a method will involve simultaneous measurements of cytosolic Ca2+ and TnC activation in actively twitching muscle and a biophysical model to interpret these data.
Collapse
Affiliation(s)
- Jarrah M. Dowrick
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science and Biomedical Engineering, University of Auckland, Auckland, New Zealand
| | - June-Chiew Han
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Chen MP, Kiduko SA, Saad NS, Canan BD, Kilic A, Mohler PJ, Janssen PML. Stretching single titin molecules from failing human hearts reveals titin's role in blunting cardiac kinetic reserve. Cardiovasc Res 2020; 116:127-137. [PMID: 30778519 DOI: 10.1093/cvr/cvz043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/08/2018] [Accepted: 02/13/2019] [Indexed: 11/15/2022] Open
Abstract
AIMS Heart failure (HF) patients commonly experience symptoms primarily during elevated heart rates, as a result of physical activities or stress. A main determinant of diastolic passive tension, the elastic sarcomeric protein titin, has been shown to be associated with HF, with unresolved involvement regarding its role at different heart rates. To determine whether titin is playing a role in the heart rate (frequency-) dependent acceleration of relaxation (FDAR). W, we studied the FDAR responses in live human left ventricular cardiomyocytes and the corresponding titin-based passive tension (TPT) from failing and non-failing human hearts. METHODS AND RESULTS Using atomic force, we developed a novel single-molecule force spectroscopy approach to detect TPT based on the frequency-modulated cardiac cycle. Mean TPT reduced upon an increased heart rate in non-failing human hearts, while this reduction was significantly blunted in failing human hearts. These mechanical changes in the titin distal Ig domain significantly correlated with the frequency-dependent relaxation kinetics of human cardiomyocytes obtained from the corresponding hearts. Furthermore, the data suggested that the higher the TPT, the faster the cardiomyocytes relaxed, but the lower the potential of myocytes to speed up relaxation at a higher heart rate. Such poorer FDAR response was also associated with a lesser reduction or a bigger increase in TPT upon elevated heart rate. CONCLUSIONS Our study established a novel approach in detecting dynamic heart rate relevant tension changes physiologically on native titin domains. Using this approach, the data suggested that the regulation of kinetic reserve in cardiac relaxation and its pathological changes were associated with the intensity and dynamic changes of passive tension by titin.
Collapse
Affiliation(s)
- Mei-Pian Chen
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA
| | - Salome A Kiduko
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA
| | - Nancy S Saad
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA
| | - Ahmet Kilic
- Division of Cardiothoracic Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, 410 W 10th Ave, Columbus, OH 43210, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, Columbus, OH 43210, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Sevrieva IR, Brandmeier B, Ponnam S, Gautel M, Irving M, Campbell KS, Sun YB, Kampourakis T. Cardiac myosin regulatory light chain kinase modulates cardiac contractility by phosphorylating both myosin regulatory light chain and troponin I. J Biol Chem 2020; 295:4398-4410. [PMID: 32086378 PMCID: PMC7135997 DOI: 10.1074/jbc.ra119.011945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Heart muscle contractility and performance are controlled by posttranslational modifications of sarcomeric proteins. Although myosin regulatory light chain (RLC) phosphorylation has been studied extensively in vitro and in vivo, the precise role of cardiac myosin light chain kinase (cMLCK), the primary kinase acting upon RLC, in the regulation of cardiomyocyte contractility remains poorly understood. In this study, using recombinantly expressed and purified proteins, various analytical methods, in vitro and in situ kinase assays, and mechanical measurements in isolated ventricular trabeculae, we demonstrate that human cMLCK is not a dedicated kinase for RLC but can phosphorylate other sarcomeric proteins with well-characterized regulatory functions. We show that cMLCK specifically monophosphorylates Ser23 of human cardiac troponin I (cTnI) in isolation and in the trimeric troponin complex in vitro and in situ in the native environment of the muscle myofilament lattice. Moreover, we observed that human cMLCK phosphorylates rodent cTnI to a much smaller extent in vitro and in situ, suggesting species-specific adaptation of cMLCK. Although cMLCK treatment of ventricular trabeculae exchanged with rat or human troponin increased their cross-bridge kinetics, the increase in sensitivity of myofilaments to calcium was significantly blunted by human TnI, suggesting that human cTnI phosphorylation by cMLCK modifies the functional consequences of RLC phosphorylation. We propose that cMLCK-mediated phosphorylation of TnI is functionally significant and represents a critical signaling pathway that coordinates the regulatory states of thick and thin filaments in both physiological and potentially pathophysiological conditions of the heart.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Birgit Brandmeier
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Kenneth S Campbell
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
4
|
Assessment of PKA and PKC inhibitors on force and kinetics of non-failing and failing human myocardium. Life Sci 2018; 215:119-127. [PMID: 30399377 DOI: 10.1016/j.lfs.2018.10.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023]
Abstract
AIMS Heart failure (HF) is a prevalent disease that is considered the foremost reason for hospitalization in the United States. Most protein kinases (PK) are activated in heart disease and their inhibition has been shown to improve cardiac function in both animal and human studies. However, little is known about the direct impact of PKA and PKC inhibitors on human cardiac contractile function. MATERIAL AND METHODS We investigated the ex vivo effect of such inhibitors on force as well as on kinetics of left ventricular (LV) trabeculae dissected from non-failing and failing human hearts. In these experiments, we applied 0.5 μM of H-89 and GF109203X, which are PKA and PKC inhibitors, respectively, in comparison to their vehicle DMSO (0.05%). KEY FINDINGS AND CONCLUSION Statistical analyses revealed no significant effect for H-89 and GF109203X on either contractile force or kinetics parameters of both non-failing and failing muscles even though they were used at a concentration higher than the reported IC50s and Kis. Therefore, several factors such as selectivity, concentration, and treatment time, which are related to these PK inhibitors according to previous studies require further exploration.
Collapse
|
5
|
Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium. BIOMED RESEARCH INTERNATIONAL 2015; 2015:468548. [PMID: 25961020 PMCID: PMC4413957 DOI: 10.1155/2015/468548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/01/2014] [Accepted: 08/19/2014] [Indexed: 01/02/2023]
Abstract
As the heart transitions from one exercise intensity to another, changes in cardiac output occur, which are modulated by alterations in force development and calcium handling. Although the steady-state force-calcium relationship at various heart rates is well investigated, regulation of these processes during transitions in heart rate is poorly understood. In isolated right ventricular muscle preparations from the rabbit, we investigated the beat-to-beat alterations in force and calcium during the transition from one stimulation frequency to another, using contractile assessments and confocal microscopy. We show that a change in steady-state conditions occurs in multiple phases: a rapid phase, which is characterized by a fast change in force production mirrored by a change in calcium transient amplitude, and a slow phase, which follows the rapid phase and occurs as the muscle proceeds to stabilize at the new frequency. This second/late phase is characterized by a quantitative dissociation between the calcium transient amplitude and developed force. Twitch timing kinetics, such as time to peak tension and 50% relaxation rate, reached steady-state well before force development and calcium transient amplitude. The dynamic relationship between force and calcium upon a switch in stimulation frequency unveils the dynamic involvement of myofilament-based properties in frequency-dependent activation.
Collapse
|