1
|
Janson A, Sainburg L, Akbarian B, Johnson GW, Rogers BP, Chang C, Englot DJ, Morgan VL. Indirect structural changes and reduced controllability after temporal lobe epilepsy resection. Epilepsia 2024; 65:675-686. [PMID: 38240699 PMCID: PMC10948308 DOI: 10.1111/epi.17889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE To understand the potential behavioral and cognitive effects of mesial temporal resection for temporal lobe epilepsy (TLE) a method is required to characterize network-wide functional alterations caused by a discrete structural disconnection. The objective of this study was to investigate network-wide alterations in brain dynamics of patients with TLE before and after surgical resection of the seizure focus using average regional controllability (ARC), a measure of the ability of a node to influence network dynamics. METHODS Diffusion-weighted imaging (DWI) data were acquired in 27 patients with drug-resistant unilateral mesial TLE who underwent selective amygdalohippocampectomy. Imaging data were acquired before and after surgery and a presurgical and postsurgical structural connectome was generated from whole-brain tractography. Edge-wise strength, node strength, and node ARC were compared before and after surgery. Direct and indirect edge-wise strength changes were identified using patient-specific simulated resections. Direct edges were defined as primary edges disconnected by the resection zone itself. Indirect edges were secondary measured edge strength changes. Changes in node strength and ARC were then related to both direct and indirect edge changes. RESULTS We found nodes with significant postsurgical changes in both node strength and ARC surrounding the resection zone (paired t tests, p < .05, Bonferroni corrected). ARC identified additional postsurgical changes in nodes outside of the resection zone within the ipsilateral occipital lobe, which were associated with indirect edge-wise strength changes of the postsurgical network (Fisher's exact test, p < .001). These indirect edge-wise changes were facilitated through the "hub" nodes including the thalamus, putamen, insula, and precuneus. SIGNIFICANCE Discrete network disconnection from TLE resection results in widespread structural and functional changes not predicted by disconnection alone. These can be well characterized by dynamic controllability measures such as ARC and may be useful for investigating changes in brain function that may contribute to seizure recurrence and behavioral or cognitive changes after surgery.
Collapse
Affiliation(s)
- Andrew Janson
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lucas Sainburg
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Behnaz Akbarian
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Graham W Johnson
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Baxter P Rogers
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Catie Chang
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Dario J Englot
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Victoria L Morgan
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Charalampopoulou E, Neromyliotis E, Anastasopoulos L, Komaitis S, Drosos E, Skandalakis GP, Kalyvas AV, Stranjalis G, Koutsarnakis C. An Applied Anatomic Guide to Anterior Temporal Lobectomy and Amygdalohippocampectomy: Laboratory Cranial and White Matter Dissections to Inform Surgical Practice. Oper Neurosurg (Hagerstown) 2023; 25:e315-e323. [PMID: 37668990 DOI: 10.1227/ons.0000000000000880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/21/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Anterior temporal lobectomy and amygdalohippocampectomy is a challenging procedure because of the deep surgical trajectory and complex regional neurovascular anatomy. A thorough knowledge of the involved anatomic structures is crucial for a safe and effective procedure. Our objective is to explore the white matter pathways in or around the operative corridor and to illuminate the 3-dimensional relationships of the pertinent operative parenchymal and skull base anatomy, aiming to inform and simplify surgical practice. METHODS Four normal, adult, cadaveric, formalin-fixed cerebral hemispheres (2 left and 2 right) treated with the Klinger's technique and 2 formalin-fixed and colored-latex-injected cadaveric heads (4 sides) were used. Focused white matter and cadaveric dissections were used to study the relevant anatomy implicated during an anterior temporal lobectomy. Four illustrative cases were also included. Digital photographs from every dissection step were obtained. RESULTS Major white matter pathways that are inevitably traversed during the approach are the inferior longitudinal fasciculus, uncinate fasciculus, and inferior arm of the cingulum. Tracts that can be potentially injured, should the dissection plane tilt inadvertently superiorly or posteriorly, are the inferior fronto-occipital fasciculus, Meyer's loop, superior longitudinal fasciculus/arcuate fasciculus complex, and basal ganglia. Consistent cranial and parenchymal landmarks that can act as a roadmap during the procedure are recorded and paired with their intraoperative equivalent to provide a thorough, yet simple, stepwise guide for the surgeon. CONCLUSION White matter dissections, cadaveric cranial dissections, and intraoperative images are put together to provide a simplified stepwise surgical manual for anterior temporal lobectomy. Laboratory investigations that focus on the intricate 3-dimensional relationships of the pertinent operative anatomy from the surgeon's eye may enrich anatomic knowledge and push surgical boundaries, to minimize complication rates and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Eirini Charalampopoulou
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens , Greece
- Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens , Greece
| | - Eleftherios Neromyliotis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens , Greece
- Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens , Greece
| | - Lykourgos Anastasopoulos
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens , Greece
- Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens , Greece
| | - Spyridon Komaitis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens , Greece
| | - Evangelos Drosos
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens , Greece
| | | | - Aristotelis V Kalyvas
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto , Canada
| | - George Stranjalis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens , Greece
- Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens , Greece
- Hellenic Center for Neurosurgical Research, "Petros Kokkalis", Athens , Greece
| | - Christos Koutsarnakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens , Greece
- Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens , Greece
- Hellenic Center for Neurosurgical Research, "Petros Kokkalis", Athens , Greece
| |
Collapse
|
3
|
Michalak AJ, Greenblatt A, Wu S, Tobochnik S, Dave H, Raghupathi R, Esengul YT, Guerra A, Tao JX, Issa NP, Cosgrove GR, Lega B, Warnke P, Chen HI, Lucas T, Sheth SA, Banks GP, Kwon CS, Feldstein N, Youngerman B, McKhann G, Davis KA, Schevon C. Seizure onset patterns predict outcome after stereo-electroencephalography-guided laser amygdalohippocampotomy. Epilepsia 2023; 64:1568-1581. [PMID: 37013668 PMCID: PMC10247471 DOI: 10.1111/epi.17602] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVE Stereotactic laser amygdalohippocampotomy (SLAH) is an appealing option for patients with temporal lobe epilepsy, who often require intracranial monitoring to confirm mesial temporal seizure onset. However, given limited spatial sampling, it is possible that stereotactic electroencephalography (stereo-EEG) may miss seizure onset elsewhere. We hypothesized that stereo-EEG seizure onset patterns (SOPs) may differentiate between primary onset and secondary spread and predict postoperative seizure control. In this study, we characterized the 2-year outcomes of patients who underwent single-fiber SLAH after stereo-EEG and evaluated whether stereo-EEG SOPs predict postoperative seizure freedom. METHODS This retrospective five-center study included patients with or without mesial temporal sclerosis (MTS) who underwent stereo-EEG followed by single-fiber SLAH between August 2014 and January 2022. Patients with causative hippocampal lesions apart from MTS or for whom the SLAH was considered palliative were excluded. An SOP catalogue was developed based on literature review. The dominant pattern for each patient was used for survival analysis. The primary outcome was 2-year Engel I classification or recurrent seizures before then, stratified by SOP category. RESULTS Fifty-eight patients were included, with a mean follow-up duration of 39 ± 12 months after SLAH. Overall 1-, 2-, and 3-year Engel I seizure freedom probability was 54%, 36%, and 33%, respectively. Patients with SOPs, including low-voltage fast activity or low-frequency repetitive spiking, had a 46% 2-year seizure freedom probability, compared to 0% for patients with alpha or theta frequency repetitive spiking or theta or delta frequency rhythmic slowing (log-rank test, p = .00015). SIGNIFICANCE Patients who underwent SLAH after stereo-EEG had a low probability of seizure freedom at 2 years, but SOPs successfully predicted seizure recurrence in a subset of patients. This study provides proof of concept that SOPs distinguish between hippocampal seizure onset and spread and supports using SOPs to improve selection of SLAH candidates.
Collapse
Affiliation(s)
- Andrew J. Michalak
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Adam Greenblatt
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, NY, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Shasha Wu
- Department of Neurology, University of Chicago, Chicago, NY, USA
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hina Dave
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ramya Raghupathi
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, NY, USA
| | - Yasar T. Esengul
- Department of Neurology, University of Toledo College of Medicine, Toledo, OH, USA
| | - Antonio Guerra
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James X. Tao
- Department of Neurology, University of Chicago, Chicago, NY, USA
| | - Naoum P. Issa
- Department of Neurology, University of Chicago, Chicago, NY, USA
| | - Garth R. Cosgrove
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Warnke
- Department of Neurosurgery, University of Chicago, Chicago, NY, USA
| | - H. Isaac Chen
- Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, NY, USA
| | - Timothy Lucas
- Department of Neurosurgery & Biomedical Engineering, Ohio State University; Neurotech Institute, Columbus, OH, USA
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Garrett P. Banks
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Churl-Su Kwon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurosurgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Columbia University Gertrude H Sergievsky Center, New York, NY, USA
| | - Neil Feldstein
- Department of Neurosurgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brett Youngerman
- Department of Neurosurgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Guy McKhann
- Department of Neurosurgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Kathryn A. Davis
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, NY, USA
| | - Catherine Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Arnold TC, Kini LG, Bernabei JM, Revell AY, Das SR, Stein JM, Lucas TH, Englot DJ, Morgan VL, Litt B, Davis KA. Remote effects of temporal lobe epilepsy surgery: Long-term morphological changes after surgical resection. Epilepsia Open 2023; 8:559-570. [PMID: 36944585 PMCID: PMC10235552 DOI: 10.1002/epi4.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE Epilepsy surgery is an effective treatment for drug-resistant patients. However, how different surgical approaches affect long-term brain structure remains poorly characterized. Here, we present a semiautomated method for quantifying structural changes after epilepsy surgery and compare the remote structural effects of two approaches, anterior temporal lobectomy (ATL), and selective amygdalohippocampectomy (SAH). METHODS We studied 36 temporal lobe epilepsy patients who underwent resective surgery (ATL = 22, SAH = 14). All patients received same-scanner MR imaging preoperatively and postoperatively (mean 2 years). To analyze postoperative structural changes, we segmented the resection zone and modified the Advanced Normalization Tools (ANTs) longitudinal cortical pipeline to account for resections. We compared global and regional annualized cortical thinning between surgical treatments. RESULTS Across procedures, there was significant cortical thinning in the ipsilateral insula, fusiform, pericalcarine, and several temporal lobe regions outside the resection zone as well as the contralateral hippocampus. Additionally, increased postoperative cortical thickness was seen in the supramarginal gyrus. Patients treated with ATL exhibited greater annualized cortical thinning compared with SAH cases (ATL: -0.08 ± 0.11 mm per year, SAH: -0.01 ± 0.02 mm per year, t = 2.99, P = 0.006). There were focal postoperative differences between the two treatment groups in the ipsilateral insula (P = 0.039, corrected). Annualized cortical thinning rates correlated with preoperative cortical thickness (r = 0.60, P < 0.001) and had weaker associations with age at surgery (r = -0.33, P = 0.051) and disease duration (r = -0.42, P = 0.058). SIGNIFICANCE Our evidence suggests that selective procedures are associated with less cortical thinning and that earlier surgical intervention may reduce long-term impacts on brain structure.
Collapse
Affiliation(s)
- T. Campbell Arnold
- Department of Bioengineering, School of Engineering & Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lohith G. Kini
- Department of Bioengineering, School of Engineering & Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John M. Bernabei
- Department of Bioengineering, School of Engineering & Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrew Y. Revell
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Neuroscience, School of Engineering & Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sandhitsu R. Das
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Joel M. Stein
- Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Timothy H. Lucas
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Neurosurgery, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dario J. Englot
- Department of Neurological SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Victoria L. Morgan
- Department of Neurological SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Brian Litt
- Department of Bioengineering, School of Engineering & Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kathryn A. Davis
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
5
|
Shan W, Mao X, Wang X, Hogan RE, Wang Q. Potential surgical therapies for drug-resistant focal epilepsy. CNS Neurosci Ther 2021; 27:994-1011. [PMID: 34101365 PMCID: PMC8339538 DOI: 10.1111/cns.13690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Drug-resistant focal epilepsy (DRFE), defined by failure of two antiepileptic drugs, affects 30% of epileptic patients. Epilepsy surgeries are alternative options for this population. Preoperative evaluation is critical to include potential candidates, and to choose the most appropriate procedure to maximize efficacy and simultaneously minimize side effects. Traditional procedures involve open skull surgeries and epileptic focus resection. Alternatively, neuromodulation surgeries use peripheral nerve or deep brain stimulation to reduce the activities of epileptogenic focus. With the advanced improvement of laser-induced thermal therapy (LITT) technique and its utilization in neurosurgery, magnetic resonance-guided LITT (MRgLITT) emerges as a minimal invasive approach for drug-resistant focal epilepsy. In the present review, we first introduce drug-resistant focal epilepsy and summarize the indications, pros and cons of traditional surgical procedures and neuromodulation procedures. And then, focusing on MRgLITT, we thoroughly discuss its history, its technical details, its safety issues, and current evidence on its clinical applications. A case report on MRgLITT is also included to illustrate the preoperational evaluation. We believe that MRgLITT is a promising approach in selected patients with drug-resistant focal epilepsy, although large prospective studies are required to evaluate its efficacy and side effects, as well as to implement a standardized protocol for its application.
Collapse
Affiliation(s)
- Wei Shan
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Center for Clinical Medicine of Neurological DiseasesBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neuro‐modulationBeijingChina
| | - Xuewei Mao
- Shandong Key Laboratory of Industrial Control TechnologySchool of AutomationQingdao UniversityQingdaoChina
| | - Xiu Wang
- National Center for Clinical Medicine of Neurological DiseasesBeijingChina
| | - Robert E. Hogan
- Departments of Neurology and NeurosurgerySchool of MedicineWashington University in St. LouisSt. LouisMOUSA
| | - Qun Wang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Center for Clinical Medicine of Neurological DiseasesBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neuro‐modulationBeijingChina
| |
Collapse
|
6
|
Zhang Y, Zhou H, Qu H, Liao C, Jiang H, Huang S, Ghobadi SN, Telichko A, Li N, Habte FG, Doyle T, Woznak JP, Bertram EH, Lee KS, Wintermark M. Effects of Non-invasive, Targeted, Neuronal Lesions on Seizures in a Mouse Model of Temporal Lobe Epilepsy. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1224-1234. [PMID: 32081583 PMCID: PMC8120598 DOI: 10.1016/j.ultrasmedbio.2020.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 05/25/2023]
Abstract
Surgery to treat drug-resistant epilepsy can be quite effective but remains substantially underutilized. A pilot study was undertaken to test the feasibility of using a non-invasive, non-ablative, approach to produce focal neuronal loss to treat seizures in a rodent model of temporal lobe epilepsy. In this study, spontaneous, recurrent seizures were established in a mouse model of pilocarpine-induced status epilepticus. After post-status epilepticus stabilization, baseline behavioral seizures were monitored for 30 d. Non-invasive opening of the blood-brain barrier targeting the hippocampus was then produced by using magnetic resonance-guided, low-intensity focused ultrasound, through which a neurotoxin (quinolinic acid) administered intraperitoneally gained access to the brain parenchyma to produce focal neuronal loss. Behavioral seizures were then monitored for 30 d after this procedure, and brains were subsequently prepared for histologic analysis of the sites of neuronal loss. The average frequency of behavioral seizures in all animals (n = 11) was reduced by 21.2%. Histologic analyses along the longitudinal axis of the hippocampus revealed that most of the animals (n = 8) exhibited neuronal loss located primarily in the intermediate aspect of the hippocampus, while sparing the septal aspect. Two other animals with damage to the intermediate hippocampus also exhibited prominent bilateral damage to the septal aspect of the hippocampus. A final animal had negligible neuronal loss overall. Notably, the site of neuronal loss along the longitudinal axis of the hippocampus influenced seizure outcomes. Animals that did not have bilateral damage to the septal hippocampus displayed a mean decrease in seizure frequency of 27.7%, while those with bilateral damage to the septal hippocampus actually increased seizure frequency by 18.7%. The animal without neuronal loss exhibited an increase in seizure frequency of 19.6%. The findings indicate an overall decrease in seizure frequency in treated animals. And, the site of neuronal loss along the longitudinal axis of the hippocampus appears to play a key role in reducing seizure activity. These pilot data are promising, and they encourage additional and more comprehensive studies examining the effects of targeted, non-invasive, neuronal lesions for the treatment of epilepsy.
Collapse
Affiliation(s)
- Yanrong Zhang
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA
| | - Haiyan Zhou
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA; The Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Haibo Qu
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA; Department of Medical Imaging, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengde Liao
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA; Department of Radiology, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Hong Jiang
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA; Department of Neurology, Peking University of People's Hospital, Beijing, China
| | - Siqin Huang
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA; Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Sara Natasha Ghobadi
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA
| | - Arsenii Telichko
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ningrui Li
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Frezghi G Habte
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford, California, USA
| | - Tim Doyle
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford, California, USA
| | - James P Woznak
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Edward H Bertram
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Kevin S Lee
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA; Department of Neurosurgery and Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia, USA.
| | - Max Wintermark
- Neuroradiology Section, Department of Radiology, School of Medicine, Stanford University, California, USA.
| |
Collapse
|
7
|
Vogt VL, Delev D, Grote A, Schramm J, von Lehe M, Elger CE, Witt JA, Helmstaedter C. Neuropsychological outcome after subtemporal versus transsylvian approach for selective amygdalohippocampectomy in patients with mesial temporal lobe epilepsy: a randomised prospective clinical trial. J Neurol Neurosurg Psychiatry 2018; 89:1057-1063. [PMID: 29273691 DOI: 10.1136/jnnp-2017-316311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/29/2017] [Accepted: 11/20/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To compare the effects of different surgical approaches for selective amygdalohippocampectomy in patients with pharmacoresistant mesial temporal lobe epilepsy with regard to the neuropsychological outcome and to replicate an earlier study employing a matched-pair design. METHOD 47 patients were randomised to subtemporal versus transsylvian approaches. Memory, language, attentional and executive functions were assessed before and 1 year after surgery. Multivariate analyses of variance (MANOVAs) with presurgical and postsurgical assessments as within-subject variables and approach and side of surgery as between-subject factors were calculated. Additionally, the frequencies of individual performance changes based on reliable change indices were analysed. RESULTS Seizure freedom International League Against Epilepsy (ILAE) 1a, was achieved in 62% of all patients without group difference. MANOVAs revealed no significant effects of approach on cognition. Tested separately for each parameter, verbal recognition memory declined irrespective of approach. Post hoc tests revealed that on group level, the subtemporal approach was associated with a worse outcome for verbal learning and delayed free recall as well as for semantic fluency. Accordingly, on individual level, more patients in the subtemporal group declined in verbal learning. Left side of surgery was associated with decline in naming regardless of approach. CONCLUSION The main analysis did not confirm the effects of approach on memory outcome seen in our previous study. Post hoc testing, however, showed greater memory losses with the subtemporal approach. Previous findings were replicated for semantic fluency. The discrepant results are discussed on the background of the different study designs.
Collapse
Affiliation(s)
- Viola Lara Vogt
- Department of Epileptology, University of Bonn-Medical Center, Bonn, Germany
| | - Daniel Delev
- Department of Neurosurgery, University of Bonn-Medical Center, Bonn, Germany.,Department of Neurosurgery, University Medical Center, Freiburg, Germany
| | - Alexander Grote
- Department of Neurosurgery, University of Bonn-Medical Center, Bonn, Germany
| | - Johannes Schramm
- Department of Neurosurgery, University of Bonn-Medical Center, Bonn, Germany
| | - Marec von Lehe
- Department of Neurosurgery, Knappschaftskrankenhaus Bochum, Bonn, Germany
| | | | - Juri-Alexander Witt
- Department of Epileptology, University of Bonn-Medical Center, Bonn, Germany
| | | |
Collapse
|
8
|
Okishev DN, Belousova OB, Shekhtman OD, Eliava SS, Sazonova OB, Kopachev DN. [Amygdalohippocampectomy in treatment of epilepsy in patients with temporal lobe cavernomas]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2016; 80:35-43. [PMID: 27029330 DOI: 10.17116/neiro201680135-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In some cases, single-stage or delayed amygdalohippocampectomy (AHE) can be used for effective treatment of epileptic syndrome upon resection of temporal lobe cavernomas. The efficacy of AHE in treatment of temporal epilepsies is proved in general; however, the indications for surgery in patients with cavernomas are not developed. OBJECTIVE The study objective was to evaluate the efficacy and safety AHE in the treatment of epilepsy in patients with temporal lobe cavernomas and to define the indications for surgery. MATERIAL AND METHODS Of 14 patients with temporal lobe cavernomas, which manifested as epileptic seizures, 10 patients underwent selective AHE, and 4 patients underwent anteromedial temporal lobectomy. In 12 cases, AHE was performed simultaneously with cavernoma resection. Delayed AHE was carried out in 2 cases. All patients underwent preoperative MRI and EEG. Preoperative video-EEG monitoring was performed in 3 cases. The duration of postoperative follow-up was at least 1 year (mean follow-up was 3.3 years). RESULTS Improvement in the epileptic syndrome was observed in all patients. In the postoperative period, 7 patients had no seizures (Engel class IA); of them, 3 patients discontinued anticonvulsants. The surgery outcome depended on the disease duration. Significant postoperative complications in the form of reversible hemiparesis were observed in 1 case. CONCLUSION Amygdalohippocampectomy is highly efficient in treatment of severe forms of epilepsy in patients with temporal lobe cavernomas. In the case of long history of typical temporal seizures and pharmacoresistant epilepsy, AHE can be performed simultaneously with cavernoma resection.
Collapse
Affiliation(s)
- D N Okishev
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - Sh Sh Eliava
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - O B Sazonova
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - D N Kopachev
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
9
|
Radiosurgery for mesial temporal lobe epilepsy. Acta Neurochir (Wien) 2015; 157:1793-4. [PMID: 26266879 DOI: 10.1007/s00701-015-2527-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
|
10
|
Lee SH, Kim M, Park H. Planning for selective amygdalohippocampectomy involving less neuronal fiber damage based on brain connectivity using tractography. Neural Regen Res 2015; 10:1107-12. [PMID: 26330834 PMCID: PMC4541242 DOI: 10.4103/1673-5374.160104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2015] [Indexed: 01/23/2023] Open
Abstract
Temporal lobe resection is an important treatment option for epilepsy that involves removal of potentially essential brain regions. Selective amygdalohippocampectomy is a widely performed temporal lobe surgery. We suggest starting the incision for selective amygdalohippocampectomy at the inferior temporal gyrus based on diffusion magnetic resonance imaging (MRI) tractography. Diffusion MRI data from 20 normal participants were obtained from Parkinson's Progression Markers Initiative (PPMI) database (www.ppmi-info.org). A tractography algorithm was applied to extract neuronal fiber information for the temporal lobe, hippocampus, and amygdala. Fiber information was analyzed in terms of the number of fibers and betweenness centrality. Distances between starting incisions and surgical target regions were also considered to explore the length of the surgical path. Middle temporal and superior temporal gyrus regions have higher connectivity values than the inferior temporal gyrus and thus are not good candidates for starting the incision. The distances between inferior temporal gyrus and surgical target regions were shorter than those between middle temporal gyrus and target regions. Thus, the inferior temporal gyrus is a good candidate for starting the incision. Starting the incision from the inferior temporal gyrus would spare the important (in terms of betweenness centrality values) middle region and shorten the distance to the target regions of the hippocampus and amygdala.
Collapse
Affiliation(s)
- Seung-Hak Lee
- Department of Electronic Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mansu Kim
- Graduate School of Human ICT Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
11
|
Keyhole epilepsy surgery: corticoamygdalohippocampectomy for mesial temporal sclerosis. Neurosurg Rev 2015; 39:99-108; discussion 108. [DOI: 10.1007/s10143-015-0657-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/15/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
|
12
|
Al-Otaibi F, Albloushi M, Baeesa S. Minicraniotomy for standard temporal lobectomy: a minimally invasive surgical approach. ISRN NEUROLOGY 2014; 2014:532523. [PMID: 24653839 PMCID: PMC3933018 DOI: 10.1155/2014/532523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/29/2013] [Indexed: 11/27/2022]
Abstract
Introduction. The common surgical approach for standard temporal lobectomy is a question-mark skin incision and a frontotemporal craniotomy. Herein, we describe minicraniotomy approach through a linear skin incision for standard temporal lobectomy. Methods. A retrospective observational cohort study was conducted for a group of consecutive 21 adult patients (group I) who underwent minicraniotomy for standard temporal lobectomy utilizing a linear skin incision. This group was compared to a consecutive 17 adult patients (group II) who previously underwent a reverse question-mark skin incision and standard frontotemporal craniotomy. Results. The mean age was 29 and 23 for groups I and II, respectively. The mean estimated blood loss was 190 mL and 280 mL in groups I and II, respectively (P = 0.019). Three patients in group II developed chronic postcraniotomy headache compared to none in group I. Cosmetic outcome was excellent in group I while 4 patients in group II developed disfiguring depression at lateral sphenoid wing and anterior temple. In group I 17 out of 21 became seizure-free at one-year followup. Conclusion. Minicraniotomy through a linear skin incision is a sufficient surgical approach for effective standard temporal lobectomy and it has an excellent cosmetic outcome.
Collapse
Affiliation(s)
- Faisal Al-Otaibi
- Division of Neurosurgery, Neuroscience Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | | | - Saleh Baeesa
- Division of Neurosurgery, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Ghotbedin Z, Janahmadi M, Mirnajafi-Zadeh J, Behzadi G, Semnanian S. Electrical Low Frequency Stimulation of the Kindling Site Preserves the Electrophysiological Properties of the Rat Hippocampal CA1 Pyramidal Neurons From the Destructive Effects of Amygdala Kindling: The Basis for a Possible Promising Epilepsy Therapy. Brain Stimul 2013; 6:515-23. [DOI: 10.1016/j.brs.2012.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/29/2012] [Accepted: 11/07/2012] [Indexed: 11/28/2022] Open
|