1
|
Xinchong P, Changxi Z, Anni Z, Wenrui Y, Jingyun L, Xue S. The Bufei Nashen pill inhibits the PI3K/AKT/HIF-1 signaling pathway to regulate extracellular matrix deposition and improve COPD progression. JOURNAL OF ETHNOPHARMACOLOGY 2024:118390. [PMID: 38823661 DOI: 10.1016/j.jep.2024.118390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the theory and practice of traditional Chinese medicine (TCM), chronic obstructive pulmonary disease (COPD) can be classified as "cough," "dyspnea," or "lung distention disease." Bufei Nashen pill (BFNSP) is a classic Chinese herbal formula with certain activity against the above syndromes. FNSP has previously been shown to improve clinical symptoms (cough, lumbar and knee weakness, tinnitus) in patients with occupationally related interstitial lung disease. AIM OF THE STUDY There is a lack of convincing evidence supporting the use of BFNSP for the treatment of COPD. This study aimed to investigate the effect of BFNSP on COPD and explore its underlying mechanisms. MATERIALS AND METHODS Liquid chromatography-mass spectrometry (LC/MS) was used to analyze the main components of BFNSP and BFNSP-containing serum. A COPD rat model was generated, and the rats were treated with different doses of BFNSP. Lung function indices were analyzed by a pulmonary function testing system, and lung histopathology was assessed by HE staining and scanning electron microscopy. The levels of TGF-β1, IL-6, IL-8, IL-1β, MMP3, MMP-9, and TIMP1 in BALF and the levels of MMP3, MMP-9, TIMP1, and HA in serum were detected by ELISA. Immunohistochemical staining was performed to determine the expression of Col-I, Col-III, and LN in lung tissues. RT‒qPCR was performed to detect the mRNA expression of PI3K, Akt, HIF-1α, MMP-9, TGF-β1, TIMP1, and ERK1/2 in lung tissue, and Western blotting was performed to detect the protein expression of PI3K, p-PI3K, Akt, p-Akt, HIF-1α, MMP-9, TGF-β1, TIMP1, and p-ERK1/2 in lung tissue. In addition, in vitro cellular assays were performed for validation. RESULTS The results showed that BFNSP effectively improved the functional status of pulmonary ventilation, attenuated pathological damage in lung tissue, inhibited the release of inflammatory factors, reduced extracellular matrix deposition, and inhibited the activation of the PI3K/AKT/HIF-1 signaling pathway in lung tissue in COPD rats (P<0.05) and may alleviate COPD progression by inhibiting the PI3K/AKT/HIF-1 signaling pathway. CONCLUSION BFNSP inhibits the PI3K/AKT/HIF-1 signaling pathway to regulate extracellular matrix deposition and improve COPD progression.
Collapse
Affiliation(s)
- Ping Xinchong
- Ningxia Hui Autonomous Region Traditional Chinese Medicine Hospital and Traditional Chinese Medicine Research Institute, Yinchuan 750021, China
| | - Zhang Changxi
- Ningxia Hui Autonomous Region Traditional Chinese Medicine Hospital and Traditional Chinese Medicine Research Institute, Yinchuan 750021, China.
| | - Zhang Anni
- Ningxia Hui Autonomous Region Traditional Chinese Medicine Hospital and Traditional Chinese Medicine Research Institute, Yinchuan 750021, China
| | - Yan Wenrui
- Ningxia Hui Autonomous Region Traditional Chinese Medicine Hospital and Traditional Chinese Medicine Research Institute, Yinchuan 750021, China
| | - Li Jingyun
- Ningxia Hui Autonomous Region Traditional Chinese Medicine Hospital and Traditional Chinese Medicine Research Institute, Yinchuan 750021, China
| | - Sun Xue
- Ningxia Hui Autonomous Region Traditional Chinese Medicine Hospital and Traditional Chinese Medicine Research Institute, Yinchuan 750021, China
| |
Collapse
|
2
|
Sun S, Shen Y, Feng J. Association of toll-like receptors polymorphisms with COPD risk in Chinese population. Front Genet 2022; 13:955810. [PMID: 36386838 PMCID: PMC9643488 DOI: 10.3389/fgene.2022.955810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/14/2022] [Indexed: 09/19/2023] Open
Abstract
Background: Previous studies have reported that the Toll-like receptors (TLRs) are related with the progress of chronic obstructive pulmonary disease (COPD). We aimed to explore the association of TLRs single nucleotide polymorphisms (SNPs) and COPD risk. Methods: 170 COPD patients and 181 healthy controls were enrolled in this case-control study. MassARRAY platform was used for genotyping seven tagging SNPs (TLR2: rs3804100, rs4696480, rs3804099; TLR3: rs3775290, rs3775291, rs5743305; TLR9: rs352140) of TLRs. The correlations between the SNPs and COPD risk were determined using logistic regression. Results: We found that the rs3775291 of TLR3 significant decreased the risk of COPD (TT versus CC: non-adjusted OR = 0.329, 95% CI = 0.123-0.879, p = 0.027). In the genetic models analysis, the rs3775291 was associated with a decreased effect of COPD based on the recessive model (TT versus CC/CT: non-adjusted OR = 0.377, 95% CI = 0.144-0.988 p = 0.047). The rs4696480 of TLR2 gene was associated with a decreased risk of COPD after adjustment by age and gender (TA versus AA: adjusted OR = 0.606, 95% CI = 0.376-0.975, p = 0.039). Conclusion: Our study showed that genetic variants in TLRs were associated with risk of COPD. The rs3775291 and rs4696480 may act as a potential biomarker for predicting the risk of COPD in Chinese population.
Collapse
Affiliation(s)
- Shulei Sun
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuehao Shen
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Montaño LM, Sommer B, Gomez-Verjan JC, Morales-Paoli GS, Ramírez-Salinas GL, Solís-Chagoyán H, Sanchez-Florentino ZA, Calixto E, Pérez-Figueroa GE, Carter R, Jaimez-Melgoza R, Romero-Martínez BS, Flores-Soto E. Theophylline: Old Drug in a New Light, Application in COVID-19 through Computational Studies. Int J Mol Sci 2022; 23:ijms23084167. [PMID: 35456985 PMCID: PMC9030606 DOI: 10.3390/ijms23084167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Theophylline (3-methyxanthine) is a historically prominent drug used to treat respiratory diseases, alone or in combination with other drugs. The rapid onset of the COVID-19 pandemic urged the development of effective pharmacological treatments to directly attack the development of new variants of the SARS-CoV-2 virus and possess a therapeutical battery of compounds that could improve the current management of the disease worldwide. In this context, theophylline, through bronchodilatory, immunomodulatory, and potentially antiviral mechanisms, is an interesting proposal as an adjuvant in the treatment of COVID-19 patients. Nevertheless, it is essential to understand how this compound could behave against such a disease, not only at a pharmacodynamic but also at a pharmacokinetic level. In this sense, the quickest approach in drug discovery is through different computational methods, either from network pharmacology or from quantitative systems pharmacology approaches. In the present review, we explore the possibility of using theophylline in the treatment of COVID-19 patients since it seems to be a relevant candidate by aiming at several immunological targets involved in the pathophysiology of the disease. Theophylline down-regulates the inflammatory processes activated by SARS-CoV-2 through various mechanisms, and herein, they are discussed by reviewing computational simulation studies and their different applications and effects.
Collapse
Affiliation(s)
- Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, CP, Mexico; (L.M.M.); (R.J.-M.); (B.S.R.-M.)
| | - Bettina Sommer
- Laboratorio de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México 14080, CP, Mexico;
| | - Juan C. Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Ciudad de México 10200, CP, Mexico; (J.C.G.-V.); (G.S.M.-P.)
| | - Genaro S. Morales-Paoli
- Dirección de Investigación, Instituto Nacional de Geriatría, Ciudad de México 10200, CP, Mexico; (J.C.G.-V.); (G.S.M.-P.)
| | - Gema Lizbeth Ramírez-Salinas
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Col. Santo Tomas, Ciudad de México 11340, CP, Mexico;
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad de México 14510, CP, Mexico
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Ciudad de México 14370, CP, Mexico; (H.S.-C.); (Z.A.S.-F.)
| | - Zuly A. Sanchez-Florentino
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Ciudad de México 14370, CP, Mexico; (H.S.-C.); (Z.A.S.-F.)
| | - Eduardo Calixto
- Departamento de Neurobiología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Ciudad de México 14370, CP, Mexico;
| | - Gloria E. Pérez-Figueroa
- Instituto Nacional de Neurología y Neurocirugía, Unidad Periférica en el Estudio de la Neuroinflamación en Patologías Neurológicas, Ciudad de México 06720, CP, Mexico;
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, CP, Mexico
| | - Rohan Carter
- FRACGP/MBBS, Murchison Outreach Service Mount Magnet Western Australia, Mount Magnet, WA 6530, Australia;
| | - Ruth Jaimez-Melgoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, CP, Mexico; (L.M.M.); (R.J.-M.); (B.S.R.-M.)
| | - Bianca S. Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, CP, Mexico; (L.M.M.); (R.J.-M.); (B.S.R.-M.)
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, CP, Mexico; (L.M.M.); (R.J.-M.); (B.S.R.-M.)
- Correspondence: ; Tel.: +52-555-6232279
| |
Collapse
|
4
|
Sherif NA, El-Banna AS, ElBourini MM, Khalil NO. Efficacy of L-carnitine and propranolol in the management of acute theophylline toxicity. Toxicol Res (Camb) 2020; 9:45-54. [PMID: 32440337 DOI: 10.1093/toxres/tfaa002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 01/31/2020] [Indexed: 11/13/2022] Open
Abstract
Theophylline toxicity results in substantial morbidity and mortality particularly due to its narrow therapeutic index. The development of new treatments for acute theophylline toxicity is a point of research interest. The aim of the present work was to assess the efficacy of L-carnitine (LC) and propranolol in the management of patients with acute theophylline toxicity. The study was conducted on 60 patients with acute theophylline toxicity admitted to the Poison Control Center or Intensive Care Unit at Alexandria Main University Hospital. The studied patients were equally classified into four groups (GPs, 15 patients each): the first group was the control group who received standard treatment protocol for theophylline toxicity. The other three GPs also received standard treatment protocol for theophylline toxicity in addition. The second group (LC group) received LC with a loading dose of 100 mg/kg IV over 30-60 min (maximum 6 g) and the maintenance dose was 50 mg/kg IV every 8 h. The third group (propranolol group) received propranolol, administered slowly intravenous 0.5-1 mg over 1 min; it may be repeated if necessary up to a total maximum dose of 0.1 mg/kg. The fourth group (propranolol and LC) received both IV propranolol and LC in the same doses as previous. Treatment with LC alone or in combination with propranolol resulted in a significant improvement of both clinical and laboratory findings. Although combined therapy yields the best results and outcome, LC can serve as an antidote for acute theophylline toxicity if there is any contraindication to propranolol administration.
Collapse
Affiliation(s)
- Naima A Sherif
- Department of Forensic Medicine& Clinical Toxicology-Faculty of Medicine, Alexandria University, Egypt
| | - Asmaa S El-Banna
- Department of Forensic Medicine& Clinical Toxicology-Faculty of Medicine, Alexandria University, Egypt
| | - Marwan M ElBourini
- Critical Care Medicine, Faculty of Medicine, Alexandria University, Egypt
| | - Nancy O Khalil
- Department of Forensic Medicine& Clinical Toxicology-Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
5
|
Mitani T, Takaya T, Harada N, Katayama S, Yamaji R, Nakamura S, Ashida H. Theophylline suppresses interleukin-6 expression by inhibiting glucocorticoid receptor signaling in pre-adipocytes. Arch Biochem Biophys 2018; 646:98-106. [PMID: 29625124 DOI: 10.1016/j.abb.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022]
Abstract
Adipose tissues in obese individuals are characterized by a state of chronic low-grade inflammation. Pre-adipocytes and adipocytes in this state secrete pro-inflammatory adipokines, such as interleukin 6 (IL-6), which induce insulin resistance and hyperglycemia. Theophylline (1,3-dimethylxanthine) exerts anti-inflammatory effects, but its effects on pro-inflammatory adipokine secretion by pre-adipocytes and adipocytes have not been examined. In this study, we found that theophylline decreased IL-6 secretion by 3T3-L1 pre-adipocytes and mouse-derived primary pre-adipocytes. The synthetic glucocorticoid dexamethasone (DEX) induced IL-6 expression in 3T3-L1 pre-adipocytes, and this effect was suppressed by theophylline at the mRNA level. Knockdown of CCAAT/enhancer binding protein (C/EBP) δ inhibited DEX-induced IL-6 expression, and theophylline suppressed C/EBPδ expression. Furthermore, theophylline suppressed transcriptional activity of the glucocorticoid receptor (GR) through suppression of nuclear localization of GR. In vivo, glucocorticoid corticosterone treatment (100 μg/mL) increased fasting blood glucose and plasma IL-6 levels in C57BL/6 N mice. Theophylline administration (0.1% diet) reduced corticosterone-increased fasting blood glucose, plasma IL-6 levels, and Il6 gene expression in adipose tissues. These results show that theophylline administration attenuated glucocorticoid-induced hyperglycemia and IL-6 production by inhibiting GR activity. The present findings indicate the potential of theophylline as a candidate therapeutic agent to treat insulin resistance and hyperglycemia.
Collapse
Affiliation(s)
- Takakazu Mitani
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minami-minowa Mura, Kamiina Gun, Nagano 3994598, Japan
| | - Tomohide Takaya
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minami-minowa Mura, Kamiina Gun, Nagano 3994598, Japan
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
| | - Shigeru Katayama
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minami-minowa Mura, Kamiina Gun, Nagano 3994598, Japan; Division of Food Science and Technology, Graduate School of Sciences and Technology, Shinshu University, 8304 Minami-minowa Mura, Kamiina Gun, Nagano 399-4598, Japan.
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
| | - Soichiro Nakamura
- Division of Food Science and Technology, Graduate School of Sciences and Technology, Shinshu University, 8304 Minami-minowa Mura, Kamiina Gun, Nagano 399-4598, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 6578501, Japan
| |
Collapse
|
6
|
"Essentially, All Models are Wrong, but Some Are Useful": A Preliminary Conceptual Model Of Co-Occurring E-Cig and Alcohol Use. CURRENT ADDICTION REPORTS 2017; 4:200-208. [PMID: 29057201 DOI: 10.1007/s40429-017-0148-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW As prevalence rates of electronic cigarette (e-cig) use increase, researchers and clinicians should not only be paying careful attention to the direct health effects of e-cigs, but also the potential impact e-cigs may have on alcohol use behaviors. We review the current state of the literature and propose a conceptual model for the relationship between e-cig and alcohol use, including important consequences, mechanisms, and moderators of this relationship. RECENT FINDINGS The model is based in emerging literature examining the direct relationship between e-cig and alcohol use, as well as indirect evidence concerning potential mechanisms from research on cigarette and alcohol use. Overall, research indicates a robust relationship between e-cig and alcohol use. SUMMARY We suggest that a relationship between e-cig use and alcohol use could be particularly problematic, especially for adolescents and for those with or at risk for alcohol use disorders. We hope the presented conceptual model can stimulate research in this area. We make research recommendations, including the need for more methodological rigor, including improved measurement of e-cig use, and expanding research to longitudinal and experimental designs.
Collapse
|
7
|
Bellon H, Vandermeulen E, Mathyssen C, Sacreas A, Verleden SE, Heigl T, Vriens H, Lammertyn E, Pilette C, Hoet P, Vos R, Vanaudenaerde BM, Verleden GM. Interleukin-1α induced release of interleukin-8 by human bronchial epithelial cells in vitro: assessing mechanisms and possible treatment options. Transpl Int 2017; 30:388-397. [PMID: 28078769 DOI: 10.1111/tri.12915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/06/2016] [Accepted: 01/05/2017] [Indexed: 01/26/2023]
Abstract
Survival after lung transplantation is hampered by chronic lung allograft dysfunction (CLAD). Persistently elevated BAL-neutrophilia is observed in some patients despite treatment with azithromycin, which may be induced by IL-1α. Our aim is to establish an in vitro model, assess mechanistic pathways and test different therapeutic strategies of IL-1α-induced release of IL-8 by human bronchial epithelial cells. Bronchial epithelial cells (16HBE) were stimulated with IL-1α with or without azithromycin or dexamethasone. IL-8 protein was analyzed in cell supernatant. Different MAP kinases (p38, JNK, ERK1/2 , Iκβ) and targets known to be involved in tumor formation (PI3K, Akt) were investigated. Finally, different treatment options were tested for their potential inhibitory effect. IL-1α induced IL-8 in bronchial epithelial cells, which was dose-dependently inhibited by dexamethasone but not by azithromycin. IL-1α induced p38 and Akt phosphorylation, but activation of these MAPK was not inhibited by dexamethasone. JNK, ERK1/2 , Iκβ and PI3K were not activated. None of the tested drugs reduced the IL-1α induced IL-8 production. We established an in vitro model wherein steroids inhibit the IL-1α-induced IL-8 production, while azithromycin was ineffective. Despite using this simple in vitro model, we could not identify a new treatment option for azithromycin-resistant airway neutrophilia.
Collapse
Affiliation(s)
- Hannelore Bellon
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, Division of Respiratory Disease, KU Leuven, Leuven, Belgium
| | - Elly Vandermeulen
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, Division of Respiratory Disease, KU Leuven, Leuven, Belgium
| | - Carolien Mathyssen
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, Division of Respiratory Disease, KU Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, Division of Respiratory Disease, KU Leuven, Leuven, Belgium
| | - Stijn E Verleden
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, Division of Respiratory Disease, KU Leuven, Leuven, Belgium
| | - Tobias Heigl
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, Division of Respiratory Disease, KU Leuven, Leuven, Belgium
| | - Hanne Vriens
- Environment and Health, KU Leuven, Leuven, Belgium
| | - Elise Lammertyn
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, Division of Respiratory Disease, KU Leuven, Leuven, Belgium
| | - Charles Pilette
- Institute of Experimental & Clinical Research - Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Peter Hoet
- Environment and Health, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, Division of Respiratory Disease, KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, Division of Respiratory Disease, KU Leuven, Leuven, Belgium
| | - Geert M Verleden
- Lung Transplant Unit, Department of Clinical and Experimental Medicine, Division of Respiratory Disease, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Shih YN, Chen YT, Chu H, Shih CJ, Ou SM, Hsu YT, Chen RC, Quraishi SA, Aisiku IP, Seethala RR, Frendl G, Hou PC. Association of pre-hospital theophylline use and mortality in chronic obstructive pulmonary disease patients with sepsis. Respir Med 2017; 125:33-38. [PMID: 28340860 DOI: 10.1016/j.rmed.2017.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although theophylline has been shown to have anti-inflammatory effects, the therapeutic use of theophylline before sepsis is unknown. The aim of our study was to determine the effect of theophylline on COPD patients presenting with sepsis. METHODS This nationwide, population-based, propensity score-matched analysis used data from the linked administrative databases of Taiwan's National Health Insurance program. Patients with COPD who were hospitalized for sepsis between 2000 and 2011 were divided into theophylline users and non-users. The primary outcome was 30-day mortality. The secondary outcome was in-hospital death, intensive care unit admission, and need for mechanical ventilation. Cox proportional hazard model and conditional logistic regression were used to calculate the risk between groups. RESULTS A propensity score-matched cohort of 51,801 theophylline users and 51,801 non-users was included. Compared with non-users, the 30-day (HR 0.931, 95% CI 0.910-0.953), 180-day (HR 0.930, 95% CI 0.914-0.946), 365-day (HR 0.944, 95% CI 0.929-0.960) and overall mortality (HR 0.965, 95% CI 0.952-0.979) were all significantly lower in theophylline users. Additionally, the theophylline users also had lower risk of in-hospital death (OR 0.895, 95% CI 0.873-0.918) and need for mechanical ventilation (OR 0.972, 95% CI 0.949-0.997). CONCLUSIONS Theophylline use is associated with a lower risk of sepsis-related mortality in COPD patients. Pre-hospital theophylline use may be protective to COPD patients with sepsis.
Collapse
Affiliation(s)
- Yu-Ning Shih
- Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women's Hospital, USA; Surgical ICU Translational Research (STAR) Center, Brigham and Women's Hospital, Boston, MA, USA; Department of Chest Medicine, Taipei City Hospital, Heping Fuyou Branch, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; Harvard Medical School, Boston, MA, USA
| | - Yung-Tai Chen
- Department of Nephrology, Taipei City Hospital, Heping Fuyou Branch, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Hsi Chu
- Department of Chest Medicine, Taipei City Hospital, Heping Fuyou Branch, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chia-Jen Shih
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; Department of Medicine, Taipei Veterans General Hospital, Yuanshan Branch, Yilan, Taiwan, ROC
| | - Shuo-Ming Ou
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Tao Hsu
- Department of Chest Medicine, Taipei City Hospital, Heping Fuyou Branch, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ran-Chou Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; Department of Radiology, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan, ROC
| | - Sadeq A Quraishi
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Imoigele P Aisiku
- Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women's Hospital, USA; Harvard Medical School, Boston, MA, USA
| | - Raghu R Seethala
- Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women's Hospital, USA; Surgical ICU Translational Research (STAR) Center, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gyorgy Frendl
- Surgical ICU Translational Research (STAR) Center, Brigham and Women's Hospital, Boston, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Peter C Hou
- Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women's Hospital, USA; Surgical ICU Translational Research (STAR) Center, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Allen SC. Systemic Inflammation in the Genesis of Frailty and Sarcopenia: An Overview of the Preventative and Therapeutic Role of Exercise and the Potential for Drug Treatments. Geriatrics (Basel) 2017; 2:geriatrics2010006. [PMID: 31011016 PMCID: PMC6371169 DOI: 10.3390/geriatrics2010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/15/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
Abstract
The clinical, pathological and biological characteristics of frailty and sarcopenia are becoming better understood and defined, including the role of systemic inflammation. It is increasingly apparent that in older adults there is a tendency for the innate immune network to shift toward a pro-inflammatory setting, often due to the presence of chronic inflammatory diseases but also associated with age alone in some individuals. Furthermore, acute inflammation tends to resolve more slowly and less completely in many elderly people. Inflammation contributes to the pathogenesis of sarcopenia and other components of the frailty syndrome. Blood levels of inflammatory cytokines and acute phase proteins, are reduced by exercise, and there is a growing body of epidemiological, observational and intervention research that indicates that regular moderate exercise improves strength, function, morbidity and mortality in middle-aged and elderly adults. There is also an increasing awareness of the potential role of drugs to ameliorate inflammation in the context of frail old age, which might be particularly useful for people who are unable to take part in exercise programs, or as adjunctive treatment for those who can. Drugs that shift the innate immune biochemical network toward an anti-inflammatory setting, such as methyl-xanthines and 4-amino quinolones, could be of value. For example, theophylline has been shown to induce a 20 percent fall in pro-inflammatory tumor necrosis factor (TNF) and 180 percent rise in anti-inflammatory interleukin-10 production by peripheral blood monocytes, and a fall of 45 percent in interferon-gamma (IF-gamma) release. Such properties could be of therapeutic benefit, particularly to re-establish a less inflamed baseline after acute episodes such as sepsis and trauma.
Collapse
Affiliation(s)
- Stephen C Allen
- The Royal Bournemouth Hospital, Castle Lane East, Bournemouth, Dorset BH7 7DW, UK.
- Centre for Postgraduate Medical Education and Research, Bournemouth University, Bournemouth, Dorset BH12 5BB, UK.
| |
Collapse
|
10
|
Ranjani R, Vinotha ATS. A prospective randomized controlled study: Theophylline on oxidative stress and steroid sensitivity in chronic obstructive pulmonary disease patients. Int J Pharm Investig 2017; 7:119-124. [PMID: 29184823 PMCID: PMC5680646 DOI: 10.4103/jphi.jphi_58_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objective: Oxidative stress is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Corticosteroid fails to suppress inflammation and oxidative stress due to steroid resistance. Theophylline has an effect on histone deacetylase (HDAC) activity and improves steroid sensitivity in COPD. Given changes in oxidative stress associated with diminished corticosteroid effects, a clinical study in which antioxidants and free radicals are estimated can suggest a correlation between antioxidants, theophylline, and corticosteroid sensitivity. Materials and Methods: A randomized controlled study was conducted in 60 participants divided into 4 groups: Group I (controls) - 15 normal healthy volunteers, Group II - COPD patients who received theophylline 300 mg + salbutamol 8 mg, Group III - patients who inhaled budesonide 400 μg + salbutamol 8 mg, and Group IV – theophylline 300 mg + inhaled budesonide 400 μg + salbutamol 8 mg 12 weeks. Blood samples were collected at the time of diagnosis and at 4-week interval for 3 months from all the groups and antioxidant parameters, spirometric % forced expiratory volume in 1 s (FEV1) were measured. Results: The mean difference between groups was analyzed using one-way ANOVA. There was a significant increase in antioxidant enzymes such as catalase, glutathione (GSH) serum transferase, (P < 0.05), reduced GSH, and superoxide dismutase (P < 0.01) and a significant decrease in lipid peroxidation (P < 0.01) at 12 weeks of the study period. Postbronchodilator FEV1 values have also shown a significant increase at 12 weeks (P < 0.01). Conclusion: Theophylline increases the expression and activity of HDAC and improves steroid sensitivity thereby decreases oxidative stress. Hence, novel therapeutic strategy is therefore the reversal of this corticosteroid resistance by increasing the expression and activity of HDAC achieved using corticosteroids along with theophylline.
Collapse
Affiliation(s)
- R Ranjani
- Department of Pharmacology, Chengalpattu Medical College, Chengalpattu, Tamil Nadu, India
| | - A T Sathiya Vinotha
- Department of Pharmacology, Karpagam Faculty of Medical Sciences and Research, Coimbatore, Tamil Nadu, India
| |
Collapse
|
11
|
Guo L, Luo L, Ju R, Chen C, Zhu L, Li J, Yu X, Ye C, Zhang D. Carboxyamidotriazole: a novel inhibitor of both cAMP-phosphodiesterases and cGMP-phosphodiesterases. Eur J Pharmacol 2014; 746:14-21. [PMID: 25446933 DOI: 10.1016/j.ejphar.2014.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 01/17/2023]
Abstract
Carboxyamidotriazole (CAI) is a non-cytotoxic anti-tumor drug, which also shows considerable anti-inflammatory effects in a variety of animal models of inflammation. The exact target and mechanism of CAI were not clearly understood yet. In the present study, we demonstrate that CAI is a non-selective phosphodiesterase (PDE) inhibitor, which provides comprehensive inhibitions of both adenosine 3',5'-cyclic monophosphate specific PDE (cAMP-PDE) and guanosine 3',5'-cyclic monophosphate specific PDE (cGMP-PDE) isolated from rat brain, mouse pulmonary tissue, primary mouse peritoneal macrophages, RAW264.7 cells, Lewis lung carcinoma (LLC) cells and lymphocytic leukemia cells (L1210) with moderate potencies (IC50≈0.5-30μM). The comprehensive elimination of PDE activities in living LLC cells by CAI results in accumulation of intracellular cAMP and cGMP, which can be visualized by fluorescence resonance energy transfer (FRET)-based cyclic nucleotide sensors. The stimulation by 30μM CAI yielded ~1.5-fold greater cGMP responses compared with 10μM sildenafil citrate, whereas the influence of 30μM CAI on cAMP levels was similar as that of 100μM 3-isobutyl-1-methylxanthine (IBMX). The non-selective inhibitory effect of CAI on cAMP-PDE and cGMP-PDE increases the likelihood for CAI to affect the balance between the levels of intracellular cyclic nucleotides cAMP and cGMP, then a variety of cellular signaling pathways that regulate cell functions and even related disease processes. When examining the widely proven anti-tumor and anti-inflammatory activities of CAI, it is important to affirm its comprehensive inhibitory effect on PDEs, which makes it superior to some selective PDE inhibitors in a way.
Collapse
Affiliation(s)
- Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5, Dongdan Santiao, Beijing 100005, China
| | - Lifeng Luo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5, Dongdan Santiao, Beijing 100005, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5, Dongdan Santiao, Beijing 100005, China
| | - Chen Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5, Dongdan Santiao, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5, Dongdan Santiao, Beijing 100005, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5, Dongdan Santiao, Beijing 100005, China
| | - Xiaoli Yu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5, Dongdan Santiao, Beijing 100005, China
| | - Caiying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5, Dongdan Santiao, Beijing 100005, China.
| | - Dechang Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5, Dongdan Santiao, Beijing 100005, China.
| |
Collapse
|
12
|
Lin CH, Shih CH, Tseng CC, Yu CC, Tsai YJ, Bien MY, Chen BC. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways. PLoS One 2014; 9:e104746. [PMID: 25121739 PMCID: PMC4133236 DOI: 10.1371/journal.pone.0104746] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/01/2014] [Indexed: 01/31/2023] Open
Abstract
CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Huang Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Chieh Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Jhih Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mauo-Ying Bien
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Abstract
The elderly patient (65 years and older) with chronic obstructive pulmonary disease (COPD) can be a challenge to the clinician. This begins with the correct and early diagnosis, the assessment of disease severity, recognizing complicating comorbidities, determining the burden of symptoms, and monitoring the frequency of acute exacerbations. Comprehensive management of COPD in the elderly patient should improve health-related quality of life, lung function, reduce exacerbations, and promote patient compliance with treatment plans. Only smoking cessation and oxygen therapy in COPD patients with hypoxemia reduce mortality. Bronchodilators, corticosteroids, methylxanthines, phosphodiesterase-4 inhibitors, macrolide antibiotics, mucolytics, and pulmonary rehabilitation improve some outcome measures such as spirometry measures and the frequency of COPD exacerbations without improving mortality. International treatment guidelines to reduce symptoms and reduce the risk of acute exacerbations exist. Relief of dyspnea and control of anxiety are important. The approach to each patient is best individualized. Earlier use of palliative care should be considered when traditional pharmacotherapy fails to achieve outcome measures and before consideration of end-of-life issues.
Collapse
|
14
|
Lin CH, Yu MC, Tung WH, Chen TT, Yu CC, Weng CM, Tsai YJ, Bai KJ, Hong CY, Chien MH, Chen BC. Connective tissue growth factor induces collagen I expression in human lung fibroblasts through the Rac1/MLK3/JNK/AP-1 pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2823-2833. [PMID: 23906792 DOI: 10.1016/j.bbamcr.2013.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 01/05/2023]
Abstract
Connective tissue growth factor (CTGF) plays an important role in lung fibrosis. In this study, we investigated the role of Rac1, mixed-lineage kinase 3 (MLK3), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CTGF-induced collagen I expression in human lung fibroblasts. CTGF caused concentration- and time-dependent increases in collagen I expression. CTGF-induced collagen I expression was inhibited by the dominant negative mutant (DN) of Rac1 (RacN17), MLK3DN, MLK3 inhibitor (K252a), JNK1DN, JNK2DN, a JNK inhibitor (SP600125), and an AP-1 inhibitor (curcumin). Treatment of cells with CTGF caused activation of Rac1, MLK3, JNK, and AP-1. The CTGF-induced increase in MLK3 phosphorylation was inhibited by RacN17. Treatment with RacN17 and the MLK3DN inhibited CTGF-induced JNK phosphorylation. CTGF caused increases in c-Jun phosphorylation and the recruitment of c-Jun and c-Fos to the collagen I promoter. Furthermore, stimulation of cells with the CTGF resulted in increases in AP-1-luciferase activity; this effect was inhibited by Rac1N17, MLK3DN, JNK1DN, and JNK2DN. Moreover, CTGF-induced α-smooth muscle actin (α-SMA) expression was inhibited by the procollagen I small interfering RNA (siRNA). These results suggest for the first time that CTGF acting through Rac1 activates the MLK3/JNK signaling pathway, which in turn initiates AP-1 activation and recruitment of c-Jun and c-Fos to the collagen I promoter and ultimately induces collagen I expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chih Yu
- Department of Pulmonary Medicine, Taipei Medical University - Wanfang Hospital, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wan-Hsuan Tung
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ting Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Weng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yan-Jyu Tsai
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kua-Jen Bai
- Department of Pulmonary Medicine, Taipei Medical University - Wanfang Hospital, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chuang-Ye Hong
- Taipei Medical University Wangfang Hospital, Taipei, Taiwan
| | - Ming-Hsien Chien
- Taipei Medical University Wangfang Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
15
|
Yawn BP. Is 'GOLD' standard for the management of COPD in clinical practice? Drugs Context 2012; 2012:212243. [PMID: 24432032 PMCID: PMC3884956 DOI: 10.7573/dic.212243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 12/29/2022] Open
|