1
|
Song J, Ke B, Tu W, Fang X. Roles of interferon regulatory factor 4 in the AKI-CKD transition, glomerular diseases and kidney allograft rejection. Ren Fail 2023; 45:2259228. [PMID: 37755331 PMCID: PMC10538460 DOI: 10.1080/0886022x.2023.2259228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Interferon regulatory factor 4 (IRF4) is expressed in immune cells and is a member of the interferon regulatory factor family. Recently, it has been found that IRF4 plays important roles in the acute kidney injury (AKI)-chronic kidney disease (CKD) transition, glomerular diseases and kidney allograft rejection. In particular, the relationship between IRF4 and the AKI-CKD transition has attracted widespread attention. Furthermore, it was also found that the deficiency of IRF4 hindered the transition from AKI to CKD through the suppression of macrophage-to-fibroblast conversion, inhibition of M1-M2 macrophage polarization, and reduction in neutrophil inward flow. Additionally, an examination of the crucial role of IRF4 in glomerular disease was conducted. It was reported that inhibiting IRF4 could alleviate the progression of glomerular disease, and potential physiopathology mechanisms associated with IRF4 were postulated. Lastly, IRF4 was found to have detrimental effects on the development of antibody-mediated rejection (ABMR) and T-cell-mediated rejection (TCMR).
Collapse
Affiliation(s)
- Jianling Song
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, P.R. China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, P.R. China
| | - Weiping Tu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, P.R. China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, P.R. China
| |
Collapse
|
2
|
Rani R, Nayak M, Nayak B. Exploring the reprogramming potential of B cells and comprehending its clinical and therapeutic perspective. Transpl Immunol 2023; 78:101804. [PMID: 36921730 DOI: 10.1016/j.trim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Initiating from multipotent progenitors, the lineages extrapolated from hematopoietic stem cells are determined by transcription factors specific to each of them. The commitment factors assist in the differentiation of progenitor cells into terminally differentiated cells. B lymphocytes constitute a population of cells that expresses clonally diverse cell surface immunoglobulin (Ig) receptors specific to antigenic epitopes. B cells are a significant facet of the adaptive immune system. The secreted antibodies corresponding to the B cell recognize the antigens via the B cell receptor (BCR). Following antigen recognition, the B cell is activated and thereafter undergoes clonal expansion and proliferation to become memory B cells. The essence of 'cellular reprogramming' has aided in reliably altering the cells to desired tissue type. The potential of reprogramming has been harnessed to decipher and find solutions for various genetically inherited diseases and degenerative disorders. B lymphocytes can be reprogrammed to their initial naive state from where they get differentiated into any lineage or cell type similar to a pluripotent stem cell which can be accomplished by the deletion of master regulators of the B cell lineage. B cells can be reprogrammed into pluripotent stem cells and also can undergo transdifferentiation at the midway of cell differentiation to other cell types. Mandated expression of C/EBP in specialized B cells corresponds to their fast and effective reprogramming into macrophages, reversing the cell fate of these lymphocytes and allowing them to differentiate freshly into other types of cells. The co-expression of C/EBPα and OKSM (Oct4, Sox2, Klf4, c-Myc) amplified the reprogramming efficiency of B lymphocytes. Various human somatic cells including the immune cells are compliant to reprogramming which paves a path for opportunities like autologous tissue grafts, blood transfusion, and cancer immunotherapy. The ability to reprogram B cells offers an unprecedented opportunity for developing a therapeutic approach for several human diseases. Here, we will focus on all the proteins and transcription factors responsible for the developmental commitment of B lymphocytes and how it is harnessed in various applications.
Collapse
Affiliation(s)
- Reetika Rani
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Madhusmita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India.
| |
Collapse
|
3
|
Calciolari B, Scarpinello G, Tubi LQ, Piazza F, Carrer A. Metabolic control of epigenetic rearrangements in B cell pathophysiology. Open Biol 2022; 12:220038. [PMID: 35580618 PMCID: PMC9113833 DOI: 10.1098/rsob.220038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/26/2022] [Indexed: 01/04/2023] Open
Abstract
Both epigenetic and metabolic reprogramming guide lymphocyte differentiation and can be linked, in that metabolic inputs can be integrated into the epigenome to inform cell fate decisions. This framework has been thoroughly investigated in several pathophysiological contexts, including haematopoietic cell differentiation. In fact, metabolite availability dictates chromatin architecture and lymphocyte specification, a multi-step process where haematopoietic stem cells become terminally differentiated lymphocytes (effector or memory) to mount the adaptive immune response. B and T cell precursors reprogram their cellular metabolism across developmental stages, not only to meet ever-changing energetic demands but to impose chromatin accessibility and regulate the function of master transcription factors. Metabolic control of the epigenome has been extensively investigated in T lymphocytes, but how this impacts type-B life cycle remains poorly appreciated. This assay will review our current understanding of the connection between cell metabolism and epigenetics at crucial steps of B cell maturation and how its dysregulation contributes to malignant transformation.
Collapse
Affiliation(s)
- Beatrice Calciolari
- Department of Biology (DiBio), of the University of Padova, Padova, Italy
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Greta Scarpinello
- Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), of the University of Padova, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Alessandro Carrer
- Department of Biology (DiBio), of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
4
|
Zheng Z, Zhang L, Cui XL, Yu X, Hsu PJ, Lyu R, Tan H, Mandal M, Zhang M, Sun HL, Sanchez Castillo A, Peng J, Clark MR, He C, Huang H. Control of Early B Cell Development by the RNA N 6-Methyladenosine Methylation. Cell Rep 2021; 31:107819. [PMID: 32610122 DOI: 10.1016/j.celrep.2020.107819] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
The RNA N6-methyladenosine (m6A) methylation is installed by the METTL3-METTL14 methyltransferase complex. This modification has critical regulatory roles in various biological processes. Here, we report that deletion of Mettl14 dramatically reduces mRNA m6A methylation in developing B cells and severely blocks B cell development in mice. Deletion of Mettl14 impairs interleukin-7 (IL-7)-induced pro-B cell proliferation and the large-pre-B-to-small-pre-B transition and causes dramatic abnormalities in gene expression programs important for B cell development. Suppression of a group of transcripts by cytoplasmic m6A reader YTHDF2 is critical to the IL-7-induced pro-B cell proliferation. In contrast, the block in the large-pre-B-to-small-pre-B transition is independent of YTHDF1 or YTHDF2 but is associated with a failure to properly upregulate key transcription factors regulating this transition. Our data highlight the important regulatory roles of the RNA m6A methylation and its reader proteins in early B cell development.
Collapse
Affiliation(s)
- Zhong Zheng
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA; Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Linda Zhang
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Xiao-Long Cui
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xianbin Yu
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Phillip J Hsu
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Ruitu Lyu
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Haiyan Tan
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Michelle Zhang
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Hui-Lung Sun
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Arantxa Sanchez Castillo
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| | - Haochu Huang
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Tonon S, Martinis E, Pucillo CEM, Mion F. il-10 Gene Locus DNA Methylation in Regulatory B Cells. Methods Mol Biol 2021; 2270:323-339. [PMID: 33479907 DOI: 10.1007/978-1-0716-1237-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epigenetic studies are becoming increasingly common in the immunology field thanks to the support of cutting edge technology and to their potential of providing a large amount of data at the single cell level. Moreover, epigenetic modifications were shown to play a role in autoimmune/inflammatory disorders, paving the way for the possibility of using the results of epigenetic studies for therapeutic purposes. In recent years, epigenetic marks such as DNA methylation, histone modifications and nucleosome positioning were shown to regulate B cell fate and function during an immune response, but very little has been done in the context of one of the most recently discovered B cell subsets, that is regulatory B cells. Although no consensus has yet been found on the identity of these immunosuppressive B cells, the role of the IL-10 cytokine is consolidated, both in the murine and human setting. In this chapter we will focus on the analysis of the methylation profile of a gene of interest and we will specifically describe cloning and pyrosequencing bisulphite sequencing PCR (BSP). Given the specific context, we will provide tips and tricks for the analysis of the il-10 gene locus. Nonetheless, the methods presented are valid for the study of any gene of interest.
Collapse
Affiliation(s)
- Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy.
| | | | | | - Francesca Mion
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
6
|
Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol Cancer 2020; 19:5. [PMID: 31910827 PMCID: PMC6945581 DOI: 10.1186/s12943-019-1127-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Normal hematopoiesis requires the accurate orchestration of lineage-specific patterns of gene expression at each stage of development, and epigenetic regulators play a vital role. Disordered epigenetic regulation has emerged as a key mechanism contributing to hematological malignancies. Histone deacetylases (HDACs) are a series of key transcriptional cofactors that regulate gene expression by deacetylation of lysine residues on histone and nonhistone proteins. In normal hematopoiesis, HDACs are widely involved in the development of various lineages. Their functions involve stemness maintenance, lineage commitment determination, cell differentiation and proliferation, etc. Deregulation of HDACs by abnormal expression or activity and oncogenic HDAC-containing transcriptional complexes are involved in hematological malignancies. Currently, HDAC family members are attractive targets for drug design, and a variety of HDAC-based combination strategies have been developed for the treatment of hematological malignancies. Drug resistance and limited therapeutic efficacy are key issues that hinder the clinical applications of HDAC inhibitors (HDACis). In this review, we summarize the current knowledge of how HDACs and HDAC-containing complexes function in normal hematopoiesis and highlight the etiology of HDACs in hematological malignancies. Moreover, the implication and drug resistance of HDACis are also discussed. This review presents an overview of the physiology and pathology of HDACs in the blood system.
Collapse
Affiliation(s)
- Pan Wang
- The Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China.,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zi Wang
- The Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China. .,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
7
|
Del Pino-Molina L, Rodríguez-Ubreva J, Torres Canizales J, Coronel-Díaz M, Kulis M, Martín-Subero JI, van der Burg M, Ballestar E, López-Granados E. Impaired CpG Demethylation in Common Variable Immunodeficiency Associates With B Cell Phenotype and Proliferation Rate. Front Immunol 2019; 10:878. [PMID: 31105700 PMCID: PMC6492528 DOI: 10.3389/fimmu.2019.00878] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/05/2019] [Indexed: 01/01/2023] Open
Abstract
Common Variable Immunodeficiency (CVID) is characterized by impaired antibody production and poor terminal differentiation of the B cell compartment, yet its pathogenesis is still poorly understood. We first reported the occurrence of epigenetic alterations in CVID by high-throughput methylation analysis in CVID-discordant monozygotic twins. Data from a recent whole DNA methylome analysis throughout different stages of normal B cell differentiation allowed us to design a new experimental approach. We selected CpG sites for analysis based on two criteria: one, CpGs with potential association with the transcriptional status of relevant genes for B cell activation and differentiation; and two, CpGs that undergo significant demethylation from naïve to memory B cells in healthy individuals. DNA methylation was analyzed by bisulfite pyrosequencing of specific CpG sites in sorted naïve and memory B cell subsets from CVID patients and healthy donors. We observed impaired demethylation in two thirds of the selected CpGs in CVID memory B cells, in genes that govern B cell-specific processes or participate in B cell signaling. The degree of demethylation impairment associated with the extent of the memory B cell reduction. The impaired demethylation in such functionally relevant genes as AICDA in switched memory B cells correlated with a lower proliferative rate. Our new results reinforce the hypothesis of altered demethylation during B cell differentiation as a contributing pathogenic mechanism to the impairment of B cell function and maturation in CVID. In particular, deregulated epigenetic control of AICDA could play a role in the defective establishment of a post-germinal center B cell compartment in CVID.
Collapse
Affiliation(s)
- Lucía Del Pino-Molina
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Juan Torres Canizales
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| | - María Coronel-Díaz
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| | - Marta Kulis
- Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | - José I Martín-Subero
- Departamento de Fundamentos Clínicos, Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Eduardo López-Granados
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| |
Collapse
|
8
|
Environmental Influences on Stem Cell Behavior. Stem Cells Int 2019; 2018:7415460. [PMID: 30651735 PMCID: PMC6311709 DOI: 10.1155/2018/7415460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 11/18/2022] Open
|
9
|
Unveiling the Role of DNA Methylation in Kidney Transplantation: Novel Perspectives toward Biomarker Identification. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1602539. [PMID: 30766879 PMCID: PMC6350635 DOI: 10.1155/2019/1602539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/30/2018] [Indexed: 12/13/2022]
Abstract
The burden of chronic kidney disease is dramatically rising, making it a major public health concern worldwide. Kidney transplantation is now the best treatment for patients with end-stage renal disease. Although kidney transplantation may improve survival and quality of life, its long-term results are hampered by immune- and/or non-immune-mediated complications. Thus, the identification of transplanted patients with a higher risk of posttransplant complications has become a big challenge for public health. However, current biomarkers of posttransplant complications have a poor predictive value, rising the need to explore novel approaches for the management of transplant patient. In this review we summarize the emerging literature about DNA methylation in kidney transplant complications, in order to highlight its perspectives toward biomarker identification. In the forthcoming future the monitoring of DNA methylation in kidney transplant patients could become a plausible strategy toward the prevention and/or treatment of kidney transplant complications.
Collapse
|
10
|
Tun N, Shibata Y, Soe MT, Htun MW, Koji T. Histone deacetylase inhibitors suppress transdifferentiation of gonadotrophs to prolactin cells and proliferation of prolactin cells induced by diethylstilbestrol in male mouse pituitary. Histochem Cell Biol 2018; 151:291-303. [DOI: 10.1007/s00418-018-1760-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 01/11/2023]
|
11
|
Boller S, Li R, Grosschedl R. Defining B Cell Chromatin: Lessons from EBF1. Trends Genet 2018; 34:257-269. [PMID: 29336845 DOI: 10.1016/j.tig.2017.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Hematopoiesis is regulated by signals from the microenvironment, transcription factor networks, and changes of the epigenetic landscape. Transcription factors interact with and shape chromatin to allow for lineage- and cell type-specific changes in gene expression. During B lymphopoiesis, epigenetic regulation is observed in multilineage progenitors in which a specific chromatin context is established, at the onset of the B cell differentiation when early B cell factor 1 (EBF1) induces lineage-specific changes in chromatin, during V(D)J recombination and after antigen-driven activation of B cells and terminal differentiation. In this review, we discuss the epigenetic changes underlying B cell differentiation, focusing on the role of transcription factor EBF1 in B cell lineage priming.
Collapse
Affiliation(s)
- Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rui Li
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
12
|
Charting the dynamic epigenome during B-cell development. Semin Cancer Biol 2017; 51:139-148. [PMID: 28851627 DOI: 10.1016/j.semcancer.2017.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
The epigenetic landscape undergoes a widespread modulation during embryonic development and cell differentiation. Within the hematopoietic system, B cells are perhaps the cell lineage with a more dynamic DNA methylome during their maturation process, which involves approximately one third of all the CpG sites of the genome. Although each B-cell maturation step displays its own DNA methylation fingerprint, the DNA methylome is more extensively modified in particular maturation transitions. These changes are gradually accumulated in specific chromatin environments as cell differentiation progresses and reflect different features and functional states of B cells. Promoters and enhancers of B-cell transcription factors acquire activation-related epigenetic marks and are sequentially expressed in particular maturation windows. These transcription factors further reconfigure the epigenetic marks and activity state of their target sites to regulate the expression of genes related to B-cell functions. Together with this observation, extensive DNA methylation changes in areas outside gene regulatory elements such as hypomethylation of heterochromatic regions and hypermethylation of CpG-rich regions, also take place in mature B cells, which intriguingly have been described as hallmarks of cancer. This process starts in germinal center B cells, a highly proliferative cell type, and becomes particularly apparent in long-lived cells such as memory and plasma cells. Overall, the characterization of the DNA methylome during B-cell differentiation not only provides insights into the complex epigenetic network of regulatory elements that mediate the maturation process but also suggests that late B cells also passively accumulate epigenetic changes related to cell proliferation and longevity.
Collapse
|
13
|
Nam S, Lim JS. Essential role of interferon regulatory factor 4 (IRF4) in immune cell development. Arch Pharm Res 2016; 39:1548-1555. [DOI: 10.1007/s12272-016-0854-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
|
14
|
Azagra A, Román-González L, Collazo O, Rodríguez-Ubreva J, de Yébenes VG, Barneda-Zahonero B, Rodríguez J, Castro de Moura M, Grego-Bessa J, Fernández-Duran I, Islam ABMMK, Esteller M, Ramiro AR, Ballestar E, Parra M. In vivo conditional deletion of HDAC7 reveals its requirement to establish proper B lymphocyte identity and development. J Exp Med 2016; 213:2591-2601. [PMID: 27810920 PMCID: PMC5110011 DOI: 10.1084/jem.20150821] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/14/2016] [Indexed: 11/05/2022] Open
Abstract
The histone deacetylase HDAC7 interacts with and represses myeloid and T cell genes in pro–B cells. HDAC7 deletion blocks early B cell development and results in severe lymphopenia. Class IIa histone deacetylase (HDAC) subfamily members are tissue-specific gene repressors with crucial roles in development and differentiation processes. A prominent example is HDAC7, a class IIa HDAC that shows a lymphoid-specific expression pattern within the hematopoietic system. In this study, we explored its potential role in B cell development by generating a conditional knockout mouse model. Our study demonstrates for the first time that HDAC7 deletion dramatically blocks early B cell development and gives rise to a severe lymphopenia in peripheral organs, while also leading to pro–B cell lineage promiscuity. We find that HDAC7 represses myeloid and T lymphocyte genes in B cell progenitors through interaction with myocyte enhancer factor 2C (MEFC2). In B cell progenitors, HDAC7 is recruited to promoters and enhancers of target genes, and its absence leads to increased enrichment of histone active marks. Our results prove that HDAC7 is a bona fide transcriptional repressor essential for B cell development.
Collapse
Affiliation(s)
- Alba Azagra
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Lidia Román-González
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Olga Collazo
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Virginia G de Yébenes
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Bruna Barneda-Zahonero
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Jairo Rodríguez
- Research and Development Department, qGenomics Laboratory, 08003 Barcelona, Spain
| | - Manuel Castro de Moura
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Joaquim Grego-Bessa
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Irene Fernández-Duran
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Almudena R Ramiro
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Maribel Parra
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| |
Collapse
|
15
|
Mathur R, Sehgal L, Havranek O, Köhrer S, Khashab T, Jain N, Burger JA, Neelapu SS, Davis RE, Samaniego F. Inhibition of demethylase KDM6B sensitizes diffuse large B-cell lymphoma to chemotherapeutic drugs. Haematologica 2016; 102:373-380. [PMID: 27742770 DOI: 10.3324/haematol.2016.144964] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/04/2016] [Indexed: 11/09/2022] Open
Abstract
Histone methylation and demethylation regulate B-cell development, and their deregulation correlates with tumor chemoresistance in diffuse large B-cell lymphoma, limiting cure rates. Since histone methylation status correlates with disease aggressiveness and relapse, we investigated the therapeutic potential of inhibiting histone 3 Lys27 demethylase KDM6B, in vitro, using the small molecule inhibitor GSK-J4. KDM6B is overexpressed in the germinal center B-cell subtype of diffuse large B-cell lymphoma, and higher KDM6B levels are associated with worse survival in patients with diffuse large B-cell lymphoma treated with R-CHOP. GSK-J4-induced apoptosis was observed in five (SU-DHL-6, OCI-Ly1, Toledo, OCI-Ly8, SU-DHL-8) out of nine germinal center B-cell diffuse large B-cell lymphoma cell lines. Treatment with GSK-J4 predominantly resulted in downregulation of B-cell receptor signaling and BCL6. Cell lines expressing high BCL6 levels or CREBBP/EP300 mutations were sensitive to GSK-J4. Our results suggest that B-cell receptor-dependent downregulation of BCL6 is responsible for GSK-J4-induced cytotoxicity. Furthermore, GSK-J4-mediated inhibition of KDM6B sensitizes germinal center B-cell diffuse large B-cell lymphoma cells to chemotherapy agents that are currently utilized in treatment regimens for diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Rohit Mathur
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Lalit Sehgal
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Ondrej Havranek
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Stefan Köhrer
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tamer Khashab
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Neeraj Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - R Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
16
|
Essential control of early B-cell development by Mef2 transcription factors. Blood 2015; 127:572-81. [PMID: 26660426 DOI: 10.1182/blood-2015-04-643270] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/05/2015] [Indexed: 12/12/2022] Open
Abstract
The sequential activation of distinct developmental gene networks governs the ultimate identity of a cell, but the mechanisms involved in initiating downstream programs are incompletely understood. The pre-B-cell receptor (pre-BCR) is an important checkpoint of B-cell development and is essential for a pre-B cell to traverse into an immature B cell. Here, we show that activation of myocyte enhancer factor 2 (Mef2) transcription factors (TFs) by the pre-BCR is necessary for initiating the subsequent genetic network. We demonstrate that B-cell development is blocked at the pre-B-cell stage in mice deficient for Mef2c and Mef2d TFs and that pre-BCR signaling enhances the transcriptional activity of Mef2c/d through phosphorylation by the Erk5 mitogen-activating kinase. This activation is instrumental in inducing Krüppel-like factor 2 and several immediate early genes of the AP1 and Egr family. Finally, we show that Mef2 proteins cooperate with the products of their target genes (Irf4 and Egr2) to induce secondary waves of transcriptional regulation. Our findings uncover a novel role for Mef2c/d in coordinating the transcriptional network that promotes early B-cell development.
Collapse
|
17
|
Molecular genetic data favoring a sequential clonal transformation of a large B cell lymphoma into an anaplastic large T cell lymphoma, ALK-negative. J Hematop 2015. [DOI: 10.1007/s12308-015-0245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
18
|
Transcription factor and miRNA co-regulatory network reveals shared and specific regulators in the development of B cell and T cell. Sci Rep 2015; 5:15215. [PMID: 26487345 PMCID: PMC4613730 DOI: 10.1038/srep15215] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022] Open
Abstract
The maturation process of lymphocyte was related to many blood diseases, such as lymphoma and lymphoid leukemia. Many TFs and miRNAs were separately studied in the development of B and T cells. In this study, we aim to discover the TF and miRNA co-regulation and identify key regulators in the B and T cells maturation. We obtained the candidate genes, miRNAs and TFs for each stage of their maturation, then constructed the TF-miRNA-gene feed-forward loops (FFLs) for each stage by our previous methods. Statistical test for FFLs indicated their enrichment and significance. TF-miRNA co-regulatory networks for each stage were constructed by combining their FFLs. Hub analysis revealed the key regulators in each stage, for example, MYC, STAT5A, PAX5 and miR-17 ~ 92 in the transition of pro-B cells into pre-B cells. We also identified a few common regulators and modules in two stages of B cell maturation (e.g. miR-146a/NFKB1/BCL11A) and two stages of T cell maturation (e.g. miR-20/CCND2/SORL1), as well as some shared regulators in the early stages of both B and T cell development. Our network will help to increase understanding of mature process of B and T cell, as well as the related blood diseases.
Collapse
|
19
|
Kikuchi H, Nakayama M, Kuribayashi F, Mimuro H, Imajoh-Ohmi S, Nishitoh H, Nakayama T. Histone acetyltransferase PCAF is involved in transactivation of Bcl-6 and Pax5 genes in immature B cells. Biochem Biophys Res Commun 2015; 467:509-13. [PMID: 26456646 DOI: 10.1016/j.bbrc.2015.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/02/2015] [Indexed: 01/15/2023]
Abstract
Histone acetyltransferase p300/CBP-associated factor (PCAF) belonging to GCN5 family regulates various epigenetic events for transcriptional regulation through alterations in the chromatin structure. During normal development of B cells, gene expressions of numerous transcription factors are strictly regulated by epigenetic mechanisms including histone acetylation and deacetylation to complete their development pathways. Here, by analyzing PCAF-deficient DT40 mutants, ΔPCAF, we report that PCAF takes part in transcriptional activation of B cell lymphoma-6 (Bcl-6) and Paired box gene 5 (Pax5), which are essential transcription factors for normal development of B cells. PCAF-deficiency caused drastic decrease in mRNA levels of Bcl-6 and Pax5, and remarkable increase in that of B lymphocyte-induced maturation protein-1 (Blimp-1). In addition, chromatin immunoprecipitation assay showed that PCAF-deficiency caused remarkable decrease in acetylation levels of both H3K9 and H3K14 residues within chromatin surrounding the 5'-flanking regions of Bcl-6 and Pax5 genes in vivo, suggesting that their gene expressions may be regulated by PCAF. These results revealed that PCAF is involved in transactivation of Bcl-6 and Pax5 genes, resulting in down-regulation of Blimp-1 gene expression, and plays a key role in epigenetic regulation of B cell development.
Collapse
Affiliation(s)
- Hidehiko Kikuchi
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan; Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Masami Nakayama
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Futoshi Kuribayashi
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Biochemistry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Hitomi Mimuro
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shinobu Imajoh-Ohmi
- Laboratory Center for Proteomics Research, Graduate School of Frontier Sciences, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideki Nishitoh
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tatsuo Nakayama
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
20
|
Ying Z, Mei M, Zhang P, Liu C, He H, Gao F, Bao S. Histone Arginine Methylation by PRMT7 Controls Germinal Center Formation via Regulating Bcl6 Transcription. THE JOURNAL OF IMMUNOLOGY 2015; 195:1538-47. [DOI: 10.4049/jimmunol.1500224] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/06/2015] [Indexed: 12/24/2022]
|
21
|
Alberghini F, Petrocelli V, Rahmat M, Casola S. An epigenetic view of B‐cell disorders. Immunol Cell Biol 2015; 93:253-60. [DOI: 10.1038/icb.2014.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/06/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Mahshid Rahmat
- IFOM, The FIRC Institute of Molecular Oncology Foundation Milan Italy
| | - Stefano Casola
- IFOM, The FIRC Institute of Molecular Oncology Foundation Milan Italy
| |
Collapse
|
22
|
Kitagawa Y, Ohkura N, Sakaguchi S. Epigenetic control of thymic Treg-cell development. Eur J Immunol 2014; 45:11-6. [PMID: 25348287 DOI: 10.1002/eji.201444577] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 01/09/2023]
Abstract
Thymus-derived Treg cells, which express the transcription factor Foxp3, form a functionally stable cell lineage indispensable for the maintenance of immunological self-tolerance and homeostasis. Foxp3 is critically required for Treg-cell function, in particular for their suppressive function. Recent studies have implicated the contribution of Treg-cell-specific epigenetic modifications as a means to ensure the stable expression of Foxp3 and other molecules associated with Treg-cell function. Unexpectedly, epigenetic modifications introduced in the course of thymic Treg-cell development were found to be independent of Foxp3 expression. These findings require reconsideration of the current model of Treg-cell development based on Foxp3 induction. With reference to other examples of lineage specification, we discuss possible models for thymic Treg-cell development.
Collapse
Affiliation(s)
- Yohko Kitagawa
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
| | | | | |
Collapse
|
23
|
Esterhuyse MM, Kaufmann SH. Diagnostic biomarkers are hidden in the infected host's epigenome. Expert Rev Mol Diagn 2013; 13:625-37. [PMID: 23895131 DOI: 10.1586/14737159.2013.811897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The success of our immune system depends on its ability to react efficiently, which in turn is supported by a large degree of plasticity as well as memory. Some aspects of this plasticity and memory are now known to be under epigenetic control - determined both by default, during differentiation, and by responses to environmental factors, including infectious agents. Thus, epigenetic marks in the immune system can occur as predetermined or as responsive marks and as such can potentially serve as diagnostic markers for disease susceptibility and disease progression or treatment response. Here, the authors review some examples of epigenetic control and epigenetic marks during the differentiation process of the immune system and memory formation, followed by some examples of epigenetic marks in the immune system subsequent to infection. These are used to illustrate the potential use of epigenetic marks as diagnostic markers in adverse immune system conditions and treatment thereof.
Collapse
Affiliation(s)
- Maria M Esterhuyse
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | | |
Collapse
|
24
|
Kikuchi H, Nakayama M, Kuribayashi F, Imajoh-Ohmi S, Nishitoh H, Takami Y, Nakayama T. GCN5 is essential for IRF-4 gene expression followed by transcriptional activation of Blimp-1 in immature B cells. J Leukoc Biol 2013; 95:399-404. [PMID: 24072880 DOI: 10.1189/jlb.0413232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During B-cell differentiation, the gene expression of B-cell differentiation-related transcription factors must be strictly controlled by epigenetic mechanisms including histone acetylation and deacetylation, to complete the differentiation pathway. GCN5, one of the most important histone acetyltransferases, is involved in epigenetic events for transcriptional regulation through alterations in the chromatin structure. In this study, by analyzing the homozygous DT40 mutants GCN5(-/-), generated with gene targeting techniques, we found that GCN5 was necessary for transcriptional activation of IRF-4, an essential transcription factor for plasma cell differentiation. GCN5 deficiency caused drastic decreases in both the mRNA and the protein levels of Blimp-1 and IRF-4. The ectopic expression of Blimp-1 and IRF-4 suggests that IRF-4, but not Blimp-1, is the target gene of GCN5 in immature B cells. Moreover, a chromatin immunoprecipitation assay showed that GCN5 bound to the IRF-4 gene around its 5'-flanking region and acetylated H3K9 residues within chromatin surrounding the region in vivo, suggesting that gene expression of IRF-4 is certainly regulated by GCN5. These results reveal that GCN5 is essential for IRF-4 gene expression, followed by transcriptional activation of Blimp-1, and plays a key role in epigenetic regulation of B-cell differentiation.
Collapse
Affiliation(s)
- Hidehiko Kikuchi
- 1.Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 88-1692, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Luna-Zurita L, Bruneau BG. Chromatin modulators as facilitating factors in cellular reprogramming. Curr Opin Genet Dev 2013; 23:556-61. [PMID: 23993229 DOI: 10.1016/j.gde.2013.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
In the last few years, cellular reprogramming has emerged as a means to alter cellular identity and generate diverse cell types for disease modeling, drug testing, and potential therapeutic use. Since each cell type is a result of a specific gene expression profile finely regulated by the activity of a repertoire of transcription factors (TFs), reprogramming approaches have, thus far, been relatively inefficient and based largely on the forced expression of selective cell type-specific TFs. TFs function within the confines of chromatin, and the chromatin states can in turn be modulated by TF activity. Therefore, the knowledge of how chromatin remodeling factors alter chromatin structure, control TF activity and gene expression has led to an improved reprogramming efficiency and extended the number of cellular types that can be generated by cellular reprogramming. Here we review recent insights into the role and mechanisms by which chromatin remodeling, histone modifications, and DNA methylation contribute to cellular differentiation and reprogramming.
Collapse
Affiliation(s)
- Luis Luna-Zurita
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | | |
Collapse
|