1
|
Zhang M, Li H, Xiao Y, Li H, Liu X, Zhao X, Zheng Y, Han Y, Guo F, Sun X, Zhao J, Liu S, Zhou X. Assessment of Global and Regional Lung Compliance in Pulmonary Fibrosis With Hyperpolarized Gas MRI. J Magn Reson Imaging 2025; 61:1404-1415. [PMID: 38935670 DOI: 10.1002/jmri.29497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Lung compliance, a biomarker of pulmonary fibrosis, is generally measured globally. Hyperpolarized 129Xe gas MRI offers the potential to evaluate lung compliance regionally, allowing for visualization of changes in lung compliance associated with fibrosis. PURPOSE To assess global and regional lung compliance in a rat model of pulmonary fibrosis using hyperpolarized 129Xe gas MRI. STUDY TYPE Prospective. ANIMAL MODEL Twenty Sprague-Dawley male rats with bleomycin-induced fibrosis model (N = 10) and saline-treated controls (N = 10). FIELD STRENGTH/SEQUENCE 7-T, fast low-angle shot (FLASH) sequence. ASSESSMENT Lung compliance was determined by fitting lung volumes derived from segmented 129Xe MRI with an iterative selection method, to corresponding airway pressures. Similarly, lung compliance was obtained with computed tomography for cross-validation. Direction-dependencies of lung compliance were characterized by regional lung compliance ratios (R) in different directions. Pulmonary function tests (PFTs) and histological analysis were used to validate the pulmonary fibrosis model and assess its correlation with 129Xe lung compliance. STATISTICAL TESTS Shapiro-Wilk tests, unpaired and paired t-tests, Mann-Whitney U and Wilcoxon signed-rank tests, and Pearson correlation coefficients. P < 0.05 was considered statistically significant. RESULTS For the entire lung, the global and regional lung compliance measured with 129Xe gas MRI showed significant differences between the groups, and correlated with the global lung compliance measured using PFTs (global: r = 0.891; regional: r = 0.873). Additionally, for the control group, significant difference was found in mean regional compliance between areas, eg, 0.37 (0.32, 0.39) × 10-4 mL/cm H2O and 0.47 (0.41, 0.56) × 10-4 mL/cm H2O for apical and basal lung, respectively. The apical-basal direction R was 1.12 ± 0.09 and 1.35 ± 0.13 for fibrosis and control groups, respectively, indicating a significant difference. DATA CONCLUSION Our findings demonstrate the feasibility of using hyperpolarized gas MRI to assess regional lung compliance. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Xiao
- Department of Radiology, Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - Hongchuang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoling Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fumin Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xianping Sun
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Biomedical Engineering, Hainan University, Haikou, China
| |
Collapse
|
2
|
Kaku S, Nguyen CD, Htet NN, Tutera D, Barr J, Paintal HS, Kuschner WG. Acute Respiratory Distress Syndrome: Etiology, Pathogenesis, and Summary on Management. J Intensive Care Med 2019; 35:723-737. [DOI: 10.1177/0885066619855021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The acute respiratory distress syndrome (ARDS) has multiple causes and is characterized by acute lung inflammation and increased pulmonary vascular permeability, leading to hypoxemic respiratory failure and bilateral pulmonary radiographic opacities. The acute respiratory distress syndrome is associated with substantial morbidity and mortality, and effective treatment strategies are limited. This review presents the current state of the literature regarding the etiology, pathogenesis, and management strategies for ARDS.
Collapse
Affiliation(s)
- Shawn Kaku
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Authors have contributed equally
| | - Christopher D. Nguyen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Authors have contributed equally
| | - Natalie N. Htet
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Authors have contributed equally
| | - Dominic Tutera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliana Barr
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Harman S. Paintal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ware G. Kuschner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
3
|
Nieman GF, Satalin J, Andrews P, Aiash H, Habashi NM, Gatto LA. Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI). Intensive Care Med Exp 2017; 5:8. [PMID: 28150228 PMCID: PMC5289131 DOI: 10.1186/s40635-017-0121-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/26/2017] [Indexed: 12/15/2022] Open
Abstract
It has been shown that mechanical ventilation in patients with, or at high-risk for, the development of acute respiratory distress syndrome (ARDS) can be a double-edged sword. If the mechanical breath is improperly set, it can amplify the lung injury associated with ARDS, causing a secondary ventilator-induced lung injury (VILI). Conversely, the mechanical breath can be adjusted to minimize VILI, which can reduce ARDS mortality. The current standard of care ventilation strategy to minimize VILI attempts to reduce alveolar over-distension and recruitment-derecruitment (R/D) by lowering tidal volume (Vt) to 6 cc/kg combined with adjusting positive-end expiratory pressure (PEEP) based on a sliding scale directed by changes in oxygenation. Thus, Vt is often but not always set as a "one-size-fits-all" approach and although PEEP is often set arbitrarily at 5 cmH2O, it may be personalized according to changes in a physiologic parameter, most often to oxygenation. However, there is evidence that oxygenation as a method to optimize PEEP is not congruent with the PEEP levels necessary to maintain an open and stable lung. Thus, optimal PEEP might not be personalized to the lung pathology of an individual patient using oxygenation as the physiologic feedback system. Multiple methods of personalizing PEEP have been tested and include dead space, lung compliance, lung stress and strain, ventilation patterns using computed tomography (CT) or electrical impedance tomography (EIT), inflection points on the pressure/volume curve (P/V), and the slope of the expiratory flow curve using airway pressure release ventilation (APRV). Although many studies have shown that personalizing PEEP is possible, there is no consensus as to the optimal technique. This review will assess various methods used to personalize PEEP, directed by physiologic parameters, necessary to adaptively adjust ventilator settings with progressive changes in lung pathophysiology.
Collapse
Affiliation(s)
- Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY USA
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY USA
- Cardiopulmonary Critical Care Lab, Department of Surgery, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
| | | | - Hani Aiash
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY USA
| | - Nader M. Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, MD USA
| | - Louis A. Gatto
- Biological Sciences Department, Biological Sciences Department, SUNY Cortland, Cortland, NY USA
| |
Collapse
|
4
|
[Extreme obesity-particular aspect of invasive and noninvasive ventilation]. Med Klin Intensivmed Notfmed 2017; 114:533-540. [PMID: 28875324 DOI: 10.1007/s00063-017-0332-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/27/2017] [Accepted: 07/19/2017] [Indexed: 10/18/2022]
Abstract
The obesity rate is increasing worldwide and the percentage of obese patients in the intensive care unit (ICU) is rising concomitantly. Ventilatory support strategies in obese patients must take into account the altered pathophysiological conditions. Unfortunately, prospective randomized multicenter trials on this subject are lacking. Therefore, current strategies are based on the individual experiences of ICU physicians and single-center studies. Noninvasive ventilation (NIV) in critically ill patients with acute respiratory failure and obesity hypoventilation syndrome (OHS) is an efficient treatment option and should be provided as early as possible is an effort to avoid intubation. Patient positioning is also crucial: half-sitting positions (>45°) improve lung compliance and functional residual capacity in patients with respiratory failure. Transpulmonary pressure measurements or the Acute Respiratory Distress Syndrome (ARDS) Network tables may help to adjust the optimal positive end-expiratory pressure (PEEP). The tidal volume should be adapted to the ideal and not the actual bodyweight (Vt = 6 ml/kg of ideal bodyweight) to avoid lung damage and (additional) right ventricular stress. Under particular conditions, inspiratory pressures >30 cmH2O may be tolerated for a limited duration. Early tracheostomy combined with termination/reduction of sedation and relaxation is controversy discussed in the literature as a therapeutic option during invasive ventilation of morbidly obese patients. However, data on early tracheotomy in obese respiratory failure patients are rare and this should be regarded as an individual treatment attempt only. In cases of refractory lung failure, venovenous extracorporeal membrane oxygenation (vv-ECMO) is an option despite anatomic changes in morbid obesity.
Collapse
|
5
|
Nardi N, Mortamet G, Ducharme-Crevier L, Emeriaud G, Jouvet P. Recent Advances in Pediatric Ventilatory Assistance. F1000Res 2017; 6:290. [PMID: 28413621 PMCID: PMC5365224 DOI: 10.12688/f1000research.10408.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 01/17/2023] Open
Abstract
In this review on respiratory assistance, we aim to discuss the following recent advances: the optimization and customization of mechanical ventilation, the use of high-frequency oscillatory ventilation, and the role of noninvasive ventilation. The prevention of ventilator-induced lung injury and diaphragmatic dysfunction is now a key aspect in the management of mechanical ventilation, since these complications may lead to higher mortality and prolonged length of stay in intensive care units. Different physiological measurements, such as esophageal pressure, electrical activity of the diaphragm, and volumetric capnography, may be useful objective tools to help guide ventilator assistance. Companies that design medical devices including ventilators and respiratory monitoring platforms play a key role in knowledge application. The creation of a ventilation consortium that includes companies, clinicians, researchers, and stakeholders could be a solution to promote much-needed device development and knowledge implementation.
Collapse
Affiliation(s)
- Nicolas Nardi
- Pediatric Intensive Care Unit, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Guillaume Mortamet
- Pediatric Intensive Care Unit, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | | | - Guillaume Emeriaud
- Pediatric Intensive Care Unit, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Philippe Jouvet
- Pediatric Intensive Care Unit, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|