1
|
Mechanotransduction of mesenchymal stem cells (MSCs) during cardiomyocytes differentiation. Heliyon 2022; 8:e11624. [DOI: 10.1016/j.heliyon.2022.e11624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
|
2
|
Functions of Mesenchymal Stem Cells in Cardiac Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1312:39-50. [PMID: 33330961 DOI: 10.1007/5584_2020_598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myocardial infarction (MI) and heart failure (HF) are significant contributors of mortality worldwide. Mesenchymal stem cells (MSCs) hold a great potential for cardiac regenerative medicine-based therapies. Their therapeutic potential has been widely investigated in various in-vitro and in-vivo preclinical models. Besides, they have been tested in clinical trials of MI and HF with various outcomes. Differentiation to lineages of cardiac cells, neovascularization, anti-fibrotic, anti-inflammatory, anti-apoptotic and immune modulatory effects are the main drivers of MSC functions during cardiac repair. However, the main mechanisms regulating these functions and cross-talk between cells are not fully known yet. Increasing line of evidence also suggests that secretomes of MSCs and/or their extracellular vesicles play significant roles in a paracrine manner while mediating these functions. This chapter aims to summarize and highlight cardiac repair functions of MSCs during cardiac repair.
Collapse
|
3
|
Ozaki Tan SJ, Floriano JF, Nicastro L, Emanueli C, Catapano F. Novel Applications of Mesenchymal Stem Cell-derived Exosomes for Myocardial Infarction Therapeutics. Biomolecules 2020; 10:E707. [PMID: 32370160 PMCID: PMC7277090 DOI: 10.3390/biom10050707] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity globally, representing approximately a third of all deaths every year. The greater part of these cases is represented by myocardial infarction (MI), or heart attack as it is better known, which occurs when declining blood flow to the heart causes injury to cardiac tissue. Mesenchymal stem cells (MSCs) are multipotent stem cells that represent a promising vector for cell therapies that aim to treat MI due to their potent regenerative effects. However, it remains unclear the extent to which MSC-based therapies are able to induce regeneration in the heart and even less clear the degree to which clinical outcomes could be improved. Exosomes, which are small extracellular vesicles (EVs) known to have implications in intracellular communication, derived from MSCs (MSC-Exos), have recently emerged as a novel cell-free vector that is capable of conferring cardio-protection and regeneration in target cardiac cells. In this review, we assess the current state of research of MSC-Exos in the context of MI. In particular, we place emphasis on the mechanisms of action by which MSC-Exos accomplish their therapeutic effects, along with commentary on the current difficulties faced with exosome research and the ongoing clinical applications of stem-cell derived exosomes in different medical contexts.
Collapse
Affiliation(s)
- Sho Joseph Ozaki Tan
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Juliana Ferreria Floriano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
- Botucatu Medical School, Sao Paulo State University, Botucatu 18618687, Brazil
| | - Laura Nicastro
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Francesco Catapano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| |
Collapse
|
4
|
Chen J, Si L, Zhou L, Deng Y. Role of bone marrow mesenchymal stem cells in the development of PQ‑induced pulmonary fibrosis. Mol Med Rep 2019; 19:3283-3290. [PMID: 30816470 DOI: 10.3892/mmr.2019.9976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/11/2019] [Indexed: 11/06/2022] Open
Abstract
Paraquat (PQ) poisoning‑induced pulmonary fibrosis is one of the primary causes of mortality in patients with PQ poisoning. The potential mechanism of PQ‑induced pulmonary fibrosis was thought to be mediated by inflammation. Recently, bone marrow‑derived mesenchymal stem cells (BMSCs) have been considered as a potential strategy for the treatment of fibrotic disease due to their anti‑inflammatory and immunosuppressive effects. In the present study, an increased accumulation of BMSCs in a mouse model of PQ‑induced pulmonary fibrosis following their transplantation, markedly improving the survival rate of mice with PQ poisoning. In addition, the results indicated that BMSC transplantation may inhibit the production of pro‑inflammatory cytokines, including tumor necrosis factor‑α interleukin (IL)‑1β, IL‑6 and IL‑10 in the lung tissues of PQ‑poisoned mice, and ultimately attenuate the pulmonary fibrosis. In vitro, BMSCs may suppress PQ‑induced epithelial‑to‑mesenchymal transition and protect pulmonary epithelial cells from PQ‑induced apoptosis. These findings suggest that BMSC transplantation may be a promising treatment for pulmonary fibrosis induced by PQ poisoning.
Collapse
Affiliation(s)
- Jianjun Chen
- Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Linjie Si
- Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Liangliang Zhou
- Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Yijun Deng
- Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
5
|
Abstract
Stem cell therapy can potentially disrupt conventional medicine as we practice it today. Stem cells can self-renew and differentiate and by this, repair and in certain conditions regenerate damaged tissue. In the past two decades, there has been significant research into its value in several chronic urological conditions for which conventional therapy is unsatisfactory. Stem cell therapy has been tried on animal models of bladder dysfunction, stress urinary incontinence (SUI), erectile dysfunction and urethral injury and certain preclinical studies have had very encouraging results. Yet despite this explosion of knowledge about the nature and value of stem cells, translation of research into the clinical domain has been slow. In addition, lack of regulation of stem cell therapy has resulted in indiscriminate, unscientific administration of stem cell therapy to patients. This review looks into the advances in the use of stem cells in urological practice, the recent regulatory guidelines that have been introduced and what the future holds for this exciting branch.
Collapse
Affiliation(s)
- Arabind Panda
- Senior Consultant Urologist, KIMS, Secunderabad, India
| |
Collapse
|
6
|
Cui H, Miao S, Esworthy T, Zhou X, Lee SJ, Liu C, Yu ZX, Fisher JP, Mohiuddin M, Zhang LG. 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev 2018; 132:252-269. [PMID: 30053441 PMCID: PMC6226324 DOI: 10.1016/j.addr.2018.07.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Compared to traditional therapeutic strategies, three-dimensional (3D) bioprinting is one of the most advanced techniques for creating complicated cardiovascular implants with biomimetic features, which are capable of recapitulating both the native physiochemical and biomechanical characteristics of the cardiovascular system. The present review provides an overview of the cardiovascular system, as well as describes the principles of, and recent advances in, 3D bioprinting cardiovascular tissues and models. Moreover, this review will focus on the applications of 3D bioprinting technology in cardiovascular repair/regeneration and pharmacological modeling, further discussing current challenges and perspectives.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Se-Jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Chengyu Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742, USA
| | | | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
7
|
Platelet rich concentrate enhances mesenchymal stem cells capacity to repair focal cartilage injury in rabbits. Injury 2018; 49:775-783. [PMID: 29503013 DOI: 10.1016/j.injury.2018.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/30/2017] [Accepted: 02/18/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND It has been previously suggested that the use of regenerative promoters, which include bone marrow-derived mesenchymal stem cells (MSCs) or natural growth factors supplement such as platelet-rich concentrate (PRC) could promote cartilage regeneration. However, the notion that the concurrent use of both promoters may provide a synergistic effect that improves the repair outcome of focal cartilage injury has not been previously demonstrated. This study was thus conducted to determine whether the concomitant use of PRC could further enhance the reparative potential of MSCs encapsulated in alginate transplanted into focal cartilage injury in rabbits. METHODS Artifically created full thickness cartilage defects were made on the weight-bearing region of medial femoral condyles in bilateral knees of New Zealand White rabbits (N = 30). After one month, the right knee was treated with either i) PRC (n = 10), ii) MSCs (n = 10), or, iii) a combination of PRC and MSCs (PRC + MSC) (n = 10), all encapsulated in alginate. The left knee remained untreated (control). Rabbits were sacrificed at 3 and 6 months after treatment. Cartilage tissue regeneration was accessed using ICRS morphologic scoring, histologic grading by O'Driscoll scoring, immunohistochemical staining and quantitative analysis of glycosaminoglycans (GAG) per total protein content. RESULTS At 3 months, transplantation using PRC alone was equally effective as MSCs in inducing the repair of cartilage defects. However, PRC + MSC resulted in significantly higher ICRS and O'Driscoll scores (p < 0.05) as compared to other groups. The regenerated tissues from the PRC + MSC group also had stronger staining for Safranin-O and collagen type II. By 6 months, in addition to superior ICRS and O'Driscoll scores as well as stronger staining, glycosaminoglycan per total protein content was also significantly higher (p < 0.05) in the PRC + MSC group (3.4 ± 0.3 μg/mg) as compared to the MSC (2.6 ± 0.2 μg/mg) or PRC (2.1 ± 0.2 μg/mg) groups. CONCLUSION PRC enhances the reparative effects of MSC in treating focal articular cartilage injuries.
Collapse
|
8
|
Mesenchymal stem cells inhibit hypoxia-induced inflammatory and fibrotic pathways in bladder smooth muscle cells. World J Urol 2018; 36:1157-1165. [DOI: 10.1007/s00345-018-2247-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/20/2018] [Indexed: 12/18/2022] Open
|
9
|
Wang LL, Liu Y, Chung JJ, Wang T, Gaffey AC, Lu M, Cavanaugh CA, Zhou S, Kanade R, Atluri P, Morrisey EE, Burdick JA. Local and sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischemic injury. Nat Biomed Eng 2017; 1:983-992. [PMID: 29354322 PMCID: PMC5773070 DOI: 10.1038/s41551-017-0157-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MicroRNA-based therapies that target cardiomyocyte proliferation have great potential for the treatment of myocardial infarction (MI). In previous work, we showed that the miR-302/367 cluster regulates cardiomyocyte proliferation in the prenatal and postnatal heart. Here, we describe the development and application of an injectable hyaluronic acid (HA) hydrogel for the local and sustained delivery of miR-302 mimics to the heart. We show that the miR-302 mimics released in vitro promoted cardiomyocyte proliferation over one week, and that a single injection of the hydrogel in the mouse heart led to local and sustained cardiomyocyte proliferation for two weeks. After MI, gel/miR-302 injection caused local clonal proliferation and increased cardiomyocyte numbers in the border zone of a Confetti mouse model. Gel/miR-302 further decreased cardiac end-diastolic (39%) and end-systolic (50%) volumes, and improved ejection fraction (32%) and fractional shortening (64%) four weeks after MI and injection, compared to controls. Our findings suggest that biomaterial-based miRNA delivery systems can lead to improved outcomes in cardiac regeneration.
Collapse
Affiliation(s)
- Leo L Wang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J Chung
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Tao Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann C Gaffey
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Minmin Lu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Su Zhou
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul Kanade
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Pavan Atluri
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Greenberg JM, Lumbreras V, Pelaez D, Rajguru SM, Cheung HS. Neural Crest Stem Cells Can Differentiate to a Cardiomyogenic Lineage with an Ability to Contract in Response to Pulsed Infrared Stimulation. Tissue Eng Part C Methods 2017; 22:982-990. [PMID: 28192031 DOI: 10.1089/ten.tec.2016.0232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Cellular cardiomyoplasty has rapidly risen to prominence in the clinic following a myocardial infarction; however, low engraftment of transplanted cells limits the therapeutic benefit to these procedures. Recently, lineage-specific stem cells differentiated into cardiomyocytes have gained much attention to assist in the repair of an injured heart tissue; however, questions regarding the ideal cell source remain. In the present study, we have identified a source that is easy to extract stem cells from and show that the cells present have a high plasticity toward the cardiomyogenic lineage. We focused on the recently discovered neural crest stem cells residing in the periodontal ligament that can be easily obtained through dental procedures. MATERIALS AND METHODS Neural crest stem cells were obtained from human excised third molars and differentiated in culture using a protocol for directed differentiation into cardiomyocytes. Differentiation of cells was assessed through gene expression and immunostaining studies. Optical stimulation using pulsed infrared radiation (IR) (λ = 1863 nm) was delivered to cell aggregates to study their contractile ability. RESULTS We show that neural crest stem cells can be differentiated to a cardiomyogenic lineage, which was verified through immunostaining and gene expression. We observed a significant increase in cardiomyocyte-specific markers, NK2 homeobox 5 (NKX2.5) and troponin T type 2 (TNNT2), with positive changes in tropomyosin I (TPM1), gap junction protein alpha 1/Cx43 (GJA1/Cx43), and myocyte enhancement factor 2C (MEF2C). Furthermore, we were able to elicit and maintain pulse-by-pulse contractile responses in the derived cells, including in cardiospheres, with pulsed IR delivered at various radiant energies. The contractility in responses to IR could be maintained at different frequencies (0.25-2 Hz) and up to 10-min durations. While these cells did not maintain their contractility following cessation of IR, these cells demonstrated responses to the optical stimuli that are consistent with previous reports. We also found no evidence for irreversible mitochondrial depolarization in these cells following the long duration of infrared stimulation, suggesting the robustness of these cells. CONCLUSIONS Overall, these results suggest the merit of neural crest-derived stem cells for cardiomyogenic applications and a potential cell source for repair that should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
Affiliation(s)
- Jordan M Greenberg
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida
| | - Vicente Lumbreras
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida
| | - Daniel Pelaez
- 2 Geriatric Research, Education and Clinical Center (GRECC), Miami Veterans Affairs Medical Center , Miami, Florida
| | - Suhrud M Rajguru
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida.,3 Department of Otolaryngology, Miller School of Medicine, University of Miami , Miami, Florida
| | - Herman S Cheung
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida.,2 Geriatric Research, Education and Clinical Center (GRECC), Miami Veterans Affairs Medical Center , Miami, Florida
| |
Collapse
|
11
|
Zhang F, Wang C, Lin J, Wang X. Oxidized low-density lipoprotein (ox-LDL) promotes cardiac differentiation of bone marrow mesenchymal stem cells via activating ERK1/2 signaling. Cardiovasc Ther 2017; 35. [PMID: 28880487 DOI: 10.1111/1755-5922.12305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/16/2017] [Accepted: 09/02/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS The differentiation efficiency of bone marrow mesenchymal stem cells (BM-MSCs) is low in vivo after transplantation. Therefore, it is necessary to look for effective reagents for enhancing cardiac differentiation of BM-MSCs. It has been reported that cardiac differentiation of stem cells depends on the activation of extracellular signal-regulated protein 1/2 (ERK1/2) signaling. Oxidized low-density lipoprotein (ox-LDL) is a potent reagent for ERK1/2 activation. This indicates that ox-LDL may be a potential reagent to stimulate cardiac differentiation of stem cells. In this study, we investigated the effect of ox-LDL on cardiac differentiation of BM-MSCs and its relationship with ERK1/2 signaling. METHODS BM-MSCs were isolated from mouse bone marrow, cultured in DMEM supplemented with 15% FBS, and passaged up to the 3rd passage. Following culture with 5 μg/mL ox-LDL for 3 weeks, the cardiac differentiation of the 3rd passage BM-MSCs was identified by immunostaining, Western blotting, and RT-PCR assays for measuring the expression of cardiac-specific markers. To further explore the role of ERK1/2 signaling in cardiac differentiation of BM-MSCs, we simultaneously exposed BM-MSCs to ERK1/2 inhibitor (U0126) and ox-LDL, and identified the cardiac differentiation again. RESULTS The expressions of cardiac-specific markers including α-cardiac actin, α-MHC, β-MHC, ANP, and BNP were markedly increased in BM-MSCs following treatment with ox-LDL (P < .05), which indicates a directional differentiation of BM-MSCs to cardiac cells. Further, ox-LDL could also activate ERK1/2 in BM-MSCs, and application of U0126 markedly inhibited ox-LDL-induced cardiac transformation of BM-MSCs. CONCLUSIONS Ox-LDL induces cardiac differentiation of BM-MSCs via activation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Fenxi Zhang
- Stem Cell and Biotheraphy Technology Research Center, Xinxiang Medical University, Xinxiang, China
| | - Congrui Wang
- Stem Cell and Biotheraphy Technology Research Center, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotheraphy Technology Research Center, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Stem Cell and Biotheraphy Technology Research Center, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
12
|
Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering. Stem Cells Int 2017; 2017:3945403. [PMID: 28303152 PMCID: PMC5337882 DOI: 10.1155/2017/3945403] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/02/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs) are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.
Collapse
|
13
|
Kanelidis AJ, Premer C, Lopez J, Balkan W, Hare JM. Route of Delivery Modulates the Efficacy of Mesenchymal Stem Cell Therapy for Myocardial Infarction: A Meta-Analysis of Preclinical Studies and Clinical Trials. Circ Res 2016; 120:1139-1150. [PMID: 28031416 DOI: 10.1161/circresaha.116.309819] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/16/2016] [Accepted: 12/28/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE Accumulating data support a therapeutic role for mesenchymal stem cell (MSC) therapy; however, there is no consensus on the optimal route of delivery. OBJECTIVE We tested the hypothesis that the route of MSC delivery influences the reduction in infarct size and improvement in left ventricular ejection fraction (LVEF). METHODS AND RESULTS We performed a meta-analysis investigating the effect of MSC therapy in acute myocardial infarction (AMI) and chronic ischemic cardiomyopathy preclinical studies (58 studies; n=1165 mouse, rat, swine) which revealed a reduction in infarct size and improvement of LVEF in all animal models. Route of delivery was analyzed in AMI swine studies and clinical trials (6 clinical trials; n=334 patients). In AMI swine studies, transendocardial stem cell injection reduced infarct size (n=49, 9.4% reduction; 95% confidence interval, -15.9 to -3.0), whereas direct intramyocardial injection, intravenous infusion, and intracoronary infusion indicated no improvement. Similarly, transendocardial stem cell injection improved LVEF (n=65, 9.1% increase; 95% confidence interval, 3.7 to 14.5), as did direct intramyocardial injection and intravenous infusion, whereas intracoronary infusion demonstrated no improvement. In humans, changes of LVEF paralleled these results, with transendocardial stem cell injection improving LVEF (n=46, 7.0% increase; 95% confidence interval, 2.7 to 11.3), as did intravenous infusion, but again intracoronary infusion demonstrating no improvement. CONCLUSIONS MSC therapy improves cardiac function in animal models of both AMI and chronic ischemic cardiomyopathy. The route of delivery seems to play a role in modulating the efficacy of MSC therapy in AMI swine studies and clinical trials, suggesting the superiority of transendocardial stem cell injection because of its reduction in infarct size and improvement of LVEF, which has important implications for the design of future studies.
Collapse
Affiliation(s)
- Anthony J Kanelidis
- From the Interdisciplinary Stem Cell Institute (A.J.K., C.P., W.B., J.M.H.), Department of Molecular and Cellular Pharmacology (C.P.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; and Florida International University Herbert Wertheim College of Medicine, Miami (J.L.)
| | - Courtney Premer
- From the Interdisciplinary Stem Cell Institute (A.J.K., C.P., W.B., J.M.H.), Department of Molecular and Cellular Pharmacology (C.P.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; and Florida International University Herbert Wertheim College of Medicine, Miami (J.L.)
| | - Juan Lopez
- From the Interdisciplinary Stem Cell Institute (A.J.K., C.P., W.B., J.M.H.), Department of Molecular and Cellular Pharmacology (C.P.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; and Florida International University Herbert Wertheim College of Medicine, Miami (J.L.)
| | - Wayne Balkan
- From the Interdisciplinary Stem Cell Institute (A.J.K., C.P., W.B., J.M.H.), Department of Molecular and Cellular Pharmacology (C.P.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; and Florida International University Herbert Wertheim College of Medicine, Miami (J.L.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (A.J.K., C.P., W.B., J.M.H.), Department of Molecular and Cellular Pharmacology (C.P.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; and Florida International University Herbert Wertheim College of Medicine, Miami (J.L.).
| |
Collapse
|
14
|
Cardiomyogenesis of periodontal ligament-derived stem cells by dynamic tensile strain. Cell Tissue Res 2016; 367:229-241. [DOI: 10.1007/s00441-016-2503-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/06/2016] [Indexed: 12/25/2022]
|
15
|
Kumar MD, Dravid A, Kumar A, Sen D. Gene therapy as a potential tool for treating neuroblastoma-a focused review. Cancer Gene Ther 2016; 23:115-24. [PMID: 27080224 DOI: 10.1038/cgt.2016.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/12/2022]
Abstract
Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged <5 years. Several approaches and strategies developed and tested to cure neuroblastoma have met with limited success due to different reasons. Many oncogenes are deregulated during the onset and development of neuroblastoma and thus offer an opportunity to circumvent this disease if the expression of these genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma.
Collapse
Affiliation(s)
- M D Kumar
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - A Dravid
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - A Kumar
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - D Sen
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India.,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| |
Collapse
|
16
|
Abstract
Stem cell therapy holds the potential to revolutionize the treatment of a number of chronic conditions. Stem cells ability to home in on injured sites of the body, stimulate angiogenesis, tissue regeneration, immunomodulation, anti-inflammatory, and anti-fibrotic factors have attracted their use in the treatment of many conditions. Urology has registered one of the highest experimental successes using stem cell therapy. However, the rate of clinical applications is comparatively lower. This review takes a look at our efforts so far and what needs to be done in order to maximize the clinical benefit we can derive from stem cells.
Collapse
Affiliation(s)
- Bridget Wiafe
- 3-007 Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada, T6G 2E1.
| | | | - Adetola B Adesida
- 3-002E Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada, T6G 2E1.
| |
Collapse
|
17
|
Khanabdali R, Saadat A, Fazilah M, Bazli KFK, Qazi REM, Khalid RS, Hasan Adli DS, Moghadamtousi SZ, Naeem N, Khan I, Salim A, Shamsuddin SA, Mohan G. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Drug Des Devel Ther 2015; 10:81-91. [PMID: 26766903 PMCID: PMC4699543 DOI: 10.2147/dddt.s89658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs) into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco's Modified Eagle's Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 μM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco's Modified Eagle's Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the cell body toward the neighboring cells were observed in the culture. The mRNA expression of neuronal-specific markers, Map2, Nefl, Tau, and Nestin, was significantly higher, indicating that the treated cells differentiated into neuronal-like cells. Immunostaining showed that differentiated cells were positive for the neuronal markers Flk, Nef, Nestin, and β-tubulin.
Collapse
Affiliation(s)
- Ramin Khanabdali
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Anbarieh Saadat
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Maizatul Fazilah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Rida-e-Maria Qazi
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ramla Sana Khalid
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | - Nadia Naeem
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Gokula Mohan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Lemcke H, Steinhoff G, David R. Gap junctional shuttling of miRNA — A novel pathway of intercellular gene regulation and its prospects in clinical application. Cell Signal 2015; 27:2506-14. [DOI: 10.1016/j.cellsig.2015.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 01/05/2023]
|
19
|
Suresh SC, Selvaraju V, Thirunavukkarasu M, Goldman JW, Husain A, Alexander Palesty J, Sanchez JA, McFadden DW, Maulik N. Thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy increased pro-angiogenic factors, reduced fibrosis and improved heart function in the infarcted rat myocardium. Int J Cardiol 2015; 201:517-28. [PMID: 26322599 DOI: 10.1016/j.ijcard.2015.08.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/15/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Engraftment of mesenchymal stem cells (MSCs) has emerged as a powerful candidate for mediating myocardial repair. In this study, we genetically modified MSCs with an adenovector encoding thioredoxin-1 (Ad.Trx1). Trx1 has been described as a growth regulator, a transcription factor regulator, a cofactor, and a powerful antioxidant. We explored whether engineered MSCs, when transplanted, are capable of improving cardiac function and angiogenesis in a rat model of myocardial infarction (MI). METHODS Rat MSCs were cultured and divided into MSC, MSC+Ad.LacZ, and MSC+Ad.Trx1 groups. The cells were assayed for proliferation, and differentiation potential. In addition, rats were divided into control-sham (CS), control-MI (CMI), MSC+Ad.LacZ-MI (MLZMI), and MSC+Ad.Trx1-MI (MTrxMI) groups. MI was induced by left anterior descending coronary artery (LAD) ligation, and MSCs preconditioned with either Ad.LacZ or Ad.Trx1 were immediately administered to four sites in the peri-infarct zone. RESULTS The MSC+Ad.Trx1 cells increased the proliferation capacity and maintained pluripotency, allowing them to divide into cardiomyocytes, smooth muscle, and endothelial cells. Western blot analysis, 4 days after treatment showed increased vascular endothelial growth factor (VEGF), heme oxygenase-1 (HO-1), and C-X-C chemokine receptor type 4 (CXCR4). Also capillary density along with myocardial function as examined by echocardiography was found to be increased. Fibrosis was reduced in the MTrxMI group compared to MLZMI and CMI. Visualization of Connexin-43 by immunohistochemistry confirmed increased intercellular connections in the MTrxMI rats compared to MLZMI. CONCLUSION Engineering MSCs to express Trx1 may prove to be a strategic therapeutic modality in the treatment of cardiac failure.
Collapse
Affiliation(s)
- Sumanth C Suresh
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - Joshua W Goldman
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - Aaftab Husain
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - J Alexander Palesty
- Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Juan A Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - David W McFadden
- Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington 06032, CT, USA.
| |
Collapse
|
20
|
Su F, Zhang W, Liu J. Membrane estrogen receptor alpha is an important modulator of bone marrow C-Kit+ cells mediated cardiac repair after myocardial infarction. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4284-4295. [PMID: 26191121 PMCID: PMC4502993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
It has been validated that c-kit positive (c-kit+) cells in infarcted myocardium are from bone marrow (BM). Given the recent study that in the heart, estrogen receptor alpha (ERα) is involved in adaptive mechanisms by supporting cardiomyocytes survival via post-infarct cardiac c-kit+ cells, we tested a novel hypothesis that membrane ERα (mERа) supports survival of BM c-kit+ cells and enhance protective paracrine function for cardiac repair. Our data showed that myocardial infarction (MI) leads to an increase in c-kit+ first in bone marrow and then specifically within the infarcted myocardium. Also up-regulated mERа in post-infarct BM c-kit+ cells was found in day 3 post MI. In vitro co-culture system, mERа+ enhances the beneficial effects of BM c-kit+ cells by increasing their viability and reducing apoptosis. Post-infarct c-kit+ mERа+ cells population expresses predominant ERα and holds self-renewal as well as cardiac differentiation potentials after MI. In vivo, BM c-kit+ cells reduced infarct size, fibrosis and improved cardiac function. In conclusion, BM c-kit+ mERа+ exerted significantly cardiac protection after MI. A potential important implication of this study is that the manipulation of BM c-kit+ stem cells with ERа-dependent fashion may be helpful in recovering functional performance after cardiac tissue injury.
Collapse
Affiliation(s)
- Feng Su
- Department of Cardiology, Yangpu Hospital, Tongji University School of MedicineShanghai 200065, China
| | - Wentian Zhang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200127, China
| | - Jianfang Liu
- Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200127, China
| |
Collapse
|
21
|
Chou SH, Lin SZ, Kuo WW, Pai P, Lin JY, Lai CH, Kuo CH, Lin KH, Tsai FJ, Huang CY. Mesenchymal stem cell insights: prospects in cardiovascular therapy. Cell Transplant 2015; 23:513-29. [PMID: 24816448 DOI: 10.3727/096368914x678436] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ischemic heart damage usually triggers cardiomyopathological remodeling and fibrosis, thus promoting the development of heart functional failure. Mesenchymal stem cells (MSCs) are a heterogeneous group of cells in culture, with multipotent and hypoimmunogenic characters to aid tissue repair and avoid immune responses, respectively. Numerous experimental findings have proven the feasibility, safety, and efficiency of MSC therapy for cardiac regeneration. Despite that the exact mechanism remains unclear, the therapeutic ability of MSCs to treat ischemia heart diseases has been tested in phase I/II clinical trials. Based on encouraging preliminary findings, MSCs might become a potentially efficacious tool in the therapeutic options available to treat ischemic and nonischemic cardiovascular disorders. The molecular mechanism behind the efficacy of MSCs on promoting engraftment and accelerating the speed of heart functional recovery is still waiting for clarification. It is hypothesized that cardiomyocyte regeneration, paracrine mechanisms for cardiac repair, optimization of the niche for cell survival, and cardiac remodeling by inflammatory control are involved in the interaction between MSCs and the damaged myocardial environment. This review focuses on recent experimental and clinical findings related to cellular cardiomyoplasticity. We focus on MSCs, highlighting their roles in cardiac tissue repair, transdifferentiation, the MSC niche in myocardial tissues, discuss their therapeutic efficacy that has been tested for cardiac therapy, and the current bottleneck of MSC-based cardiac therapies.
Collapse
Affiliation(s)
- Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang District, New Taipei City, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT. Subcutaneous Adipose Tissue-Derived Stem Cell Utility Is Independent of Anatomical Harvest Site. Biores Open Access 2015; 4:131-45. [PMID: 26309790 PMCID: PMC4497709 DOI: 10.1089/biores.2014.0059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One of the challenges for tissue engineering and regenerative medicine is to obtain suitably large cell numbers for therapy. Mesenchymal stem cells (MSCs) can easily be expanded in vitro to obtain large numbers of cells, but this approach may induce cellular senescence. The characteristics of cells are dependent on variables like age, body mass index (BMI), and disease conditions, however, and in the case of adipose tissue-derived stem cells (ASCs), anatomical harvest site is also an important variable that can affect the regenerative potential of isolated cells. We therefore had kept the parameters (age, BMI, disease conditions) constant in this study to specifically assess influence of anatomical sites of individual donors on utility of ASCs. Adipose tissue was obtained from multiple anatomical sites in individual donors, and viability and nucleated cell yield were determined. MSC frequency was enumerated using colony forming unit assay and cells were characterized by flow cytometry. Growth characteristics were determined by long-term population doubling analysis of each sample. Finally, MSCs were induced to undergo adipogenic, osteogenic, and chondrogenic differentiation. To validate the findings, these results were compared with similar single harvest sites from multiple individual patients. The results of the current study indicated that MSCs obtained from multiple harvest sites in a single donor have similar morphology and phenotype. All adipose depots in a single donor exhibited similar MSC yield, viability, frequency, and growth characteristics. Equivalent differentiation capacity into osteocytes, adipocytes, and chondrocytes was also observed. On the basis of results, we conclude that it is acceptable to combine MSCs obtained from various anatomical locations in a single donor to obtain suitably large cell numbers required for therapy, avoiding in vitro senescence and lengthy and expensive in vitro culturing and expansion steps.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Tissue Engineering and Regenerative Medicine Laboratory, Advance Research Center of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Michael Badowski
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Angela Muise
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - John Pierce
- Aesthetic Surgery of Tucson, Tucson, Arizona
| | - David T. Harris
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona
- Address correspondence to: David T. Harris, PhD, Department of Immunobiology, University of Arizona, PO Box 245221, Tucson, AZ 85724, E-mail:
| |
Collapse
|
23
|
Verdanova M, Pytlik R, Kalbacova MH. Evaluation of sericin as a fetal bovine serum-replacing cryoprotectant during freezing of human mesenchymal stromal cells and human osteoblast-like cells. Biopreserv Biobank 2014; 12:99-105. [PMID: 24749876 DOI: 10.1089/bio.2013.0078] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A reliable, cryoprotective, xeno-free medium suitable for different cell types is highly desirable in regenerative medicine. There is danger of infection or allergic reaction with the use of fetal bovine serum (FBS), making it problematic for medical applications. The aim of the present study was to develop an FBS-free cryoprotective medium for human mesenchymal stromal cells (hMSCs; primary cells) and immortalized human osteoblasts (SAOS-2 cell line). Furthermore, we endeavored to eliminate or reduce the presence of dimethyl sulfoxide (DMSO) in the medium. Sericin, a sticky protein derived from the silkworm cocoon, was investigated as a substitute for FBS and DMSO in the freezing medium. Cell viability (24 hours after thawing, both hMSC and SAOS-2) and colony-forming ability (2 weeks after thawing, only for hMSCs) were both determined. The FBS-free medium with 1% sericin in 10% DMSO was found to be a suitable freezing medium for primary hMSCs, in contrast to immortalized human osteoblasts. Surprisingly, the storage of hMSCs in a cultivation medium with only 10% DMSO also provided satisfactory results. Any drop in DMSO concentration led to significantly worse survival of cells, with little improvement in hMSC survival in the presence of sericin. Thus, sericin may substitute for FBS in the freezing medium for primary hMSCs, but cannot substitute for DMSO.
Collapse
Affiliation(s)
- Martina Verdanova
- 1 Institute of Inherited Metabolic Disorders, Faculty of Science, Charles University in Prague , Prague, Czech Republic
| | | | | |
Collapse
|
24
|
Li B, Qiu T, Zhang P, Wang X, Yin Y, Li S. IKVAV regulates ERK1/2 and Akt signalling pathways in BMMSC population growth and proliferation. Cell Prolif 2014; 47:133-45. [PMID: 24617901 PMCID: PMC4232901 DOI: 10.1111/cpr.12094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/08/2013] [Indexed: 12/26/2022] Open
Abstract
Objectives The molecular mechanism of bone marrow mesenchymal stem cell (BMMSC) population growth and proliferation, induced by Isoleucyl‐lysyl‐valyl‐alanyl‐valine (IKVAV), was explored in this study. Materials and methods IKVAV peptides were synthesized by the solid‐phase method. Influence of IKVAV on BMMSC population growth and proliferation were investigated by assays of CCK‐8, flow cytometry, real‐time PCR and western blotting. Results IKVAV peptide was found to induce proliferation and proliferating cell nuclear antigen (PCNA) synthesis of BMMSC in a dose‐ and time‐dependent manner. Cell cycle analysis showed that the proportion of IKVAV‐treated BMMSC in S phase in was higher than controls. Western blot results suggested that mitogen‐activated protein kinase/extracellular signal‐regulated kinase (MAPK/ERK) and phosphatidylinositol 3‐kinase/protein kinase B (PI3K/Akt) signalling pathways were activated by IKVAV by enhancing phosphorylation levels of ERK1/2 and Akt in the BMMSCs. Meanwhile, phosphorylation levels of ERK1/2 and Akt were partially blocked by ERK1/2 inhibitor (PD98059) and Akt inhibitor (wortmannin), respectively. Conclusions Our results demonstrated that IKVAV stimulated BMMSC population growth and proliferation by activating MAPK/ERK1/2 and PI3K/Akt signalling pathways. This study is the first to reveal an enhancement effect of IKVAV peptide on BMMSC at the signal transduction level, and the outcome could provide experimental evidence for application of IKVAV‐grafted scaffolds in the field of BMMSC‐based tissue engineering.
Collapse
Affiliation(s)
- B Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Biomaterials Science and Engineering Research Center, Wuhan University of Technology, Wuhan, 430070, China
| | | | | | | | | | | |
Collapse
|
25
|
Toonkel RL, Hare JM, Matthay MA, Glassberg MK. Mesenchymal Stem Cells and Idiopathic Pulmonary Fibrosis. Potential for Clinical Testing. Am J Respir Crit Care Med 2013; 188:133-40. [DOI: 10.1164/rccm.201207-1204pp] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
26
|
Szepes M, Benkő Z, Cselenyák A, Kompisch KM, Schumacher U, Lacza Z, Kiss L. Comparison of the direct effects of human adipose- and bone-marrow-derived stem cells on postischemic cardiomyoblasts in an in vitro simulated ischemia-reperfusion model. Stem Cells Int 2013; 2013:178346. [PMID: 23853609 PMCID: PMC3703900 DOI: 10.1155/2013/178346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/31/2013] [Indexed: 12/31/2022] Open
Abstract
Regenerative therapies hold a promising and exciting future for the cure of yet untreatable diseases, and mesenchymal stem cells are in the forefront of this approach. However, the relative efficacy and the mechanism of action of different types of mesenchymal stem cells are still incompletely understood. We aimed to evaluate the effects of human adipose- (hASC) and bone-marrow-derived stem cells (hBMSCs) and adipose-derived stem cell conditioned media (ACM) on the viability of cardiomyoblasts in an in vitro ischemia-reperfusion (I-R) model. Flow cytometric viability analysis revealed that both cell treatments led to similarly increased percentages of living cells, while treatment with ACM did not (I-R model: 12.13 ± 0.75%; hASC: 24.66 ± 2.49%; hBMSC: 25.41 ± 1.99%; ACM: 13.94 ± 1.44%). Metabolic activity measurement (I-R model: 0.065 ± 0.033; hASC: 0.652 ± 0.089; hBMSC: 0.607 ± 0.059; ACM: 0.225 ± 0.013; arbitrary units) and lactate dehydrogenase assay (I-R model: 0.225 ± 0.006; hASC: 0.148 ± 0.005; hBMSC: 0.146 ± 0.004; ACM: 0.208 ± 0.009; arbitrary units) confirmed the flow cytometric results while also indicated a slight beneficial effect of ACM. Our results highlight that mesenchymal stem cells have the same efficacy when used directly on postischemic cells, and differences found between them in preclinical and clinical investigations are rather related to other possible causes such as their immunomodulatory or angiogenic properties.
Collapse
Affiliation(s)
- Mónika Szepes
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| | - Zsolt Benkő
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| | - Attila Cselenyák
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| | - Kai Michael Kompisch
- Department of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Zsombor Lacza
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| | - Levente Kiss
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| |
Collapse
|
27
|
Jackson CS, Pepper MS. Opportunities and barriers to establishing a cell therapy programme in South Africa. Stem Cell Res Ther 2013; 4:54. [PMID: 23719318 PMCID: PMC3707026 DOI: 10.1186/scrt204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The establishment of a cell therapy programme in South Africa has the potential to contribute to the alleviation of the country’s high disease burden and also to contribute to economic growth. South Africa has various positive attributes that favour the establishment of such a high-profile venture; however, there are also significant obstacles which need to be overcome. We discuss the positive and negative features of the current health biotechnology sector. The positive factors include a strong market pull and a highly innovative scientific and medical community, while the most problematic features include the lack of human resources and education and limited funding. The South African Government has undertaken to strengthen the biotechnology sector in general, but a focus on cell therapy is lacking. The next important step would be to provide financial, legal/ethical and other support for groups that are active and productive in this field through the development of a local cell therapy programme.
Collapse
|
28
|
Raynaud CM, Halabi N, Elliott DA, Pasquier J, Elefanty AG, Stanley EG, Rafii A. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes. PLoS One 2013; 8:e54524. [PMID: 23342164 PMCID: PMC3546995 DOI: 10.1371/journal.pone.0054524] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 12/12/2012] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs) derived in vitro from human embryonic stem cells (hESCs). Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs) efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.
Collapse
Affiliation(s)
- Christophe M. Raynaud
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar Education City, Qatar Foundation, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Najeeb Halabi
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar Education City, Qatar Foundation, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - David A. Elliott
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar Education City, Qatar Foundation, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Andrew G. Elefanty
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Edouard G. Stanley
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar Education City, Qatar Foundation, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Mathieu E, Lamirault G, Toquet C, Lhommet P, Rederstorff E, Sourice S, Biteau K, Hulin P, Forest V, Weiss P, Guicheux J, Lemarchand P. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS One 2012; 7:e51991. [PMID: 23284842 PMCID: PMC3527411 DOI: 10.1371/journal.pone.0051991] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 11/09/2012] [Indexed: 12/18/2022] Open
Abstract
Background To improve the efficacy of bone marrow-derived mesenchymal stem cell (MSC) therapy targeted to infarcted myocardium, we investigated whether a self-setting silanized hydroxypropyl methylcellulose (Si-HPMC) hydrogel seeded with MSC (MSC+hydrogel) could preserve cardiac function and attenuate left ventricular (LV) remodeling during an 8-week follow-up study in a rat model of myocardial infarction (MI). Methodology/Principal Finding Si-HPMC hydrogel alone, MSC alone or MSC+hydrogel were injected into the myocardium immediately after coronary artery ligation in female Lewis rats. Animals in the MSC+hydrogel group showed an increase in cardiac function up to 28 days after MI and a mid-term prevention of cardiac function alteration at day 56. Histological analyses indicated that the injection of MSC+hydrogel induced a decrease in MI size and an increase in scar thickness and ultimately limited the transmural extent of MI. These findings show that intramyocardial injection of MSC+hydrogel induced short-term recovery of ventricular function and mid-term attenuation of remodeling after MI. Conclusion/Significance These beneficial effects may be related to the specific scaffolding properties of the Si-HPMC hydrogel that may provide the ability to support MSC injection and engraftment within myocardium.
Collapse
Affiliation(s)
- Eva Mathieu
- INSERM UMR1087, CNRS UMR6291, l’institut du thorax, Nantes, France
- Université de Nantes, Structure Fédérative de Recherche Santé F. Bonamy, Nantes, France
| | - Guillaume Lamirault
- INSERM UMR1087, CNRS UMR6291, l’institut du thorax, Nantes, France
- Université de Nantes, Structure Fédérative de Recherche Santé F. Bonamy, Nantes, France
- CHU de Nantes, Nantes, France
| | - Claire Toquet
- CHU de Nantes, Nantes, France
- Service d’Anatomie Pathologique, E.A. Biometadys, CHU de Nantes, Nantes, France
| | - Pierre Lhommet
- INSERM UMR1087, CNRS UMR6291, l’institut du thorax, Nantes, France
- Université de Nantes, Structure Fédérative de Recherche Santé F. Bonamy, Nantes, France
| | - Emilie Rederstorff
- Université de Nantes, Structure Fédérative de Recherche Santé F. Bonamy, Nantes, France
- INSERM, U791, Laboratory of Osteo-Articular and Dental Tissue Engineering, Group STEP “Skeletal tissue Engineering and Physiopathology”, Nantes, France
| | - Sophie Sourice
- Université de Nantes, Structure Fédérative de Recherche Santé F. Bonamy, Nantes, France
- INSERM, U791, Laboratory of Osteo-Articular and Dental Tissue Engineering, Group STEP “Skeletal tissue Engineering and Physiopathology”, Nantes, France
| | - Kevin Biteau
- INSERM UMR1087, CNRS UMR6291, l’institut du thorax, Nantes, France
- Université de Nantes, Structure Fédérative de Recherche Santé F. Bonamy, Nantes, France
| | - Philippe Hulin
- Université de Nantes, Structure Fédérative de Recherche Santé F. Bonamy, Nantes, France
- Cellular and Tissular Imaging Core Facility of Nantes University (MicroPICell), Nantes, France
| | - Virginie Forest
- INSERM UMR1087, CNRS UMR6291, l’institut du thorax, Nantes, France
- Université de Nantes, Structure Fédérative de Recherche Santé F. Bonamy, Nantes, France
| | - Pierre Weiss
- Université de Nantes, Structure Fédérative de Recherche Santé F. Bonamy, Nantes, France
- CHU de Nantes, Nantes, France
- INSERM, U791, Laboratory of Osteo-Articular and Dental Tissue Engineering, Group STEP “Skeletal tissue Engineering and Physiopathology”, Nantes, France
| | - Jérôme Guicheux
- Université de Nantes, Structure Fédérative de Recherche Santé F. Bonamy, Nantes, France
- INSERM, U791, Laboratory of Osteo-Articular and Dental Tissue Engineering, Group STEP “Skeletal tissue Engineering and Physiopathology”, Nantes, France
| | - Patricia Lemarchand
- INSERM UMR1087, CNRS UMR6291, l’institut du thorax, Nantes, France
- Université de Nantes, Structure Fédérative de Recherche Santé F. Bonamy, Nantes, France
- CHU de Nantes, Nantes, France
- * E-mail:
| |
Collapse
|
30
|
The role of slingshot-1L (SSH1L) in the differentiation of human bone marrow mesenchymal stem cells into cardiomyocyte-like cells. Molecules 2012; 17:14975-94. [PMID: 23247370 PMCID: PMC6268239 DOI: 10.3390/molecules171214975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 01/15/2023] Open
Abstract
Adult cardiomyocytes (CMs) have very limited capacity to regenerate. Therefore, there is a great interest in developing strategies to treat infarcted CMs that are able to regenerate cardiac tissue and promote revascularization of infarcted zones in the heart. Recently, stem cell transplantation has been proposed to replace infarcted CMs and to restore the function of the affected tissue. This area of research has become very active in recent years due to the huge clinical need to improve the efficacy of currently available therapies. Slingshot (SSH) is a family of protein phosphatases, which can specifically dephosphorylate and reactivate cofilin and inhibit the polymerization of actin filaments and actively involved in cytoskeleton rearrangement. In this study, we found that SSH1L promoted morphology changes of microfilaments during differentiation but was inhibited by the inhibitors of actin polymerization such as cytochalasin D. Overexpression of SSH1L could promote cardiac-specific protein and genes expression. 5-Aza can induce the differentiation of hMSCs into cardiomyocyte-like cells in vitro. We also observed that SSH1L efficiently promotes hMSCs differentiation into cardiomyocyte-like cells through regulation and rearrangement of cytoskeleton. Our work provides evidence that supports the positive role of SSH1L in the mechanism of stem cell differentiation into cardiomyocyte-like cells.
Collapse
|
31
|
Elnakish MT, Kuppusamy P, Khan M. Stem cell transplantation as a therapy for cardiac fibrosis. J Pathol 2012; 229:347-54. [PMID: 23011894 DOI: 10.1002/path.4111] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 08/26/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis is a fundamental constituent of most cardiac pathologies and represents the upshot of nearly all types of cardiac injury. Generally, fibrosis is a scarring process, characterized by accumulation of fibroblasts and deposition of increasing amounts of extracellular matrix (ECM) proteins in the myocardium. Therapeutic approaches that control fibroblast activity and evade maladaptive processes could represent a potential strategy to attenuate progression towards heart failure. Currently, cell therapy is actively perceived as an alternative to traditional pharmacological management of myocardial infarction (MI). The majority of the studies applying stem cell therapy following MI have demonstrated a decline in fibrosis. However, it was not clearly recognized whether the decline in cardiac fibrosis was due to replacement of dead cardiomyocytes or because of the direct effects of paracrine factors released from the transplanted stem cells on the ECM. Therefore, the main focus of this review is to discuss the impact of different types of stem cells on cardiac fibrosis and associated cardiac remodelling in a variety of experimental models of heart failure, particularly MI.
Collapse
Affiliation(s)
- Mohammad T Elnakish
- Dorothy M Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|