1
|
Akki R, Siracusa R, Cordaro M, Remigante A, Morabito R, Errami M, Marino A. Adaptation to oxidative stress at cellular and tissue level. Arch Physiol Biochem 2022; 128:521-531. [PMID: 31835914 DOI: 10.1080/13813455.2019.1702059] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several in vitro and in vivo investigations have already proved that cells and tissues, when pre-exposed to low oxidative stress by different stimuli such as chemical, physical agents and environmental factors, display more resistance against subsequent stronger ischaemic injuries, resulting in an adaptive response known as ischaemic preconditioning (IPC). The aim of this review is to report the most recent knowledge about the complex adaptive mechanisms, including signalling transduction pathways, antioxidant systems, apoptotic and inflammation pathways, underlying cell protection against oxidative damage. In addition, an update about in vivo adaptation strategies in response to ischaemic/reperfusion episodes and brain trauma is also given.
Collapse
Affiliation(s)
- Rachid Akki
- Department of Biology, Faculty of Science, University of Abdelmalek Essaadi, Tetouan, Morocco
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mohammed Errami
- Department of Biology, Faculty of Science, University of Abdelmalek Essaadi, Tetouan, Morocco
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Chao TY, Hsieh CC, Hsu SM, Wan CH, Lian GT, Tseng YH, Kuo YH, Hsieh SC. Ergostatrien-3β-ol (EK100) from Antrodia camphorata Attenuates Oxidative Stress, Inflammation, and Liver Injury In Vitro and In Vivo. Prev Nutr Food Sci 2021; 26:58-66. [PMID: 33859960 PMCID: PMC8027041 DOI: 10.3746/pnf.2021.26.1.58] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatic ischemia/reperfusion (IR) injury is a complication that occurs during liver surgery, whereby hepatic tissue is injured by oxygen deficiency during ischemia, then further damaged by a cascade of inflammatory and oxidative insults when blood is resupplied during reperfusion. Antrodia camphorata is an indigenous fungus in Taiwan and an esteemed Chinese herbal medicine with various bioactivities. This study examined the effect of ergostatrien-3β-ol (EK100), an active compound found in both the fruiting body and mycelia of A. camphorata, on IR injury pathologies in rats and cell models of oxidative and inflammatory stress. Male Sprague-Dawley rats were randomly assigned to receive a vehicle or 5 mg/kg EK100 prior to hepatic IR injury induced by 1 h ischemia followed by 24 h reperfusion, or a sham operation. RAW 264.7 murine macrophages and HepG2 hepatocytes were pretreated with EK100, then inflammation was induced with lipopolysaccharides in the former and oxidative stress was induced with hydrogen peroxide in the latter. EK100 decreased IR-induced elevation in serum levels of alanine aminotransferase and aspartate aminotransferase and lowered levels of the inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-1β. In addition, EK100 significantly reduced hepatic mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2, as well as nitrite production and iNOS gene expression in both hepatocyte and macrophage cell lines. We demonstrated that EK100 exhibits potent protec-tion against hepatic IR injury, which may be used to design strategies to ameliorate liver damage during liver surgery.
Collapse
Affiliation(s)
- Ting-Yu Chao
- Institute of Food Science and Technology, Taipei 106, Taiwan
| | - Cheng-Chu Hsieh
- Biologics Division, Animal Health Research Institute, Council of Agriculture, Executive Yuan, New Taipei 251, Taiwan
| | - Shih-Min Hsu
- Institute of Food Science and Technology, Taipei 106, Taiwan.,Metal Industries Research and Development Centre, Kaohsiung 811, Taiwan
| | - Cho-Hua Wan
- Department and Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Guan-Ting Lian
- Institute of Food Science and Technology, Taipei 106, Taiwan
| | - Yi-Han Tseng
- Institute of Food Science and Technology, Taipei 106, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
3
|
Wang PP, Huang X, Yang MW, Fang SY, Hong FF, Yang SL. Effects of non-drug treatment on liver cells apoptosis during hepatic ischemia-reperfusion injury. Life Sci 2021; 275:119321. [PMID: 33711387 DOI: 10.1016/j.lfs.2021.119321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/20/2023]
Abstract
Hepatic ischemia reperfusion injury (HIRI) is an important cause of liver dysfunction after liver transplantation for the patients suffered from fatty liver, non-alcoholic cirrhosis, or liver cancer. It is closely related to liver cells apoptosis. Therefore, how to maintain the stable state of cell apoptosis is important to protect the liver from HIRI. Drug treatment basically applies some active substances directly or indirectly, reducing HIRI. But their toxic side effects limit the clinical applications. Differently, non-drug treatment means making use of other kinds of measures to reduce the damage, such as non-pharmaceutical preparations, surgical methods, inhalation or perfusion gas, and so on. Non-drug treatments have been shown to balance cell apoptosis and reduce liver damage during HIRI. This review summarized the progresses in the roles of non-drug treatments on liver cells apoptosis during HIRI in recent years, focusing on apoptosis inducing factors, its signal transduction pathway, and downstream molecules, etc., expecting to elucidate non-drug treatments of anti-HIRI more systematically.
Collapse
Affiliation(s)
- Pei-Pei Wang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China; Department of Stomatology, Affiliated Third Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, China
| | - Xia Huang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi Province, China
| | - Shi-Yao Fang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang 330031, China.
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
4
|
Kyriakopoulos G, Valsami G, Tsalikidis C, Pitiakoudis M, Tsaroucha AK. Use of natural anti-oxidants in experimental animal models of hepatic ischemia-reperfusion injury. Ann Med Surg (Lond) 2020; 60:592-599. [PMID: 33304570 PMCID: PMC7708685 DOI: 10.1016/j.amsu.2020.11.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022] Open
Abstract
Background Ischemia-reperfusion injury (IRI) remains a clinical challenge in liver surgery, trauma and transplantation, contributing to morbidity and mortality worldwide. Thus, its impact, not only on the liver itself but also on remote tissues, has been studied during the last years. Different natural anti-oxidant substances have been researched in animal models, implementing different times of ischemia, aiming to test new therapeutic interventions. Objective A literature review has been conducted with two goals: (1) to identify different natural anti-oxidants studied in experimental models; and (2) to summarize the various times of ischemia employed. Methods Scientific papers published in PubMed for the period 2000–2020 were searched and reviewed. Results More than 30 natural anti-oxidants have been tested. The time of ischemia ranged from 15 to 90 min with 60 min used most frequently, followed by 45 min. No studies were found with time exceeding 90 min. Conclusions A significant number of research has been conducted on the use and protective effect of natural anti-oxidants in experimental animal models. Based on the published papers, 45–60 min seems to be the optimal duration of ischemia. Liver IRI is a multifactorial and complex process, involving many mechanisms, cells and mediators. Even though, most of these mechanisms have not been completely understood, several substances have been tested in experimental models in order to determine their protective or destructive role. Antioxidant therapy is a promising therapeutic pathway that can ameliorate the impact of liver ischemia-reperfusion injury. Non-pharmaceutical, natural extracts are increasingly gaining their place into the therapeutic options of physicians, in an attempt to avoid various adverse effects that the chemical drugs can cause. New unexplored research areas may include different strains of rats, more studies in larger mammals of comparable anatomy to humans, experiments on different liver diseases, publishing negative results regarding toxic doses of natural antioxidants, and testing different ischemia times.
Collapse
Affiliation(s)
- Georgios Kyriakopoulos
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgia Valsami
- School of Health Sciences, Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Christos Tsalikidis
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,2Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michail Pitiakoudis
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,2Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandra K Tsaroucha
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
5
|
Abbasi Dezfouli S, Nikdad M, Ghamarnejad O, Khajeh E, Arefidoust A, Mohammadi S, Majlesara A, Sabagh M, Gharabaghi N, Kentar M, Younsi A, Eckert C, Poth T, Golriz M, Mehrabi A, Nickkholgh A. Oral Preconditioning of Donors After Brain Death With Calcineurin Inhibitors vs. Inhibitors of Mammalian Target for Rapamycin in Pig Kidney Transplantation. Front Immunol 2020; 11:1222. [PMID: 32625210 PMCID: PMC7316124 DOI: 10.3389/fimmu.2020.01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/15/2020] [Indexed: 12/01/2022] Open
Abstract
Background: The systemic inflammatory cascade triggered in donors after brain death enhances the ischemia-reperfusion injury after organ transplantation. Intravenous steroids are routinely used in the intensive care units for the donor preconditioning. Immunosuppressive medications could be potentially used for this purpose as well. Data regarding donor preconditioning with calcineurin inhibitors or inhibitors of mammalian target for Rapamycin is limited. The aim of this project is to investigate the effects of (oral) donor preconditioning with a calcineurin inhibitor (Cyclosporine) vs. an inhibitor of mammalian target for Rapamycin (Everolimus) compared to the conventional administration of steroid in the setting of donation after brain death in porcine renal transplantation. Methods: Six hours after the induction of brain death, German landrace donor pigs (33.2 ± 3.9 kg) were randomly preconditioned with either Cyclosporine (n = 9) or Everolimus (n = 9) administered via nasogastric tube with a repeated dose just before organ procurement. Control donors received intravenous Methylprednisolone (n = 8). Kidneys were procured, cold-stored in Histidine-Tryptophane-Ketoglutarate solution at 4°C and transplanted in nephrectomized recipients after a mean cold ischemia time of 18 h. No post-transplant immunosuppression was given to avoid confounding bias. Blood samples were obtained at 4 h post reperfusion and daily until postoperative day 5 for complete blood count, blood urea nitrogen, creatinine, and electrolytes. Graft protocol biopsies were performed 4 h after reperfusion to assess early histological and immunohistochemical changes. Results: There was no difference in the hemodynamic parameters, hemoglobin/hematocrit and electrolytes between the groups. Serum blood urea nitrogen and creatinine peaked on postoperative day 1 in all groups and went back to the preoperative levels at the conclusion of the study on postoperative day 5. Histological assessment of the kidney grafts revealed no significant differences between the groups. TNF-α expression was significantly lower in the study groups compared with Methylprednisolone group (p = 0.01) Immunohistochemistry staining for cytochrome c showed no difference between the groups. Conclusion: Oral preconditioning with Cyclosporine or Everolimus is feasible in donation after brain death pig kidney transplantation and reduces the expression of TNF-α. Future studies are needed to further delineate the role of oral donor preconditioning against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Sepehr Abbasi Dezfouli
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Mohammadsadegh Nikdad
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Elias Khajeh
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Alireza Arefidoust
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Sara Mohammadi
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Ali Majlesara
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Mohammadsadegh Sabagh
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Negin Gharabaghi
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Modar Kentar
- Department of Neurosurgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Christoph Eckert
- Institute of Pathology, Ruprecht-Karls University, Heidelberg, Germany
| | - Tanja Poth
- Institute of Pathology, Ruprecht-Karls University, Heidelberg, Germany
| | - Mohammad Golriz
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Arash Nickkholgh
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| |
Collapse
|
6
|
Zhang ZB, Gao W, Liu L, Shi Y, Ma N, Huai MS, Shen ZY. Normothermic Machine Perfusion Protects Against Liver Ischemia-Reperfusion Injury During Reduced-Size Liver Transplantation in Pigs. Ann Transplant 2019; 24:9-17. [PMID: 30607000 PMCID: PMC6338011 DOI: 10.12659/aot.910774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Normothermic machine perfusion (NMP) preservation is superior to cold preservation during reduced-size liver transplantation (RSLT) in pigs. However, the mechanism of this protective effect has not been explained. We aimed to compare the effects of NMP preservation with that of cold preservation (CS) in protecting against ischemia-reperfusion injury (IRI) during RSLT in pigs. Material/Methods Twenty-four healthy Bama miniature pigs were randomized into 2 groups: 1) the NMP group in which donor livers harvested without warm ischemia time and cardiac activity were connected to the NMP system to reduce liver size under normothermic conditions, and 2) the CS group in which donor livers harvested without warm ischemia time and cardiac activity were perfused using the University of Wisconsin (UW) solution and then preserved in the 0–4°C UW solution to reduce liver size under cold conditions. Livers were then transplanted without veno-venous bypass. Amounts of bile secretion for the NMP groups were recorded hourly. The serological indices were measured. Expressions of cytochrome C, caspase 3, and NF-κB p65 in liver tissue were observed. Results The levels of bile secretions were gradually diminished from 16.50±2.66 mL/h before splitting to 6.35±1.24 mL/h after splitting. With the exception of TNF-α on postoperative day 2, overall, levels of TNF-α, IL-1, IL-6, and MDA were significantly lower in the NMP group versus CS group for all 5 days postoperatively. Finally, cytochrome C, caspase 3, and NF-κB p65 expressions were all significantly suppressed in the NMP group as compared with the CS group. Conclusions MP preservation is superior to cold preservation in protecting against liver IRI during RSLT in pigs.
Collapse
Affiliation(s)
- Zhi-Bin Zhang
- Department of General Surgery, Tianjin First Central Hospital, Tianjin, China (mainland)
| | - Wei Gao
- Department of Transplantation Surgery, Tianjin First Central Hospital, Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China (mainland)
| | - Lei Liu
- Department of Transplantation Surgery, Tianjin First Central Hospital, Key Laboratory of Organ Transplant of Tianjin, Tianjin, China (mainland)
| | - Yuan Shi
- Department of Transplantation Surgery, Tianjin First Central Hospital, Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China (mainland)
| | - Ning Ma
- Department of Transplantation Surgery, Tianjin First Central Hospital, Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China (mainland)
| | - Ming-Sheng Huai
- Department of Transplantation Surgery, Tianjin First Central Hospital, Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China (mainland)
| | - Zhong-Yang Shen
- Department of Transplantation Surgery, Tianjin First Central Hospital, Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China (mainland)
| |
Collapse
|
7
|
Izamis ML, Efstathiades A, Keravnou C, Leen EL, Averkiou MA. Dynamic contrast-enhanced ultrasound of slaughterhouse porcine livers in machine perfusion. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2217-2230. [PMID: 25023101 DOI: 10.1016/j.ultrasmedbio.2014.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to enable investigations into novel imaging and surgical techniques by developing a readily accessible, versatile liver machine perfusion system. Slaughterhouse pig livers were used, and dynamic contrast-enhanced ultrasound was introduced to optimize the procurement process and provide real-time perfusion monitoring. The system comprised a single pump, oxygenator, bubble trap and two flowmeters for pressure-controlled perfusion of the vessels using an off-the-shelf perfusate at room temperature. Successful livers exhibited homogeneous perfusion in both the portal vein and hepatic artery with dynamic contrast-enhanced ultrasound, which correlated with stable oxygen uptake, bile production and hepatic resistance and normal histology at the end of 3 h of perfusion. Dynamic contrast-enhanced ultrasound revealed perfusion abnormalities invisible to the naked eye, thereby providing context to the otherwise systemic biochemical/hemodynamic measurements and focal biopsy findings. The model developed here is a simple, cost-effective approach for stable ex vivo whole-organ machine perfusion.
Collapse
Affiliation(s)
- Maria-Louisa Izamis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | | - Christina Keravnou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Edward L Leen
- Department of Medicine, Imperial College, London, United Kingdom
| | - Michalakis A Averkiou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|