1
|
Ren W, Qian C, Ren D, Cai Y, Deng Z, Zhang N, Wang C, Wang Y, Zhu P, Xu L. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Botrytis cinerea. mBio 2024; 15:e0013324. [PMID: 38814088 PMCID: PMC11253612 DOI: 10.1128/mbio.00133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Botrytis cinerea is a typical necrotrophic plant pathogenic fungus which can deliberately acidify host tissues and trigger oxidative bursts therein to facilitate its virulence. The white collar complex (WCC), consisting of BcWCL1 and BcWCL2, is recognized as the primary light receptor in B. cinerea. Nevertheless, the specific mechanisms through which the WCC components, particularly BcWCL2 as a GATA transcription factor, control virulence are not yet fully understood. This study demonstrates that deletion of BcWCL2 results in the loss of light-sensitive phenotypic characteristics. Additionally, the Δbcwcl2 strain exhibits reduced secretion of citrate, delayed infection cushion development, weaker hyphal penetration, and decreased virulence. The application of exogenous citric acid was found to restore infection cushion formation, hyphal penetration, and virulence of the Δbcwcl2 strain. Transcriptome analysis at 48 h post-inoculation revealed that two citrate synthases, putative citrate transporters, hydrolytic enzymes, and reactive oxygen species scavenging-related genes were down-regulated in Δbcwcl2, whereas exogenous citric acid application restored the expression of the above genes involved in the early infection process of Δbcwcl2. Moreover, the expression of Bcvel1, a known regulator of citrate secretion, tissue acidification, and secondary metabolism, was down-regulated in Δbcwcl2 but not in Δbcwcl1. ChIP-qPCR and electrophoretic mobility shift assays revealed that BcWCL2 can bind to the promoter sequences of Bcvel1. Overexpressing Bcvel1 in Δbcwcl2 was found to rescue the mutant defects. Collectively, our findings indicate that BcWCL2 regulates the expression of the global regulator Bcvel1 to influence citrate secretion, tissue acidification, redox homeostasis, and virulence of B. cinerea.IMPORTANCEThis study illustrated the significance of the fungal blue light receptor component BcWCL2 protein in regulating citrate secretion in Botrytis cinerea. Unlike BcWCL1, BcWCL2 may contribute to redox homeostasis maintenance during infection cushion formation, ultimately proving to be essential for full virulence. It is also demonstrated that BcWCL2 can regulate the expression of Bcvel1 to influence host tissue acidification, citrate secretion, infection cushion development, and virulence. While the role of organic acids secreted by plant pathogenic fungi in fungus-host interactions has been recognized, this paper revealed the importance, regulatory mechanisms, and key transcription factors that control organic acid secretion. These understanding of the pathogenetic mechanism of plant pathogens can provide valuable insights for developing effective prevention and treatment strategies against fungal diseases.
Collapse
Affiliation(s)
- Weiheng Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chen Qian
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yunfei Cai
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhaohui Deng
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ning Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Congcong Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
2
|
Liu D, Piao J, Li Y, Guan H, Hao J, Zhou R. Transcriptome Analysis Reveals Candidate Genes for Light Regulation of Elsinochrome Biosynthesis in Elsinoë arachidis. Microorganisms 2024; 12:1027. [PMID: 38792856 PMCID: PMC11124282 DOI: 10.3390/microorganisms12051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Light regulation is critical in fungal growth, development, morphogenesis, secondary metabolism, and the biological clock. The fungus Elsinoë arachidis is known to produce the mycotoxin Elsinochrome (ESC), a key factor contributing to its pathogenicity, under light conditions. Although previous studies have predominantly focused on the light-induced production of ESC and its biosynthetic pathways, the detailed mechanisms underlying this process remain largely unexplored. This study explores the influence of light on ESC production and gene expression in E. arachidis. Under white light exposure for 28 days, the ESC yield was observed to reach 33.22 nmol/plug. Through transcriptome analysis, 5925 genes were identified as differentially expressed between dark and white light conditions, highlighting the significant impact of light on gene expression. Bioinformatics identified specific light-regulated genes, including eight photoreceptor genes, five global regulatory factors, and a cluster of 12 genes directly involved in the ESC biosynthesis, with expression trends confirmed by RT-qPCR. In conclusion, the study reveals the substantial alteration in gene expression associated with ESC biosynthesis under white light and identifies potential candidates for in-depth functional analysis. These findings advance understanding of ESC biosynthesis regulation and suggest new strategies for fungal pathogenicity control.
Collapse
Affiliation(s)
| | | | | | | | | | - Rujun Zhou
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (D.L.); (J.P.); (Y.L.); (H.G.); (J.H.)
| |
Collapse
|
3
|
Liang M, Dong L, Deng YZ. Circadian Redox Rhythm in Plant-Fungal Pathogen Interactions. Antioxid Redox Signal 2022; 37:726-738. [PMID: 35044223 DOI: 10.1089/ars.2021.0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Significance: Circadian-controlled cellular growth, differentiation, and metabolism are mainly achieved by a classical transcriptional-translational feedback loop (TTFL), as revealed by investigations in animals, plants, and fungi. Recent Advances: Recently, reactive oxygen species (ROS) have been reported as part of a cellular network synchronizing nontranscriptional oscillators with established TTFL components, adding complexity to regulatory mechanisms of circadian rhythm. Both circadian rhythm and ROS homeostasis have a great impact on plant immunity as well as fungal pathogenicity, therefore interconnections of these two factors are implicit in plant-fungus interactions. Critical Issues: In this review, we aim to summarize the recent advances in circadian-controlled ROS homeostasis, or ROS-modulated circadian clock, in plant-fungus pathosystems, particularly using the rice (Oryza sativa) blast fungus (Magnaporthe oryzae) pathosystem as an example. Understanding of such bidirectional interaction between the circadian timekeeping machinery and ROS homeostasis/signaling would provide a theoretical basis for developing disease control strategies for important plants/crops. Future Directions: Questions remain unanswered about the detailed mechanisms underlying circadian regulation of redox homeostasis in M. oryzae, and the consequent fungal differentiation and death in a time-of-day manner. We believe that the rice-M. oryzae pathobiosystem would provide an excellent platform for investigating such issues in circadian-ROS interconnections in a plant-fungus interaction context. Antioxid. Redox Signal. 37, 726-738.
Collapse
Affiliation(s)
- Meiling Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lihong Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Li XP, Ji HY, Wang WJ, Shen WH, Wang JW. Effects of Blue Light on Hypocrellin A Production in Shiraia Mycelium Cultures. Photochem Photobiol 2022; 98:1343-1354. [PMID: 35506756 DOI: 10.1111/php.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022]
Abstract
Blue light is a crucial environmental cue for fungi. Hypocrellin A (HA) is a photoactive perylenequinone from Shiraia with strong antimicrobial and anticancer properties. In this study, effects of the illumination of blue light-emitting diode (LED) at 470 nm on Shiraia sp. S8 was investigated. Blue light at 50-200 lx and 4-6 h/day could enhance HA content in the mycelia, but suppress it at 300-400 lx or with longer exposure (8-24 h/day). The intermittent blue light (6 h/day) at 200 lx not only enhanced the fungal conidiation, but stimulated HA production without any growth retardation. The generation of fungal reactive oxygen species (ROS) was induced to up-regulate HA biosynthetic gene expressions. When the culture was maintained under the intermittent blue light for 8 days, HA production reached 242.76 mg/L, 2.27-fold of the dark control. On the other hand, both the degradation of HA and down-regulation of HA biosynthetic genes occurred under long exposure time (8-24 h/day), leading to the suppression of HA production. These results provide a basis for understanding the regulation of blue light on the biosynthesis of fungal photoactivated perylenequinones, and the application of a novel light elicitation to Shiraia mycelium cultures for enhanced HA production.
Collapse
Affiliation(s)
- Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hong Yao Ji
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Juan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Tang L, Chu T, Shang J, Yang R, Song C, Bao D, Tan Q, Jian H. Oxidative Stress and Autophagy Are Important Processes in Post Ripeness and Brown Film Formation in Mycelium of Lentinula edodes. Front Microbiol 2022; 13:811673. [PMID: 35283832 PMCID: PMC8908433 DOI: 10.3389/fmicb.2022.811673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Lentinula edodes (Berk.) Pegler, the shiitake mushroom, is one of the most important mushrooms in the global mushroom industry. Although mycelium post ripeness and brown film (BF) formation are crucial for fruiting body initiation, the underlying molecular mechanisms of BF formation are largely unknown. In this study, proteomic quantification (relative and absolute) and metabolomic profiling of L. edodes were performed using isobaric tags and gas chromatography-mass spectroscopy, respectively. A total of 2,474 proteins were identified, which included 239 differentially expressed proteins. Notably, several proteins associated with autophagy were upregulated, including RPD3, TOR1, VAC8, VPS1, and VPS27. Transmission electron microscopy also indicated that autophagy occurred in post ripeness and BF formation. In time-dependent analysis of the metabolome, metabolites associated with oxidative stress and autophagy changed significantly, including mannitol, trehalose, myo-inositol, glucose, leucine, valine, glutamine, and 4-aminobutyric acid. Thus, oxidative stress and autophagy were important processes in post ripeness and BF formation in L. edodes, and new insights were gained into molecular mechanisms at proteome and metabolome levels.
Collapse
Affiliation(s)
- Lihua Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Ting Chu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China.,School of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Junjun Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Ruiheng Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Chunyan Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
High Throughput Identification of the Potential Antioxidant Peptides in Ophiocordyceps sinensis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020438. [PMID: 35056752 PMCID: PMC8780859 DOI: 10.3390/molecules27020438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
Ophiocordyceps sinensis, an ascomycete caterpillar fungus, has been used as a Traditional Chinese Medicine owing to its bioactive properties. However, until now the bio-active peptides have not been identified in this fungus. Here, the raw RNA sequences of three crucial growth stages of the artificially cultivated O. sinensis and the wild-grown mature fruit-body were aligned to the genome of O. sinensis. Both homology-based prediction and de novo-based prediction methods were used to identify 8541 putative antioxidant peptides (pAOPs). The expression profiles of the cultivated mature fruiting body were similar to those found in the wild specimens. The differential expression of 1008 pAOPs matched genes had the highest difference between ST and MF, suggesting that the pAOPs were primarily induced and play important roles in the process of the fruit-body maturation. Gene ontology analysis showed that most of pAOPs matched genes were enriched in terms of ‘cell redox homeostasis’, ‘response to oxidative stresses’, ‘catalase activity’, and ‘ integral component of cell membrane’. A total of 1655 pAOPs was identified in our protein-seqs, and some crucial pAOPs were selected, including catalase, peroxiredoxin, and SOD [Cu–Zn]. Our findings offer the first identification of the active peptide ingredients in O. sinensis, facilitating the discovery of anti-infectious bio-activity and the understanding of the roles of AOPs in fungal pathogenicity and the high-altitude adaptation in this medicinal fungus.
Collapse
|
7
|
Luo W, Wang Y, Yang P, Qu Y, Yu X. Multilevel Regulation of Carotenoid Synthesis by Light and Active Oxygen in Blakeslea trispora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10974-10988. [PMID: 34510898 DOI: 10.1021/acs.jafc.1c03389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although Blakeslea trispora has been used for industrial production of β-carotene, the effects of light and oxidative stress on its synthesis have not been fully clarified. The present study focuses on the effects of light and reactive oxygen species (ROS) on carotenoid synthesis and their multilevel regulation in B. trispora. Blue light significantly influenced the intracellular ROS levels, carotenoid contents, and transcription of carotenoid structural genes, while ROS levels were positively correlated with intracellular carotenoid contents and transcriptional levels of carotenoid structural genes. Blue light and ROS were both significant factors affecting carotenoid synthesis with a significant interaction between them. Irradiation by pulsed blue light and (or) addition of generating agents for active oxygen could partially compensate for the inhibition derived from the transcription inhibitor (dactinomycin) and translation inhibitor (cycloheximide) on the multilevel phenotype. Therefore, blue light and ROS act on the transcription and translation of carotenoid structural genes to promote the accumulation of carotenoid in B. trispora.
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Ying Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
8
|
Pham KD, Hakozaki Y, Takamizawa T, Yamazaki A, Yamazaki H, Mori K, Aburatani S, Tashiro K, Kuhara S, Takaku H, Shida Y, Ogasawara W. Analysis of the light regulatory mechanism in carotenoid production in Rhodosporidium toruloides NBRC 10032. Biosci Biotechnol Biochem 2021; 85:1899-1909. [PMID: 34124766 DOI: 10.1093/bbb/zbab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/06/2021] [Indexed: 11/14/2022]
Abstract
Light stimulates carotenoid production in an oleaginous yeast Rhodosporidium toruloides NBRC 10032 by promoting carotenoid biosynthesis genes. These genes undergo two-step transcriptional activation. The potential light regulator, Cryptochrome DASH (CRY1), has been suggested to contribute to this mechanism. In this study, based on KU70 (a component of nonhomologous end joining (NHEJ)) disrupting background, CRY1 disruptant was constructed to clarify CRY1 function. From analysis of CRY1 disruptant, it was suggested that CRY1 has the activation role of the carotenogenic gene expression. To obtain further insights into the light response, mutants varying carotenoid production were generated. Through analysis of mutants, the existence of the control two-step gene activation was proposed. In addition, our data analysis showed the strong possibility that R. toruloides NBRC 10032 is a homo-diploid strain.
Collapse
Affiliation(s)
- Khanh Dung Pham
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | - Yuuki Hakozaki
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | - Takeru Takamizawa
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | - Atsushi Yamazaki
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Chiba, Japan
| | - Harutake Yamazaki
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | | | - Sachiyo Aburatani
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kosuke Tashiro
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Satoru Kuhara
- Graduate School of Genetic Resource Technology, Kyushu University, Fukuoka, Japan
| | - Hiroaki Takaku
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| |
Collapse
|
9
|
Abstract
Colorants find social and commercial applications in cosmetics, food, pharmaceuticals, textiles, and other industrial sectors. Among the available options, chemically synthesized colorants are popular due to their low-cost and flexible production modes, but health and environmental concerns have encouraged the valorization of biopigments that are natural and ecofriendly. Among natural biopigment producers, microorganisms are noteworthy for their all-seasonal production of stable and low-cost pigments with high-yield titers. Fungi are paramount sources of natural pigments. They occupy diverse ecological niches with adaptive metabolisms and biocatalytic pathways, making them entities with an industrial interest. Industrially important biopigments like carotenoids, melanins, riboflavins, azaphilones, and quinones produced by filamentous fungi are described within the context of this review. Most recent information about fungal pigment characteristics, biochemical production routes and pathways, potential applications, limitations, and future research perspectives are described.
Collapse
Affiliation(s)
- Haritha Meruvu
- Department of Chemical Engineering, Andhra University College of Engineering - AU North Campus, Andhra University, Visakhapatnam, India.,Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.,Department of Bioengineering, Faculty of Engineering and Natural Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Estrada Municipal do Campinho, Lorena/SP, Brazil
| |
Collapse
|
10
|
Tong X, Wang F, Zhang H, Bai J, Dong Q, Yue P, Jiang X, Li X, Wang L, Guo J. iTRAQ-based comparative proteome analyses of different growth stages revealing the regulatory role of reactive oxygen species in the fruiting body development of Ophiocordyceps sinensis. PeerJ 2021; 9:e10940. [PMID: 33717691 PMCID: PMC7936569 DOI: 10.7717/peerj.10940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, using an isobaric tags for relative and absolute quantitation (iTRAQ ) approach coupled with LC-MS / MS and bioinformatics, the proteomes were analyzed for the crucial three stages covering the fruiting body development of Ophiocordyceps sinensis, including sclerotium (ST), primordium (PR) and mature fruiting body (MF), with a focus on fruiting body development-related proteins and the potential mechanisms of the development. A total of 1,875 proteins were identified. Principal Component Analysis (PCA) demonstrated that the protein patterns between PR and MF were more similar than ST. Differentially accumulated proteins (DAPs) analysis showed that there were 510, 173 and 514 DAPs in the comparisons of ST vs. PR, PR vs. MF and ST vs. MF, respectively. A total of 62 shared DAPs were identified and primarily enriched in proteins related to ‘carbon transport and mechanism’, ‘the response to oxidative stress’, ‘antioxidative activity’ and ‘translation’. KEGG and GO databases showed that the DAPs were enriched in terms of ‘primary metabolisms (amino acid/fatty acid/energy metabolism)’, ‘the response to oxidative stress’ and ‘peroxidase’. Furthermore, 34 DAPs involved in reactive oxygen species (ROS) metabolism were identified and clustered across the three stages using hierarchical clustering implemented in hCluster R package . It was suggested that their roles and the underlying mechanisms may be stage-specific. ROS may play a role in fungal pathogenicity in ST, the fruit-body initiation in PR, sexual reproduction and highland adaptation in MF. Crucial ROS-related proteins were identified, such as superoxide dismutase (SOD, T5A6F1), Nor-1 (T5AFX3), electron transport protein (T5AHD1), histidine phosphotransferase (HPt, T5A9Z5) and Glutathione peroxidase (T5A9V1). Besides, the accumulation of ROS at the three stages were assayed using 2,7-dichlorofuorescin diacetate (DCFH-DA) stanning. A much stronger ROS accumulation was detected at the stage MF, compared to the stages of PR and ST. Sections of ST and fruit-body part of MF were stained by DCFH-DA and observed under the fluorescencemicroscope, showing ROS was distributed within the conidiospore and ascus. Besides, SOD activity increased across the three stages, while CAT activity has a strong increasement in MF compared to the stages of ST and PR. It was suggested that ROS may act in gradient-dependent manner to regulate the fruiting body development. The coding region sequences of six DAPs were analyzed at mRNA level by quantitative real-time PCR (qRT-PCR). The results support the result of DAPs analysis and the proteome sequencing data. Our findings offer the perspective of proteome to understand the biology of fruiting body development and highland adaptation in O. sinensis, which would inform the big industry of this valuable fungus.
Collapse
Affiliation(s)
- Xinxin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Bai
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiang Dong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Pan Yue
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Jiang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinrui Li
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Pham KD, Shida Y, Miyata A, Takamizawa T, Suzuki Y, Ara S, Yamazaki H, Masaki K, Mori K, Aburatani S, Hirakawa H, Tashiro K, Kuhara S, Takaku H, Ogasawara W. Effect of light on carotenoid and lipid production in the oleaginous yeast Rhodosporidium toruloides. Biosci Biotechnol Biochem 2020; 84:1501-1512. [PMID: 32189572 DOI: 10.1080/09168451.2020.1740581] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The oleaginous yeast Rhodosporodium toruloides is receiving widespread attention as an alternative energy source for biofuels due to its unicellular nature, high growth rate and because it can be fermented on a large-scale. In this study, R. toruloides was cultured under both light and dark conditions in order to understand the light response involved in lipid and carotenoid biosynthesis. Our results from phenotype and gene expression analysis showed that R. toruloides responded to light by producing darker pigmentation with an associated increase in carotenoid production. Whilst there was no observable difference in lipid production, slight changes in the fatty acid composition were recorded. Furthermore, a two-step response was found in three genes (GGPSI, CAR1, and CAR2) under light conditions and the expression of the gene encoding the photoreceptor CRY1 was similarly affected.
Collapse
Affiliation(s)
- Khanh Dung Pham
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| | - Atsushi Miyata
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| | - Takeru Takamizawa
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| | - Yoshiyuki Suzuki
- Advanced Course, National Institute of Technology, Nagaoka College , Niigata, Japan
| | - Satoshi Ara
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences , Niigata, Japan
| | - Harutake Yamazaki
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences , Niigata, Japan
| | - Kazuo Masaki
- Brewing Technology Division, National Research Institute of Brewing (NRIB) , Hiroshima, Japan
| | - Kazuki Mori
- Advance Course, National Institute of Technology, Kagoshima College , Kagoshima, Japan
| | - Sachiyo Aburatani
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST) , Tokyo, Japan
| | - Hideki Hirakawa
- Facility for Genome Informatics, Kazusa DNA Research Institute , Ibaraki, Japan
| | - Kosuke Tashiro
- Faculty of Agriculture, Kyushu University , Fukuoka, Japan
| | - Satoru Kuhara
- Graduate School of Genetic Resource Technology, Kyushu University , Fukuoka, Japan
| | - Hiroaki Takaku
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences , Niigata, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| |
Collapse
|
12
|
Comparative Analysis of β-Carotene Production by Mucor circinelloides Strains CBS 277.49 and WJ11 under Light and Dark Conditions. Metabolites 2020; 10:metabo10010038. [PMID: 31963282 PMCID: PMC7022308 DOI: 10.3390/metabo10010038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/05/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Carotenoids are natural potent antioxidants and free radical scavengers which are able to modulate the pathogenesis of some cancers and heart diseases in human, indicating their importance in being provided through the diet. Mucor circinelloides accumulates β-carotene as the main carotenoid compound and has been used as a model organism in carotenogenic studies. In the present study, the potential of two M. circinelloides strains to accumulate β-carotene was investigated under light and dark conditions. The results, which were quantitated by HPLC, showed that CBS 277.49 accumulated higher pigment in comparison to WJ11 under both conditions. Continuous illumination triggered the pigment accumulation up to 2.7-fold in strain CBS 277.49 and 2.2-fold in strain WJ11 in comparison to dark. The mRNA analysis of the four key genes involved in isoprenoid pathway by RT-qPCR showed higher transcriptional levels in CBS 277.49 as compared to WJ11, indicating that the pigment production metabolic machinery is more active in CBS 277.49 strain. A new scope for further research was established by this work for improved β-carotene production in the high producing strain CBS 277.49.
Collapse
|
13
|
Li QT, Feng YM, Ke ZH, Qiu MJ, He XX, Wang MM, Li YN, Xu J, Shi LL, Xiong ZF. KCNN4 promotes invasion and metastasis through the MAPK/ERK pathway in hepatocellular carcinoma. J Investig Med 2019; 68:68-74. [PMID: 31431469 DOI: 10.1136/jim-2019-001073] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2019] [Indexed: 01/15/2023]
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common malignancies in the world, and is well-known for its bad prognosis. Potassium calcium-activated channel subfamily N member 4 (KCNN4) is a type of intermediate conductance calcium-activated potassium channel, and increasing evidence suggests that KCNN4 contributes to the regulation of invasion and metastasis in a number of cancers. However, its clinical significance and biological function remain unclear in the HCC disease process. In this study, the expression levels of KCNN4 in 86 HCC samples were compared with corresponding paracancerous tissues. sh-RNA was used to reduce the expression of KCNN4 in Hep3B HCC cells in vitro; this was confirmed by Real time-PCR and western blotting. Wound healing, transwell assays and high content analysis were performed to investigate the tumor-promoting characteristics of KCNN4 in Hep3B HCC cells. As results, KCNN4 expression was significantly associated with preoperative serum alpha-fetoprotein level (p=0.038) and TNM stage (p=0.039). Additionally, patients with high KCNN4 amplification in HCC tissue exhibited shorter disease-free survival, whereas there was no statistical significance between KCNN4 amplification and overall survival. Wound healing and transwell assays showed that knockdown of KCNN4 expression could reduce migration and invasion abilities of HCC cells. High content analysis result showed that down-regulated KCNN4 could inhibit the ability of HCC cell proliferation. The mitogen-activated protein kinase (MAPK) pathway is active in cell proliferation, differentiation, migration, senescence, and apoptosis. Matrix metallopeptidase 9 and extracellular signal regulated kinase 1/2 (ERK1/2) were important biomarkers of MAPK/ERK pathway, knockdown of KCNN4 reduced the expression of MMP9 and ERK1/2. These findings showed that KCNN4 promotes HCC invasion and metastasis through the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Qiu-Ting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Ming Feng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zun-Hui Ke
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Meng-Jun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Xiao He
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Meng Wang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Liang-Liang Shi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Fan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
The Ustilago maydis null mutant strains of the RNA-binding protein UmRrm75 accumulate hydrogen peroxide and melanin. Sci Rep 2019; 9:10813. [PMID: 31346214 PMCID: PMC6658566 DOI: 10.1038/s41598-019-47133-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 05/09/2019] [Indexed: 01/24/2023] Open
Abstract
Ustilago maydis is a dimorphic fungus that has emerged as a model organism for the study of fungal phytopathogenicity and RNA biology. In a previous study, we isolated the U. maydis UmRrm75 gene. The deletion of the UmRrm75 gene affected morphogenesis and pathogenicity. UmRrm75 gene encodes a protein containing three RNA recognition motifs. Here we determined that UmRrm75 has chaperone activity in Escherichia coli using the transcription anti-termination assay. Subsequently, we analyzed the growth of ΔUmRrm75 mutants at 15 °C and 37 °C, observing that mutant strains had reduced growth in comparison to parental strains. UmRrm75 gene expression was induced under these non-optimal temperatures. ΔUmRrm75 mutant colonies displayed a dark-brown color at 28 °C, which was confirmed to be melanin based on spectroscopic analysis and spectrometric data. Furthermore, ΔUmRrm75 mutant strains showed the presence of peroxisomes, and increased H2O2 levels, even at 28 °C. The ΔUmRrm75 mutant strains displayed a higher expression of redox-sensor UmYap1 gene and increased catalase activity than the parental strains. Our data show that deletion of the UmRrm75 gene results in higher levels of H2O2, increased melanin content, and abiotic stress sensitivity.
Collapse
|
15
|
Krobanan K, Liang SW, Chiu HC, Shen WC. The Blue-Light Photoreceptor Sfwc-1 Gene Regulates the Phototropic Response and Fruiting-Body Development in the Homothallic Ascomycete Sordaria fimicola. Appl Environ Microbiol 2019; 85:e02206-18. [PMID: 30979837 PMCID: PMC6544823 DOI: 10.1128/aem.02206-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/06/2019] [Indexed: 11/20/2022] Open
Abstract
Sordaria fimicola, a coprophilous ascomycete, is a homothallic fungus that can undergo sexual differentiation with cellular and morphological changes followed by multicellular tissue development to complete its sexual cycle. In this study, we identified and characterized the blue-light photoreceptor gene in S. fimicola The S. fimicola white collar-1 photoreceptor (SfWC-1) contains light-oxygen-voltage-sensing (LOV), Per-Arnt-Sim (PAS), and other conserved domains and is homologous to the WC-1 blue-light photoreceptor of Neurospora crassa The LOV domain of Sfwc-1 was deleted by homologous recombination using Agrobacterium-mediated protoplast transformation. The Sfwc-1(Δlov) mutant showed normal vegetative growth but produced less carotenoid pigment under illumination. The mutant showed delayed and less-pronounced fruiting-body formation, was defective in phototropism of the perithecial beaks, and lacked the fruiting-body zonation pattern compared with the wild type under the illumination condition. Gene expression analyses supported the light-induced functions of the Sfwc-1 gene in the physiology and developmental process of perithecial formation in S. fimicola Moreover, green fluorescent protein (GFP)-tagged SfWC-1 fluorescence signals were transiently strong upon light induction and prominently located inside the nuclei of living hyphae. Our studies focused on the putative blue-light photoreceptor in a model ascomycete and contribute to a better understanding of the photoregulatory functions and networks mediated by the evolutionarily conserved blue-light photoreceptors across diverse fungal phyla.IMPORTANCESordaria sp. has been a model for study of fruiting-body differentiation in fungi. Several environmental factors, including light, affect cellular and morphological changes during multicellular tissue development. Here, we created a light-oxygen-voltage-sensing (LOV) domain-deleted Sfwc-1 mutant to study blue-light photoresponses in Sordaria fimicola Phototropism and rhythmic zonation of perithecia were defective in the Sfwc-1(Δlov) mutant. Moreover, fruiting-body development in the mutant was reduced and also significantly delayed. Gene expression analysis and subcellular localization study further revealed the light-induced differential gene expression and cellular responses upon light stimulation in S. fimicola.
Collapse
Affiliation(s)
- Kulsumpun Krobanan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Syun-Wun Liang
- Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ho-Chen Chiu
- Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Red- and Blue-Light Sensing in the Plant Pathogen Alternaria alternata Depends on Phytochrome and the White-Collar Protein LreA. mBio 2019; 10:mBio.00371-19. [PMID: 30967462 PMCID: PMC6456751 DOI: 10.1128/mbio.00371-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Light controls many processes in filamentous fungi. The study of light regulation in a number of model organisms revealed an unexpected complexity. Although the molecular components for light sensing appear to be widely conserved in fungal genomes, the regulatory circuits and the sensitivity of certain species toward specific wavelengths seem different. In N. crassa, most light responses are triggered by blue light, whereas in A. nidulans, red light plays a dominant role. In Alternaria alternata, both blue and red light appear to be important. In A. alternata, photoreceptors control morphogenetic pathways, the homeostasis of reactive oxygen species, and the production of secondary metabolites. On the other hand, high-osmolarity sensing required FphA and LreA, indicating a sophisticated cross talk between light and stress signaling. The filamentous fungus Alternaria alternata is a common postharvest contaminant of food and feed, and some strains are plant pathogens. Many processes in A. alternata are triggered by light. Interestingly, blue light inhibits sporulation, and red light reverses the effect, suggesting interactions between light-sensing systems. The genome encodes a phytochrome (FphA), a white collar 1 (WC-1) orthologue (LreA), an opsin (NopA), and a cryptochrome (CryA) as putative photoreceptors. Here, we investigated the role of FphA and LreA and the interplay with the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway. We created loss-of function mutations for fphA, lreA, and hogA using CRISPR-Cas9 technology. Sporulation was reduced in all three mutant strains already in the dark, suggesting functions of the photoreceptors FphA and LreA independent of light perception. Germination of conidia was delayed in red, blue, green, and far-red light. We found that light induction of ccgA (clock-controlled gene in Neurospora crassa and light-induced gene in Aspergillus nidulans) and the catalase gene catA depended on FphA, LreA, and HogA. Light induction of ferA (a putative ferrochelatase gene) and bliC (bli-3, light regulated, unknown function) required LreA and HogA but not FphA. Blue- and green-light stimulation of alternariol formation depended on LreA. A lack of FphA or LreA led to enhanced resistance toward oxidative stress due to the upregulation of catalases and superoxide dismutases. Light activation of FphA resulted in increased phosphorylation and nuclear accumulation of HogA. Our results show that germination, sporulation, and secondary metabolism are light regulated in A. alternata with distinct and overlapping roles of blue- and red-light photosensors.
Collapse
|
17
|
Wang Z, Wang J, Li N, Li J, Trail F, Dunlap JC, Townsend JP. Light sensing by opsins and fungal ecology: NOP-1 modulates entry into sexual reproduction in response to environmental cues. Mol Ecol 2017; 27:216-232. [PMID: 29134709 DOI: 10.1111/mec.14425] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/30/2017] [Accepted: 10/16/2017] [Indexed: 01/25/2023]
Abstract
Understanding the genetic basis of the switch from asexual to sexual lifestyles in response to sometimes rapid environmental changes is one of the major challenges in fungal ecology. Light appears to play a critical role in the asexual-sexual switch-but fungal genomes harbour diverse light sensors. Fungal opsins are homologous to bacterial green-light-sensory rhodopsins, and their organismal functions in fungi have not been well understood. Three of these opsin-like proteins were widely distributed across fungal genomes, but homologs of the Fusarium opsin-like protein CarO were present only in plant-associated fungi. Key amino acids, including potential retinal binding sites, functionally diverged on the phylogeny of opsins. This diversification of opsin-like proteins could be correlated with life history-associated differences among fungi in their expression and function during morphological development. In Neurospora crassa and related species, knockout of the opsin NOP-1 led to a phenotype in the regulation of the asexual-sexual switch, modulating response to both light and oxygen conditions. Sexual development commenced early in ∆nop-1 strains cultured in unsealed plates under constant blue and white light. Furthermore, comparative transcriptomics showed that the expression of nop-1 is light-dependent and that the ∆nop-1 strain abundantly expresses genes involved in oxidative stress response, genes enriched in NAD/NADP binding sites, genes with functions in proton transmembrane movement and catalase activity, and genes involved in the homeostasis of protons. Based on these observations, we contend that light and oxidative stress regulate the switch via light-responsive and ROS pathways in model fungus N. crassa and other fungi.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Junrui Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.,Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Department of Plant Pathology, Michigan State University, East Lansing, MI, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.,Program in Microbiology, Yale University, New Haven, CT, USA
| |
Collapse
|
18
|
Sephton-Clark PCS, Voelz K. Spore Germination of Pathogenic Filamentous Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:117-157. [PMID: 29680124 DOI: 10.1016/bs.aambs.2017.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fungi, algae, plants, protozoa, and bacteria are all known to form spores, especially hardy and ubiquitous propagation structures that are also often the infectious agents of diseases. Spores can survive for thousands of years, frozen in the permafrost (Kochkina et al., 2012), with the oldest viable spores extracted after 250 million years from salt crystals (Vreeland, Rosenzweig, & Powers, 2000). Their resistance to high levels of UV, desiccation, pressure, heat, and cold enables the survival of spores in the harshest conditions (Setlow, 2016). For example, Bacillus subtilis spores can survive and remain viable after experiencing conditions similar to those on Mars (Horneck et al., 2012). Spores are disseminated through environmental factors. Wind, water, or animal carriage allow spores to be spread ubiquitously throughout the environment. Spores will break dormancy and begin to germinate once exposed to favorable conditions. Germination is the mechanism that converts the spore from a dormant biological organism to one that grows vegetatively and is capable of either sexual or asexual reproduction. The process of germination has been well studied in plants, moss, bacteria, and many fungi (Hohe & Reski, 2005; Huang & Hull, 2017; Vesty et al., 2016). Unfortunately, information on the complex signaling involved in the regulation of germination, particularly in fungi remains lacking. This chapter will discuss germination of fungal spores covering our current understanding of the regulation, signaling, outcomes, and implications of germination of pathogenic fungal spores. Owing to the morphological similarities between the spore-hyphal and yeast-hyphal transition and their relevance for disease progression, relevant aspects of fungal dimorphism will be discussed alongside spore germination in this chapter.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Kerstin Voelz
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
19
|
Kim J, Yoon DH, Oh J, Hyun MW, Han JG, Sung GH. Calmodulin-mediated suppression of 2-ketoisovalerate reductase in Beauveria bassiana beauvericin biosynthetic pathway. Environ Microbiol 2016; 18:4136-4143. [PMID: 27449895 DOI: 10.1111/1462-2920.13461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/10/2016] [Accepted: 07/15/2016] [Indexed: 11/29/2022]
Abstract
Ketoisovalerate reductase (KIVR, E.C. 1.2.7.7) mediates the specific reduction of 2-ketoisovalerate (2-Kiv) to d-hydroxyisovalerate (d-Hiv), a precursor for beauvericin biosynthesis. Beauvericin, a famous mycotoxin produced by many fungi, is a cyclooligomer depsipeptide, which has insecticidal, antimicrobial, antiviral, and cytotoxic activities. In this report, we demonstrated that Beauveria bassiana 2-ketoisovalerate reductase (BbKIVR) acts as a typical KIVR enzyme in the entomopathogenic fungus B. bassiana. In addition, we found that BbKIVR interacts with calmodulin (CaM) in vitro and in vivo. The functional role of CaM-binding to BbKIVR was to negatively regulate the BbKIVR activity in B. bassiana. Environmental stimuli such as light and salt stress suppressed BbKIVR activity in B. bassiana. Interestingly, this negative effect of BbKIVR activity by light and salt stress was recovered by CaM inhibitors, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbKIVR plays an important role in the beauvericin biosynthetic pathway mediated by environmental stimuli such as light and salt stress via the CaM signaling pathway.
Collapse
Affiliation(s)
- Jiyoung Kim
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, Korea.,Institute of Life Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Deok-Hyo Yoon
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, Korea
| | - Junsang Oh
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Min-Woo Hyun
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Korea
| | - Jae-Gu Han
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, Korea
| |
Collapse
|
20
|
Cetz-Chel JE, Balcázar-López E, Esquivel-Naranjo EU, Herrera-Estrella A. The Trichoderma atroviride putative transcription factor Blu7 controls light responsiveness and tolerance. BMC Genomics 2016; 17:327. [PMID: 27142227 PMCID: PMC4855978 DOI: 10.1186/s12864-016-2639-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/22/2016] [Indexed: 11/23/2022] Open
Abstract
Background Most living organisms use sunlight as a source of energy and/or information about their environment. Consequently, they have developed mechanisms to sense light quality and quantity. In the fungus Trichoderma atroviride blue-light is perceived through the Blue Light Regulator Complex, which in turn up-regulates a set of genes (blu) and down-regulates another set (bld), triggering asexual reproduction. To gain insight into this process, we characterized the blu7 gene, which encodes a protein containing a C2H2 zinc finger domain. Results Δblu7 mutants show reduced conidiation at low light fluences, which is still clear even when exposed to saturating light. For the first time we show a genome wide survey of light regulated gene expression in T. atroviride, including RNA-seq analyses of the wild type and the Δblu7 strains after brief exposure to blue-light. Our data show a reduction in the number of induced genes and an increase in down-regulated genes in the mutant. Light activates stress responses and several metabolic processes in the wild type strain that are no longer activated in the mutant. In agreement with the misregulation of metabolic processes, continuous exposure to white light strongly inhibited growth of the ∆blu7 mutant, in a carbon source dependent fashion. RNA-seq analyses under constant white light using glucose as sole carbon source revealed that localization and transport process present the opposite regulation pattern in the ∆blu7 and wild type strains. Genes related to amino acid, sugar and general transporters were enriched in the induced genes in the mutant and the repressed genes of the wild type. Peptone supplemented in the media restored growth of the ∆blu7 mutant in constant light, suggesting a role of Blu7 in the regulation of nitrogen metabolism in the presence of light. Conclusions Blu7 appears to regulate light sensitivity in terms of induction of conidiation, and to play a major role in supporting growth under continuous exposure to light. The diminished conidiation observed in ∆blu7 mutants is likely due to misregulation of the cAMP signaling pathway and ROS production, whereas their low tolerance to continuous exposure to light indicates that Blu7 is required for adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2639-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José E Cetz-Chel
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Edgar Balcázar-López
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Edgardo U Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico.,Present Address: Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, 76230, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
21
|
The Fast-Evolving phy-2 Gene Modulates Sexual Development in Response to Light in the Model Fungus Neurospora crassa. mBio 2016; 7:e02148. [PMID: 26956589 PMCID: PMC4810495 DOI: 10.1128/mbio.02148-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rapid responses to changes in incident light are critical to the guidance of behavior and development in most species. Phytochrome light receptors in particular play key roles in bacterial physiology and plant development, but their functions and regulation are less well understood in fungi. Nevertheless, genome-wide expression measurements provide key information that can guide experiments that reveal how genes respond to environmental signals and clarify their role in development. We performed functional genomic and phenotypic analyses of the two phytochromes in Neurospora crassa, a fungal model adapted to a postfire environment that experiences dramatically variable light conditions. Expression of phy-1 and phy-2 was low in early sexual development and in the case of phy-2 increased in late sexual development. Under light stimulation, strains with the phytochromes deleted exhibited increased expression of sexual development-related genes. Moreover, under red light, the phy-2 knockout strain commenced sexual development early. In the evolution of phytochromes within ascomycetes, at least two duplications have occurred, and the faster-evolving phy-2 gene has frequently been lost. Additionally, the three key cysteine sites that are critical for bacterial and plant phytochrome function are not conserved within fungal phy-2 homologs. Through the action of phytochromes, transitions between asexual and sexual reproduction are modulated by light level and light quality, presumably as an adaptation for fast asexual growth and initiation of sexual reproduction of N. crassa in exposed postfire ecosystems. Environmental signals, including light, play critical roles in regulating fungal growth and pathogenicity, and balance of asexual and sexual reproduction is critical in fungal pathogens’ incidence, virulence, and distribution. Red light sensing by phytochromes is well known to play critical roles in bacterial physiology and plant development. Homologs of phytochromes were first discovered in the fungal model Neurospora crassa and then subsequently in diverse other fungi, including many plant pathogens. Our study investigated the evolution of red light sensors in ascomycetes and confirmed—using the model fungus Neurospora crassa—their roles in modulating the asexual-sexual reproduction balance in fungi. Our findings also provide a key insight into one of the most poorly understood aspects of fungal biology, suggesting that further study of the function of phytochromes in fungi is critical to reveal the genetic basis of the asexual-sexual switch responsible for fungal growth and distribution, including diverse and destructive plant pathogens.
Collapse
|
22
|
Yang T, Guo M, Yang H, Guo S, Dong C. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Appl Microbiol Biotechnol 2015; 100:743-55. [PMID: 26476643 DOI: 10.1007/s00253-015-7047-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022]
Abstract
Light is an essential factor for pigment formation and fruit body development in Cordyceps militaris, a well-known edible and medicinal fungus. Cmwc-1, a homolog of the blue-light receptor gene white collar-1 (wc-1) in Neurospora crassa, was cloned from the C. militaris genome in our previous study. Here, Cmwc-1 gene inactivation results in thicker aerial hyphae, disordered fruit body development, a significant reduction in conidial formation, and carotenoid and cordycepin production. These characteristics were restored when the ΔCmwc-1 strains were hybridized with wild-type strains of the opposite mating type. A genome-wide expression analysis revealed that there were 1042 light-responsive genes in the wild-type strain and only 458 in the ΔCmwc-1 strain. Among five putative photoreceptors identified, Vivid, cryptochrome-1, and cyclobutane pyrimidine dimer photolyase are strongly induced by light in a Cmwc-1-dependent manner, while phytochrome and cryptochrome-2 were not induced. The transcription factors involved in the fungal light reaction were mainly of the Zn2Cys6 type. CmWC-1 regulates adenylosuccinate synthase, an important enzyme for adenosine de novo synthesis, which could explain the reduction in cordycepin production. Some G protein-coupled receptors that control fungal fruit body formation and the sexual cycle were regulated by CmWC-1, and the cAMP pathway involved in light signal transduction in N. crassa was not critical for the photoreaction in the fungus here. A transcriptional analysis indicated that steroid biosynthesis was more active in the ΔCmwc-1 strain, suggesting that CmWC-1 might switch the vegetative growth state to primordia differentiation by suppressing the expression of related genes.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Mingmin Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101, China.,College of Chemistry and Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Huaijun Yang
- Shanxi Research Institute for Medicine and Life Science, Taiyuan, 030006, China
| | - Suping Guo
- Shanxi Research Institute for Medicine and Life Science, Taiyuan, 030006, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
23
|
Kim J, Park H, Han JG, Oh J, Choi HK, Kim SH, Sung GH. Regulation of a phenylalanine ammonia lyase (BbPAL) by calmodulin in response to environmental changes in the entomopathogenic fungus Beauveria bassiana. Environ Microbiol 2015; 17:4484-94. [PMID: 25970691 DOI: 10.1111/1462-2920.12898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 11/30/2022]
Abstract
Phenylalanine ammonia lyase (PAL, E.C. 4.3.1.5) catalyses the deamination of L -phenylalanine to trans-cinnamic acid and ammonia, facilitating a critical step in the phenylpropanoid pathway that produces a variety of secondary metabolites. In this study, we isolated BbPAL gene in the entomopathogenic fungus Beauveria bassiana. According to multiple sequence alignment, homology modelling and in vitro PAL activity, we demonstrated that BbPAL acts as a typical PAL enzyme in B. bassiana. BbPAL interacted with calmodulin (CaM) in vitro and in vivo, indicating that BbPAL is a novel CaM-binding protein. The functional role of CaM in BbPAL action was to negatively regulate the BbPAL activity in B. bassiana. High-performance liquid chromatography analysis revealed that L -phenylalanine was reduced and trans-cinnamic acid was increased in response to the CaM inhibitor W-7. Dark conditions suppressed BbPAL activity in B. bassiana, compared with light. In addition, heat and cold stresses inhibited BbPAL activity in B. bassiana. Interestingly, these negative effects of BbPAL activity by dark, heat and cold conditions were recovered by W-7 treatment, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbPAL plays a role in the phenylpropanoid pathway mediated by environmental stimuli via the CaM signalling pathway.
Collapse
Affiliation(s)
- Jiyoung Kim
- Institute of Life Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Korea
| | - Hyesung Park
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Korea
| | - Jae-Gu Han
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Korea
| | - Junsang Oh
- College of Pharmacy, Chung-Ang University, Seoul, 156-756, Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 156-756, Korea
| | - Seong Hwan Kim
- Department of Microbiology, Dankook University, Cheonan, 330-714, Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Korea.,Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Korea
| |
Collapse
|
24
|
Gyöngyösi N, Nagy D, Makara K, Ella K, Káldi K. Reactive oxygen species can modulate circadian phase and period in Neurospora crassa. Free Radic Biol Med 2013; 58:134-43. [PMID: 23277144 DOI: 10.1016/j.freeradbiomed.2012.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/14/2012] [Accepted: 12/17/2012] [Indexed: 11/24/2022]
Abstract
Reactive oxygen species (ROS) may serve as signals coupling metabolism to other cell functions. In addition to being by-products of normal metabolism, they are generated at elevated levels under environmental stress situations. We analyzed how reactive oxygen species affect the circadian clock in the model organism Neurospora crassa. In light/dark cycles, an increase in the levels of reactive oxygen species advanced the phase of both the conidiation rhythm and the expression of the clock gene frequency. Our results indicate a dominant role of the superoxide anion in the control of the phase. Elevation of superoxide production resulted in the activation of protein phosphatase 2A, a regulator of the positive element of the circadian clock. Our data indicate that even under nonstress conditions, reactive oxygen species affect circadian timekeeping. Reduction of their basal levels results in a delay of the phase in light/dark cycles and a longer period under constant conditions. We show that under entrained conditions the phase depends on the temperature and reactive oxygen species contribute to this effect. Our results suggest that the superoxide anion is an important factor controlling the circadian oscillator and is able to reset the clock most probably by activating protein phosphatase 2A, thereby modulating the activity of the White Collar complex.
Collapse
Affiliation(s)
- Norbert Gyöngyösi
- Department of Physiology, Semmelweis University, H-1092 Budapest, Hungary
| | | | | | | | | |
Collapse
|