1
|
Pinkert-Leetsch D, Rost JU, Schmiedeknecht MUH, Stadelmann C, Alves F, Missbach-Guentner J. The murine male reproductive organ at a glance: Three-dimensional insights and virtual histology using label-free light sheet microcopy. Andrology 2022; 10:1660-1672. [PMID: 36082398 DOI: 10.1111/andr.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The unique anatomy of the male reproductive organ reflects its complex function from sperm maturation to their storage for months until emission. Since light microscopy in two dimensions (2d) cannot sufficiently demonstrate its complex morphology, a comprehensive visualization is required to identify pathologic alterations in its entire anatomical context. OBJECTIVES Aim of this study was to use three-dimensional (3d) light sheet fluorescence microscopy (LSFM) to visualize entire murine testes in 3d, label-free and at subcellular resolution, and to assign local autofluorescence to testicular and deferent structures. MATERIALS AND METHODS Murine testes were fixed with four different fixatives and subsequently cleared with benzoic acid/benzyl benzoate. Hereafter, complete murine testes were scanned with LSFM with different fluorescence filter sets and subsequently embedded in paraffin for further conventional planar histology. RESULTS Autofluorescence signals of the murine reproductive organ allowed the unambiguous identification of the testicular anatomy from the seminiferous tubules to the vas deferens with their specific stratification independent of the used fixative. Blood vessels were visualized from the pampiniform plexus to the small capillaries of single tubules. Moreover, due to the specific intrinsic fluorescence properties of the efferent ducts and the epididymis, luminal caliber, the epithelial stratification and retronuclear cytoplasmic inclusions gave a unique insight into the interface of both morphological structures. Subsequent 2d histology confirmed the identified morphological structures. DISCUSSION LSFM analysis of the murine reproductive organ allows due to its intrinsic fluorescence a simple, label-free 3d assessment of its entire duct morphology, the epithelial composition and the associated blood supply in its anatomical relation. CONCLUSION LSFM provides the technical basis for comprehensive analyses of pathologically altered murine testes in its entirety by depicting specific autofluorescence. Thereby it facilitates mouse studies of testicular disease or their drug related alterations in more detail potentially for clinical translation assessing human testicular biopsies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Diana Pinkert-Leetsch
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - John Uwe Rost
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany
| | - Frauke Alves
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Department of Hematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany
| | - Jeannine Missbach-Guentner
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
2
|
Wu Q, Feng Z, Hu W. Reduction of autofluorescence in whole adult worms of Schistosoma japonicum for immunofluorescence assay. Parasit Vectors 2021; 14:532. [PMID: 34649608 PMCID: PMC8515762 DOI: 10.1186/s13071-021-05027-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022] Open
Abstract
Immunofluorescence assay is one of methods to understand the spatial biology by visualizing localization of biomolecules in cells and tissues. Autofluorescence, as a common phenomenon in organisms, is a background signal interfering the immunolocalization assay of schistosome biomolecules, and may lead to misinterpretation of the biomolecular function. However, applicable method for reducing the autofluorescence in Schistosoma remains unclear. In order to find a suitable method for reducing autofluorescence of schistosomes, different chemical reagents, such as Sudan black B (SBB), trypan blue (TB), copper sulfate (CuSO4), Tris-glycine (Gly), and ammonia/ethanol (AE), at different concentrations and treatment time were tested, and SBB and CuSO4 were verified for the effect of blocking autofluorescence in immunofluorescence to localize the target with anti-SjCRT antibody. By comparing the autofluorescence characteristics of different conditions, it was found that SBB, TB and CuSO4 had a certain degree of reducing autofluorescence effect, and the best effect in females was using 50 mM CuSO4 for 6 h and in males was 0.5% SBB for 6 h. Furthermore, we have applied the optimized conditions to the immunofluorescence of SjCRT protein, and the results revealed that the immunofluorescence signal of SjCRT was clearly visible without autofluorescence interference. We present an effective method to reduce autofluorescence in male and female worm of Schistosoma japonicum for immunofluorescence assay, which could be helpful to better understand biomolecular functions. Our method provides an idea for immunofluorescence assay in other flukes with autofluoresence. ![]()
Collapse
Affiliation(s)
- Qunfeng Wu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology On Parasite-Host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, 200025, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China. .,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology On Parasite-Host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
3
|
Tang XT, Ibanez F, Tamborindeguy C. Quenching autofluorescence in the alimentary canal tissues of Bactericera cockerelli (Hemiptera: Triozidae) for immunofluorescence labeling. INSECT SCIENCE 2020; 27:475-486. [PMID: 30663253 DOI: 10.1111/1744-7917.12660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Immunofluorescence has been widely used to localize microbes or specific molecules in insect tissues or cells. However, significant autofluorescence is frequently observed in tissues which can interfere with the fluorescent identification of target antigens, leading to inaccurate or even false positive fluorescent labeling. The alimentary canal of the potato psyllid, Bactericera cockerelli Šulc, exhibits intense autofluorescence, hindering the application of immunolocalization for the detection and localization of the economically important pathogen transmitted by this insect, "Candidatus Liberibacter solanacearum" (Lso). In the present study, we tested the use of irradiation, hydrogen peroxide (H2 O2 ) and Sudan black B (SBB) treatments to reduce the autofluorescence in the B. cockerelli alimentary canal tissues. Furthermore, we assessed the compatibility of the above-mentioned treatments with Lso immunolocalization and actin staining using phalloidin. Our results showed that the autofluorescence in the alimentary canal was reduced by irradiation, H2 O2 , or SBB treatments. The compatibility assays indicated that irradiation and H2 O2 treatment both greatly reduced the fluorescent signal associated with Lso and actin. However, the SBB incubation preserved those target signals, while efficiently eliminating autofluorescence in the psyllid alimentary canal. Therefore, herein we propose a robust method for reducing the autofluorescence in the B. cockerelli alimentary canal with SBB treatment, which may improve the use of immunofluorescence labeling in this organism. This method may also have a wide range of uses by reducing the autofluorescence in other arthropod species.
Collapse
Affiliation(s)
- Xiao-Tian Tang
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
4
|
Walters DK, Jelinek DF. Multiplex Immunofluorescence of Bone Marrow Core Biopsies: Visualizing the Bone Marrow Immune Contexture. J Histochem Cytochem 2019; 68:99-112. [PMID: 31855110 DOI: 10.1369/0022155419896802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ability to visualize and quantify the spatial arrangement and geographic proximity of immune cells with tumor cells provides valuable insight into the complex mechanisms underlying cancer biology and progression. Multiplexing, which involves immunofluorescence labeling and the visualization of multiple epitopes within formalin-fixed paraffin embedded tissue sections, is a methodology that is being increasingly employed. Despite the power of immunofluorescence multiplex analysis, application of this technology to bone marrow core biopsies has not yet been realized. Given our specific long term goal to identify immune cells in proximity to bone marrow malignant plasma cells in multiple myeloma patients, we describe in this study adaptation of multiplex immunofluorescence analysis to this tissue. We first identified a blocking strategy that quenched autofluorescence. We next employed a multiplex strategy that uses a simple stripping solution to remove primary and secondary antibodies prior to subsequent rounds of staining. This method was found to be highly efficient and did not significantly alter antigenicity or tissue integrity. Our studies illustrate for the first time that immunofluorescence multiplexing is achievable in bone marrow core biopsies and will provide a novel opportunity to analyze the role of the immune contexture in disease progression of the monoclonal gammopathies.
Collapse
Affiliation(s)
- Denise K Walters
- Department of Immunology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota and Scottsdale, Arizona
| | - Diane F Jelinek
- Department of Immunology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota and Scottsdale, Arizona
| |
Collapse
|
5
|
Abstract
Immunofluorescence (IF) labeling is a powerful technique that can provide a wealth of information on structural organization, supramolecular composition, and functional properties of cells and tissues. At the same time, nonspecific staining and false positives can seriously compromise IF studies and lead to confusing or even misleading results. It is particularly true for the extracellular matrix component of forming enamel. Here, we present an optimized IF protocol for developing enamel. Autofluorescence blocking by Sudan Black B (SBB) and establishing of proper isotype controls lead to a significant artifact reduction and improve reliability of the IF data.
Collapse
Affiliation(s)
- Xu Yang
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elia Beniash
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Bioengineering, Center for Craniofacial Regeneration, McGowan Institute for Regenerative Medicine, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Awang-Junaidi AH, Honaramooz A. Optimization of culture conditions for short-term maintenance, proliferation, and colony formation of porcine gonocytes. J Anim Sci Biotechnol 2018; 9:8. [PMID: 29372053 PMCID: PMC5771198 DOI: 10.1186/s40104-017-0222-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 12/19/2017] [Indexed: 01/14/2023] Open
Abstract
Background Gonocytes give rise to spermatogonial stem cells, and thereby play an essential role in establishing spermatogenesis. Optimized culture conditions for gonocytes provide an opportunity for their study and in vitro manipulation for potential application in reproductive technologies. Using six experiments in a step-wise design, we examined the effects of several culture conditions on the maintenance, proliferation, and colony formation of porcine gonocytes. Testis cells from neonatal piglets were cultured for 7 d in DMEM supplemented with 10% fetal bovine serum. The examined culture conditions included using different cell seeding densities, gonocyte proportions, incubation temperatures, sampling strategies, and medium changing regimens. Results Confluency of cells was optimal (>90% by ~6 d) when 3.0 × 104 testis cells/cm2 containing ~40% gonocytes were used. Incubating the cells at 35 °C or 37 °C resulted in similar cell number and viability at confluency, but incubation at 35 °C resulted in a delayed confluency. In the first 2 d of culture, gonocytes remained mostly floating in the medium and gradually settled over the next 5 d. Consequently, not changing the medium for 7 d (as opposed to changing it every 2 d) led to a significant increase in the number of gonocyte colonies by reducing the loss of “floating gonocytes”. Conclusion We found that gonocytes require the presence of a critical minimum number of somatic cells for settlement, and can proliferate and form growing colonies even in a basic medium. Large numbers of viable gonocytes remain floating in the medium for several days. The optimized culture conditions in the present study included seeding with 3.0 × 104 testis cells/cm2 containing ~40% gonocytes, incubating at 37 °C, and without changing the medium in the first week, which can result in improved colony formation of porcine gonocytes.
Collapse
Affiliation(s)
- Awang Hazmi Awang-Junaidi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada
| |
Collapse
|
7
|
Yang J, Yang F, Campos LS, Mansfield W, Skelton H, Hooks Y, Liu P. Quenching autofluorescence in tissue immunofluorescence. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.12251.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Immunofluorescence (IF) is one of the most important techniques where fluorochromes conjugated to antibodies are used to detect specific proteins or antigens. In tissue sections, autofluorescence (AF) can lead to poor quality images that impair assessment. The placenta is a pivotal extra-embryonic organ in embryo development, where trophoblasts make up a large proportion of the cells. Teratoma formation is one of the critical assays for pluripotent stem cells. Methods: We tested whether ultraviolet (UV), ammonia (NH3), copper (II) sulfate (CuSO4), Trypan Blue (TB), Sudan Black B (SB), TrueBlack™ Lipofusin Autofluorescence Quencher (TLAQ) and combinations of these treatments could reduce AF in paraffin and frozen sections of placenta and teratoma in FITC, Texas Red and Cy5.5 channels. Results: We found that UV, NH3, TB and CuSO4 quenched AF to some extent in different tissue and filters, but increased AF in Texas Red or Cy5.5 channels in some cases. SB and TLQA exhibited the most consistent effects on decreasing AF, though TLQA reduced the overall IF signal in placenta sections. Not all combined treatments further reduced AF in both placenta and teratoma sections. Conclusions: SB and TLAQ can effectively quench AF in placenta and teratoma IF.
Collapse
|
8
|
Yang X, Vidunas AJ, Beniash E. Optimizing Immunostaining of Enamel Matrix: Application of Sudan Black B and Minimization of False Positives from Normal Sera and IgGs. Front Physiol 2017; 8:239. [PMID: 28487659 PMCID: PMC5403949 DOI: 10.3389/fphys.2017.00239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/05/2017] [Indexed: 11/13/2022] Open
Abstract
Non-specific fluorescence from demineralized enamel matrix can significantly compromise the immunofluorescence studies and lead to false positives. Our goal was to assess degrees of non-specific binding under different conditions and try to optimize procedures for immunofluorescence studies of forming enamel. Firstly, we compared two methods for background fluorescence elimination, i.e., sodium borohydride and Sudan Black B treatments. The results demonstrated that Sudan Black B is far superior to sodium borohydride in reducing the background fluorescence in dental tissues. We also studied the extent of non-specific binding of normal sera and purified polyclonal immunoglobulins (IgG) from five mammalian species, guinea pig, rat, rabbit, goat, and sheep, over a broad range of dilutions. For all sera tested fluorescence signals increased exponentially from 1:1000 to 1:100. Interestingly, the non-specific binding of sera from rodent species was below that of positive control in the whole range of dilutions. In contrast, incubation with sera from 3 non-rodent species produced much higher signals which surpassed the positive control signal at 1:250~1:500 dilution range. Most of the IgGs didn't show significant non-specific binding within 0.25–5 μg/ml range, except rabbit IgG which demonstrated extremely high affinity to the enamel matrix even at concentrations as low as 1 μg/ml. Further, studies confirmed that Fab fragments of purified normal rabbit IgG, not conserved Fc fragments, were involved in the interactions. Our observations suggest this high affinity is associated with the antigen binding sites of rabbit IgG. We anticipate that our results will help enamel researchers to optimize and standardize their immunochemical procedures.
Collapse
Affiliation(s)
- Xu Yang
- Department of Oral Biology, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA
| | - Alexander J Vidunas
- Department of Oral Biology, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA
| | - Elia Beniash
- Department of Oral Biology, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA.,Department of Bioengineering, Center for Craniofacial Regeneration, Swanson School of Engineering, McGowan Institute for Regenerative Medicine, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
9
|
Crowe LB, Hughes PF, Alcorta DA, Osada T, Smith AP, Totzke J, Loiselle DR, Lutz ID, Gargesha M, Roy D, Roques J, Darr D, Lyerly HK, Spector NL, Haystead TA. A Fluorescent Hsp90 Probe Demonstrates the Unique Association between Extracellular Hsp90 and Malignancy in Vivo. ACS Chem Biol 2017; 12:1047-1055. [PMID: 28103010 DOI: 10.1021/acschembio.7b00006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular expression of heat shock protein 90 (eHsp90) by tumor cells is correlated with malignancy. Development of small molecule probes that can detect eHsp90 in vivo may therefore have utility in the early detection of malignancy. We synthesized a cell impermeable far-red fluorophore-tagged Hsp90 inhibitor to target eHsp90 in vivo. High resolution confocal and lattice light sheet microscopy show that probe-bound eHsp90 accumulates in punctate structures on the plasma membrane of breast tumor cells and is actively internalized. The extent of internalization correlates with tumor cell aggressiveness, and this process can be induced in benign cells by overexpressing p110HER2. Whole body cryoslicing, imaging, and histology of flank and spontaneous tumor-bearing mice strongly suggests that eHsp90 expression and internalization is a phenomenon unique to tumor cells in vivo and may provide an "Achilles heel" for the early diagnosis of metastatic disease and targeted drug delivery.
Collapse
Affiliation(s)
- Lauren B. Crowe
- Department of Cell
Biology, Duke University, Durham, North Carolina 27710, United States
| | - Philip F. Hughes
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - David A. Alcorta
- Department of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - Takuya Osada
- Department of Surgery, Duke University, Durham, North Carolina 27710, United States
| | - Aaron P. Smith
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - Juliane Totzke
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - David R. Loiselle
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - Isaac D. Lutz
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | | | - Debasish Roy
- BioInVision, Inc., Mayfield Village, Ohio 44143, United States
| | - Jose Roques
- Lineberger Comprehensive
Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - David Darr
- Lineberger Comprehensive
Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - H. Kim Lyerly
- Department of Surgery, Duke University, Durham, North Carolina 27710, United States
| | - Neil L. Spector
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - Timothy A.J. Haystead
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
10
|
Sper RB, Koh S, Zhang X, Simpson S, Collins B, Sommer J, Petters RM, Caballero I, Platt JL, Piedrahita JA. Generation of a Stable Transgenic Swine Model Expressing a Porcine Histone 2B-eGFP Fusion Protein for Cell Tracking and Chromosome Dynamics Studies. PLoS One 2017; 12:e0169242. [PMID: 28081156 PMCID: PMC5230777 DOI: 10.1371/journal.pone.0169242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 12/14/2016] [Indexed: 12/02/2022] Open
Abstract
Transgenic pigs have become an attractive research model in the field of translational research, regenerative medicine, and stem cell therapy due to their anatomic, genetic and physiological similarities with humans. The development of fluorescent proteins as molecular tags has allowed investigators to track cell migration and engraftment levels after transplantation. Here we describe the development of two transgenic pig models via SCNT expressing a fusion protein composed of eGFP and porcine Histone 2B (pH2B). This fusion protein is targeted to the nucleosomes resulting a nuclear/chromatin eGFP signal. The first model (I) was generated via random insertion of pH2B-eGFP driven by the CAG promoter (chicken beta actin promoter and rabbit Globin poly A; pCAG-pH2B-eGFP) and protected by human interferon-β matrix attachment regions (MARs). Despite the consistent, high, and ubiquitous expression of the fusion protein pH2B-eGFP in all tissues analyzed, two independently generated Model I transgenic lines developed neurodegenerative symptoms including Wallerian degeneration between 3-5 months of age, requiring euthanasia. A second transgenic model (II) was developed via CRISPR-Cas9 mediated homology-directed repair (HDR) of IRES-pH2B-eGFP into the endogenous β-actin (ACTB) locus. Model II transgenic animals showed ubiquitous expression of pH2B-eGFP on all tissues analyzed. Unlike the pCAG-pH2B-eGFP/MAR line, all Model II animals were healthy and multiple pregnancies have been established with progeny showing the expected Mendelian ratio for the transmission of the pH2B-eGFP. Expression of pH2B-eGFP was used to examine the timing of the maternal to zygotic transition after IVF, and to examine chromosome segregation of SCNT embryos. To our knowledge this is the first viable transgenic pig model with chromatin-associated eGFP allowing both cell tracking and the study of chromatin dynamics in a large animal model.
Collapse
Affiliation(s)
- Renan B. Sper
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Sehwon Koh
- Department of Surgery and Microbiology and Immunology, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Xia Zhang
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Sean Simpson
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Bruce Collins
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jeff Sommer
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert M. Petters
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ignacio Caballero
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jeff L. Platt
- Department of Surgery and Microbiology and Immunology, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Jorge A. Piedrahita
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
11
|
Bader CA, Sorvina A, Simpson PV, Wright PJ, Stagni S, Plush SE, Massi M, Brooks DA. Imaging nuclear, endoplasmic reticulum and plasma membrane events in real time. FEBS Lett 2016; 590:3051-60. [DOI: 10.1002/1873-3468.12365] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Christie A. Bader
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy and Medical Sciences Sansom Institute for Health Research University of South Australia Adelaide Australia
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy and Medical Sciences Sansom Institute for Health Research University of South Australia Adelaide Australia
| | - Peter V. Simpson
- Department of Chemistry and Nanochemistry Research Institute Curtin University Bently Australia
| | - Phillip J. Wright
- Department of Chemistry and Nanochemistry Research Institute Curtin University Bently Australia
| | - Stefano Stagni
- Department of Industrial Chemistry ‘Toso Montanari’ University of Bologna Italy
| | - Sally E. Plush
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy and Medical Sciences Sansom Institute for Health Research University of South Australia Adelaide Australia
| | - Massimiliano Massi
- Department of Chemistry and Nanochemistry Research Institute Curtin University Bently Australia
| | - Douglas A. Brooks
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy and Medical Sciences Sansom Institute for Health Research University of South Australia Adelaide Australia
| |
Collapse
|
12
|
Wang X, Chen T, Zhang Y, Li B, Xu Q, Song C. Isolation and Culture of Pig Spermatogonial Stem Cells and Their in Vitro Differentiation into Neuron-Like Cells and Adipocytes. Int J Mol Sci 2015; 16:26333-46. [PMID: 26556335 PMCID: PMC4661817 DOI: 10.3390/ijms161125958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022] Open
Abstract
Spermatogonial stem cells (SSCs) renew themselves throughout the life of an organism and also differentiate into sperm in the adult. They are multipopent and therefore, can be induced to differentiate into many cells types in vitro. SSCs from pigs, considered an ideal animal model, are used in studies of male infertility, regenerative medicine, and preparation of transgenic animals. Here, we report on a culture system for porcine SSCs and the differentiation of these cells into neuron-like cells and adipocytes. SSCs and Sertoli cells were isolated from neonatal piglet testis by differential adhesion and SSCs were cultured on a feeder layer of Sertoli cells. Third-generation SSCs were induced to differentiate into neuron-like cells by addition of retinoic acid, β-mercaptoethanol, and 3-isobutyl-1-methylxanthine (IBMX) to the induction media and into adipocytes by the addition of hexadecadrol, insulin, and IBMX to the induction media. The differentiated cells were characterized by biochemical staining, qRT-PCR, and immunocytochemistry. The cells were positive for SSC markers, including alkaline phosphatase and SSC-specific genes, consistent with the cells being undifferentiated. The isolated SSCs survived on the Sertoli cells for 15 generations. Karyotyping confirmed that the chromosomal number of the SSCs were normal for pig (2n = 38, n = 19). Pig SSCs were successfully induced into neuron-like cells eight days after induction and into adipocytes 22 days after induction as determined by biochemical and immunocytochemical staining. qPCR results also support this conclusion. The nervous tissue markers genes, Nestin and β-tubulin, were expressed in the neuron-like cells and the adipocyte marker genes, PPARγ and C/EBPα, were expressed in the adipocytes.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Tingfeng Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yani Zhang
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Bichun Li
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Qi Xu
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|