1
|
Mitrović-Ajtić O, Živković E, Subotički T, Diklić M, Đikić D, Vukotić M, Dragojević T, Vuković V, Antić D, Čokić VP. Inflammation mediated angiogenesis in chronic lymphocytic leukemia. Ann Hematol 2024; 103:2865-2875. [PMID: 38713255 DOI: 10.1007/s00277-024-05781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Chronic inflammation has been identified in leukemias as an essential regulator of angiogenesis. B-chronic lymphocytic leukemia (CLL) cells secrete high levels of vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1 alpha (HIF1α). The aim was to assess the role of inflammation in activation of angiogenic factors: endothelial nitric oxide synthase (eNOS), HIF1α and VEGF via proliferation related signaling pathways and VEGF autocrine control. We isolated mononuclear cells (MNC) and CD19+ cells from peripheral blood of 60 patients with CLL. MNC were treated with pro-inflammatory interleukin-6 (IL-6) and VEGF, in combination with inhibitors of JAK1/2 (Ruxolitinib), mTOR (Rapamycin), NF-κB (JSH23), SMAD (LDN-193189) and PI3K/AKT (Ly294002) signaling pathways, to evaluate eNOS, VEGF and HIF1α expression by immunoblotting, immunocytochemistry and RT-qPCR. Also, we investigated IL-6 dependent neovascularization in human microvascular endothelial cells (HMEC-1) in co-culture with MNC of CLL. The angiogenic factors eNOS, VEGF and HIF1α had significantly higher frequencies in MNC of CLL in comparison to healthy controls (p < 0.001) and CD19+ cells of CLL. IL-6 increased the quantity of HIF1α (p < 0.05) and VEGF positive cells in the presence of JSH23 (p < 0.01). VEGF increased HIF1α (p < 0.05), and decreased eNOS gene expression (p < 0.01) in MNC of CLL. VEGF significantly (p < 0.001) increased the number of HIF1α positive MNC of CLL, prevented by inhibitors of JAK1/2, PI3K and mTOR signaling pathways. VEGF stimulation of SMAD (p < 0.05) and STAT5 (p < 0.01) signaling has been prevented by inhibitors of JAK1/2, mTOR, PI3K and SMAD signaling, individually (p < 0.01) or mutually (p < 0.001). Also, we showed that MNC of CLL and IL-6 individually stimulate neovascularization in co-culture with HMEC-1, without a cumulative effect. We demonstrated elevated angiogenic factors in CLL, while VEGF and IL-6 independently stimulated HIF1α. VEGF stimulation of HIF1α was mostly mTOR dependent, while IL-6 stimulation was NF-κB dependent.
Collapse
Affiliation(s)
- Olivera Mitrović-Ajtić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia.
| | - Emilija Živković
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Tijana Subotički
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Miloš Diklić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Dragoslava Đikić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Milica Vukotić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Teodora Dragojević
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| | - Vojin Vuković
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Darko Antić
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladan P Čokić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129, Belgrade, Serbia
| |
Collapse
|
2
|
Padinharayil H, George A. Small extracellular vesicles: Multi-functional aspects in non-small cell lung carcinoma. Crit Rev Oncol Hematol 2024; 198:104341. [PMID: 38575042 DOI: 10.1016/j.critrevonc.2024.104341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Extracellular vesicles (EVs) impact normal and pathological cellular signaling through bidirectional trafficking. Exosomes, a subset of EVs possess biomolecules including proteins, lipids, DNA fragments and various RNA species reflecting a speculum of their parent cells. The involvement of exosomes in bidirectional communication and their biological constituents substantiate its role in regulating both physiology and pathology, including multiple cancers. Non-small cell lung cancer (NSCLC) is the most common lung cancers (85%) with high incidence, mortality and reduced overall survival. Lack of efficient early diagnostic and therapeutic tools hurdles the management of NSCLC. Interestingly, the exosomes from body fluids similarity with parent cells or tissue offers a potential future multicomponent tool for the early diagnosis of NSCLC. The structural twinning of exosomes with a cell/tissue and the competitive tumor derived exosomes in tumor microenvironment (TME) promotes the unpinning horizons of exosomes as a drug delivery, vaccine, and therapeutic agent. Exosomes in clinical point of view assist to trace: acquired resistance caused by various therapeutic agents, early diagnosis, progression, and surveillance. In an integrated approach, EV biomarkers offer potential cutting-edge techniques for the detection and diagnosis of cancer, though the purification, characterization, and biomarker identification processes for the translational research regarding EVs need further optimization.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India.
| |
Collapse
|
3
|
Lee JH, Chellasamy G, Yun K, Nam MJ. EGF-expressed human mesenchymal stem cells inhibit collagenase1 expression in keratinocytes. Cell Signal 2023; 110:110827. [PMID: 37506859 DOI: 10.1016/j.cellsig.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Mesenchymal stem cells (MSCs) repair tissue injury by upregulating the paracrine secretion of cytokines and growth factors. Human MSC has been recognized as a promising therapeutic material for treatment of various human diseases. Even though the effect of epidermal growth factor (EGF) has been well investigated, the synergetic effect of EGF and MSC has not been studied. Therefore, we expect our basic study to contribute to developing new therapeutic reagents for skin diseases or innovative cosmetics. In this study, we examined the effect of human epidermal growth factor-transfected MSCs (hEGF MSCs) on human keratinocyte HaCaT cell proliferation and the mechanisms that regulate matrix metalloproteinase (MMP)-1 expression in HaCaT cells. To identify the hEGF plasmid and its transfection into MSCs, we performed gel electrophoresis and quantitative PCR. Proliferation and migration of HaCaT cells were examined using water Soluble Tetrazolium (WST-1) and wound-healing assays, respectively. Zymography was performed to investigate the correlation between hEGF MSC-conditioned medium (CM)-treated HaCaT cells and MMP-1 expression. We found that cell proliferation and wound-healing rates were increased in hEGF MSC-CM-treated HaCaT cells compared to those in MSC-CM-treated cells, and conversely collagenase activity was decreased. The mRNA and protein levels of MMP-1 were also decreased in hEGF MSC-CM-treated HaCaT cells. 2-DE analysis showed that the expression of carboxypeptidase, which promotes growth factors and wound healing, was increased in hEGF MSC-CM-treated HaCaT cells. Finally, western blot was used to determine whether MMP-1 expression was reduced via the mitogen-activated protein kinase (MAPK) pathway; the results showed that the levels of MAPK pathway-related proteins (pErk, pJNK, and p-p38) and the levels of transcription factors (pCREB, NFκB, and p-c-Fos) were decreased. In addition, pAkt expression was found to be elevated. The results of our study suggest that hEGF MSCs promote cell proliferation and reduce MMP-1 expression via the MAPK pathway in human keratinocyte HaCaT cells.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Department of Biological Sciences, Gachon University, Seongnam, South Korea
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Myeong Jin Nam
- Department of Biological Sciences, Gachon University, Seongnam, South Korea.
| |
Collapse
|
4
|
Lai F, Dai S, Zhao Y, Sun Y. Combination of PDGF-BB and adipose-derived stem cells accelerated wound healing through modulating PTEN/AKT pathway. Injury 2023:S0020-1383(23)00123-7. [PMID: 37028952 DOI: 10.1016/j.injury.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 04/09/2023]
Abstract
Adipose-derived stem cells (ADSCs) have been widely proven to facilitate wound healing. Our study aimed to estimate the influence of combined ADSCs and platelet-derived growth factor-BB (PDGF-BB) on wound healing. We utilized 4 healthy SD rats to isolate ADSCs. Platelet-rich plasma (PRP) was acquired utilizing a two-step centrifugation technology. The role of PRP, PDGF-BB, and PDGF-BB combined with a PI3k inhibitor LY294002 on the viability, migration, and PTEN/AKT pathway in ADSCs were examined utilizing CCK-8, Transwell, and western blot assays. Then, we constructed an open trauma model in SD rats. Effects of ADSCs treated with PDGF-BB on pathological changes, CD31, and PTEN/AKT pathway of wound closure were assessed by hematoxylin & eosin (H&E) staining, Masson staining, immunohistochemical, and western blot assays, respectively. PRP and PDGF-BB intensified the viability and migration of ADSCs by modulating the PTEN/AKT pathway. Interestingly, LY294002 reversed the role of PDGF-BB on ADSCs. In vivo experiments, combined intervention with ADSCs plus PDGF-BB/PRP facilitated wound closure and ameliorated histological injury. Moreover, combined intervention with ADSCs and PDGF-BB attenuated the PTEN level and elevated the CD31 level as well as the ratio of p-AKT/AKT in the skin tissues. A combination of ADSCs and PDGF-BB facilitated wound healing might associate with the regulation of the PTEN/AKT pathway.
Collapse
Affiliation(s)
- Fangyuan Lai
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shijie Dai
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ye Zhao
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yi Sun
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Vadukoot AK, Mottemmal S, Vekaria PH. Curcumin as a Potential Therapeutic Agent in Certain Cancer Types. Cureus 2022; 14:e22825. [PMID: 35399416 PMCID: PMC8980239 DOI: 10.7759/cureus.22825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer is a devastating disease condition and is the second most common etiology of death globally. After decades of research in the field of hematological malignancies and cellular therapeutics, we are still looking for therapeutic agents with the most efficacies and least toxicities. Curcumin is one of the cancer therapeutic agents that is derived from the Curcuma longa (turmeric) plant, and still in vitro and in vivo research is going on to find its beneficial effects on various cancers. Due to its potency to affect multiple targets of different cellular pathways, it is considered a promising agent to tackle various cancers alone or in combination with the existing chemotherapies. This review covers basic properties, mechanism of action, potential targets (molecules and cell-signaling pathways) of curcumin, as well as its effect on various solid and hematological malignancies.
Collapse
|
6
|
Saviana M, Romano G, Le P, Acunzo M, Nana-Sinkam P. Extracellular Vesicles in Lung Cancer Metastasis and Their Clinical Applications. Cancers (Basel) 2021; 13:5633. [PMID: 34830787 PMCID: PMC8616161 DOI: 10.3390/cancers13225633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogenous membrane-encapsulated vesicles secreted by every cell into the extracellular environment. EVs carry bioactive molecules, including proteins, lipids, DNA, and different RNA forms, which can be internalized by recipient cells, thus altering their biological characteristics. Given that EVs are commonly found in most body fluids, they have been widely described as mediators of communication in several physiological and pathological processes, including cancer. Moreover, their easy detection in biofluids makes them potentially useful candidates as tumor biomarkers. In this manuscript, we review the current knowledge regarding EVs and non-coding RNAs and their role as drivers of the metastatic process in lung cancer. Furthermore, we present the most recent applications for EVs and non-coding RNAs as cancer therapeutics and their relevance as clinical biomarkers.
Collapse
Affiliation(s)
- Michela Saviana
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patricia Le
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| |
Collapse
|
7
|
Shabani M, Javanshir HT, Bereimipour A, Sadrabadi AE, Jalili A, Nayernia K. Contradictory Effect of Notch1 and Notch2 on Phosphatase and Tensin Homolog and its Influence on Glioblastoma Angiogenesis. Galen Med J 2021; 10:e2091. [PMID: 36643842 PMCID: PMC9829453 DOI: 10.31661/gmj.v10i0.2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Many genes induce angiogenesis in tumors, and among them, Notch family genes have received particular attention due to their extensive network of connections with other genes active in this function. Suppression of angiogenic signaling has been studied in various cancers, confirming Notch's fundamental and extensive role. According to studies, four Notch genes work independently with many genes such as vascular endothelial growth factor, phosphatase and tensin homolog, Phosphoinositide 3-kinase/Akt, and matrix metalloproteinases, and so many other genes, as well as proteins (such as hypoxia-inducible factor-1 alpha) significantly affect tumor angiogenesis. Notch1 regular activity in a healthy person causes angiogenesis in body tissues, controlled by normal Notch2 activity. However, in many cases of glioblastoma, whether on patients or tumor xenografts or in vivo models, a mutation in one of these two essential genes or at least one of the genes and proteins that affected by them can cause better angiogenesis in hypoxic conditions and lead to become an invasive tumor. In this review, we examined the contrasting activity of Notch1 and Notch2 and the signaling cascade that each generates in the angiogenesis of glioblastoma, the most invasive cancer of the central nervous system.
Collapse
Affiliation(s)
- Mostafa Shabani
- Medical Genomics Research Center, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Taghvaei Javanshir
- Medical Genomics Research Center, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ahmad Bereimipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Young Researchers and Elite Club, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Karim Nayernia
- International Center for Personalized Medicine, Düsseldorf, Germany
- Karim Nayernia, International Center for Personalized Medicine, Düsseldorf, Germany. Telephone Number: +4921144773490 Email Address:
| |
Collapse
|
8
|
Meta-analysis of gene signatures and key pathways indicates suppression of JNK pathway as a regulator of chemo-resistance in AML. Sci Rep 2021; 11:12485. [PMID: 34127725 PMCID: PMC8203646 DOI: 10.1038/s41598-021-91864-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/02/2021] [Indexed: 11/08/2022] Open
Abstract
The pathways and robust deregulated gene signatures involved in AML chemo-resistance are not fully understood. Multiple subgroups of AMLs which are under treatment of various regimens seem to have similar regulatory gene(s) or pathway(s) related to their chemo-resistance phenotype. In this study using gene set enrichment approach, deregulated genes and pathways associated with relapse after chemotherapy were investigated in AML samples. Five AML libraries compiled from GEO and ArrayExpress repositories were used to identify significantly differentially expressed genes between chemo-resistance and chemo-sensitive groups. Functional and pathway enrichment analysis of differentially expressed genes was performed to assess molecular mechanisms related to AML chemotherapeutic resistance. A total of 34 genes selected to be differentially expressed in the chemo-resistance compared to the chemo-sensitive group. Among the genes selected, c-Jun, AKT3, ARAP3, GABBR1, PELI2 and SORT1 are involved in neurotrophin, estrogen, cAMP and Toll-like receptor signaling pathways. All these pathways are located upstream and regulate JNK signaling pathway which functions as a key regulator of cellular apoptosis. Our expression data are in favor of suppression of JNK pathway, which could induce pro-apoptotic gene expression as well as down regulation of survival factors, introducing this pathway as a key regulator of drug-resistance development in AML.
Collapse
|
9
|
Tajaldini M, Asadi J. The Use of Bio-Active Compounds of Citrus Fruits as Chemopreventive Agents and Inhibitor of Cancer Cells Viability. Anticancer Agents Med Chem 2021; 21:1058-1068. [PMID: 32698740 DOI: 10.2174/1871520620666200721105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
Common therapy of cancer, such as chemotherapy, has various side effects for the patients. In recent studies, new therapeutic approaches in cancer treatment are adjuvant therapy, along with a reduction in side effects of chemotherapy drugs. Treatment by herbal medicines may have some advantages over treatment with single purified chemicals, also in terms of side effects, the use of plants in cancer treatment is a more secure method. Citrus fruits are one of the most consumed natural products in the world due to the presence of various metabolites and bioactive compounds, such as phenols, flavonoids and, carotenoids. Bioactive compounds of citrus modulate signaling pathways and interact with signaling molecules such as apoptotic and cell cycle (P53, P21, etc.) and thus have a wide range of pharmacological activities, including anti-inflammatory, anti-cancer and oxidative stress. The findings discussed in this review strongly support their potential as anti-cancer agents. Therefore, the purpose of this review was to examine the effects of active compounds in citrus as a therapy agent in cancer treatment.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischimic Disorder Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorder Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
10
|
Jiang K, Yang J, Song C, He F, Yang L, Li X. Enforced expression of miR-92b blunts E. coli lipopolysaccharide-mediated inflammatory injury by activating the PI3K/AKT/β-catenin pathway via targeting PTEN. Int J Biol Sci 2021; 17:1289-1301. [PMID: 33867846 PMCID: PMC8040465 DOI: 10.7150/ijbs.56933] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Endometritis is a reproductive disorder characterized by an inflammatory response in the endometrium, which causes significant economic losses to the dairy farming industry. MicroRNAs (miRNAs) are implicated in the inflammatory response and immune regulation following infection by pathogenic bacteria. Recent miRNA microarray analysis showed an altered expression of miR-92b in cows with endometritis. In the present study, we set out to investigate the regulatory mechanism of miR-92b in endometritis. Here, qPCR results first validated that miR-92b was down-regulated during endometritis. And then, bovine endometrial epithelial cells (BEND cells) stimulated by high concentration of lipopolysaccharide (LPS) were employed as an in vitro inflammatory injury model. Our data showed that overexpression of miR-92b significantly suppressed the activation of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF‐κB) in LPS-stimulated BEND cells, thereby reducing pro-inflammatory cytokines release and inhibiting cell apoptosis. Looking into the molecular mechanisms of regulation of inflammatory injury by miR-92b, we observed that overexpression of miR-92b restrained TLR4/NF‐κB by activating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/β-catenin pathway. Furthermore, the luciferase reporter assay suggested that miR-92b targeted inhibition of phosphatase and tensin homolog (PTEN), an inhibitor of the PI3K/AKT/β-catenin pathway. Importantly, in vivo experiments confirmed that up-regulation of miR-92b attenuated the pathological injury in an experimental murine model of LPS-induced endometritis. Collectively, these findings show that enforced expression of miR-92b alleviates LPS-induced inflammatory injury by activating the PI3K/AKT/β-catenin pathway via targeting PTEN, suggesting a potential application for miR-92b-based therapy to treat endometritis or other inflammatory diseases.
Collapse
Affiliation(s)
- Kangfeng Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chunlian Song
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| |
Collapse
|
11
|
Huang XL, Khan MI, Wang J, Ali R, Ali SW, Zahra QUA, Kazmi A, Lolai A, Huang YL, Hussain A, Bilal M, Li F, Qiu B. Role of receptor tyrosine kinases mediated signal transduction pathways in tumor growth and angiogenesis-New insight and futuristic vision. Int J Biol Macromol 2021; 180:739-752. [PMID: 33737188 DOI: 10.1016/j.ijbiomac.2021.03.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
Abstract
In the past two decades, significant progress has been made in the past two decades towards the understanding of the basic mechanisms underlying cancer growth and angiogenesis. In this context, receptor tyrosine kinases (RTKs) play a pivotal role in cell proliferation, differentiation, growth, motility, invasion, and angiogenesis, all of which contribute to tumor growth and progression. Mutations in RTKs lead to abnormal signal transductions in several pathways such as Ras-Raf, MEK-MAPK, PI3K-AKT and mTOR pathways, affecting a wide range of biological functions including cell proliferation, survival, migration and vascular permeability. Increasing evidence demonstrates that multiple kinases are involved in angiogenesis including RTKs such as vascular endothelial growth factor, platelet derived growth factor, epidermal growth factor, insulin-like growth factor-1, macrophage colony-stimulating factor, nerve growth factor, fibroblast growth factor, Hepatocyte Growth factor, Tie 1 & 2, Tek, Flt-3, Flt-4 and Eph receptors. Overactivation of RTKs and its downstream regulation is implicated in tumor initiation and angiogenesis, representing one of the hallmarks of cancer. This review discusses the role of RTKs, PI3K, and mTOR, their involvement, and their implication in pro-oncogenic cellular processes and angiogenesis with effective approaches and newly approved drugs to inhibit their unrestrained action.
Collapse
Affiliation(s)
- Xiao Lin Huang
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Jing Wang
- First Affiliated Hospital of University of Science and Technology of China Hefei, Anhui 230036, China
| | - Rizwan Ali
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Syed Wajahat Ali
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qurat-Ul-Ain Zahra
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ahsan Kazmi
- Department of Pathology, Al-Nafees Medical College and Hospital, Isra University, Islamabad 45600, Pakistan
| | - Arbelo Lolai
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yu Lin Huang
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Alamdar Hussain
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska Hospital, Huddinge, SE 141 86 Stockholm, Sweden; Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad Campus, Islamabad 44000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Fenfen Li
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
12
|
Wang J, Gao J, Xu HL, Qian Y, Xie L, Yu H, Qian BY. Citrus fruit intake and lung cancer risk: A meta-analysis of observational studies. Pharmacol Res 2021; 166:105430. [PMID: 33529754 DOI: 10.1016/j.phrs.2021.105430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To explore the hypothesis that Citrus intake may reduce the risk of lung cancer. DESIGN Meta-analyses of Dichotomy and dose-response relationship. DATA SOURCES We searched online literature databases including PubMed, Embase, and Cochrane Library to screen relevant articles available up to 27 July 2020. Search terms included (i) Citrus, Fruit, Diet, Dietary; (ii) cancer, neoplasm, tumor (iii)lung; (iv)case-control, cohort, prospective. STUDY SELECTION The selection of studies and the meta-analysis were carried out by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The following inclusion criteria were chosen: (i) epidemiological studies with case-control or cohort design; (ii) human participants; (iii) studies investigated the relationship between Citrus fruit intake and lung cancer risk; (iv) if data were duplicated in more than two studies, we brought the most recent or all-sided study into this analysis. We collected all full-text articles that met the inclusion criteria. We applied the following exclusion criteria to the full-text articles, including possible articles listed by manual search: (i) there was no represented odds ratio (OR) or relative risk (RR) estimate and its corresponding 95 % confidence interval (95 % CI) (or data to calculate them) for the highest versus lowest levels of Citrus fruit consumption (ii) reviews, systematic reviews and meta-analyses; (iii) there was no data of Citrus fruit intake at the individual level. DATA EXTRACTION Two reviewers independently performed the extraction of data from eligible studies. STATISTICAL METHODS Adjusted odds ratios (ORs) and 95 % CIs were combined and weighted by the method of "Dersimonian and Laird" to produce pooled ORs using a random-effects model. Moreover, we utilized the method reported by "Longnecker and Greenland" to evaluate linear trends and 95 % CIs by the ORs' natural logs and corresponding CIs from categories of Citrus intake. Finally, we evaluated the risk of publication bias and selection bias by inspecting for asymmetry in the pre-specified funnel plots of the study OR against the standard error of the OR's logarithm and by "Egger's test". RESULTS We included twenty-one studies in the final review. Pooled analyses suggested that those with the highest Citrus fruit intake compared to the lowest intake had a 9% reduction in lung cancer risk [OR 0.91 (95 % CI 0.84-0.98)]. We found a nonlinear association between Citrus intake and lung cancer risk in the dose-response analysis (p = 0.0054) and that the risk reached the minimum (OR = 0.91) around 60 g/d. However, no obvious dose-response association was observed with intakes above 80 g/d. CONCLUSION We found that Citrus fruit intake was negatively associated with the risk of lung cancer. Besides, there was a nonlinear dose-response relationship between Citrus intake and lung cancer risk within a certain range.
Collapse
Affiliation(s)
- Jie Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 227, South Chongqing Road, Shanghai, 200025, China
| | - Jing Gao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, No. 227, South Chongqing Road, Shanghai, 200025, China.
| | - Hong-Li Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, No. 227, South Chongqing Road, Shanghai, 200025, China
| | - Ying Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 227, South Chongqing Road, Shanghai, 200025, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, No. 227, South Chongqing Road, Shanghai, 200025, China
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Bi-Yun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, No. 227, South Chongqing Road, Shanghai, 200025, China; Shanghai Clinical Research Promotion and Development Center, Shanghai Shenkang Hospital Development Center, No. 2 Kangding Road, Shanghai, 200041, China.
| |
Collapse
|
13
|
Edatt L, Poyyakkara A, Raji GR, Ramachandran V, Shankar SS, Kumar VBS. Role of Sirtuins in Tumor Angiogenesis. Front Oncol 2020; 9:1516. [PMID: 32010617 PMCID: PMC6978795 DOI: 10.3389/fonc.2019.01516] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Generally, changes in the metabolic status of cells under conditions like hypoxia and accumulation of lactate can be sensed by various sensing mechanisms, leading to modulation of a number of signal transduction pathways and transcription factors. Several of the proangiogenic cytokines like VEGF, FGF, PDGF, TGF-β, Ang-2, ILs, etc. are secreted by cancer cells, under hypoxic microenvironment. These cytokines bind to their receptors on the endothelial cells and activates a number of signaling pathways including Akt/PIP3, Src, p38/MAPK, Smad2/3, etc., which ultimately results in the proliferation and migration of endothelial cells. Transcription factors that are activated in response to the metabolic status of tumors include HIFs, NF-κb, p53, El-2, and FOXO. Many of these transcription factors has been reported to be regulated by a class of histone deacetylase called sirtuins. Sirtuins are NAD+ dependent histone deacetylases that play pivotal role in the regulation of tumor cell metabolism, proliferation, migration and angiogenesis. The major function of sirtuins include, deacetylation of histones as well as some non-histone proteins like NF-κB, FOXOs, PPAR⋎, PGC1-α, enzymes like acetyl coenzymeA and structural proteins like α tubulin. In the cell, sirtuins are generally considered as the redox sensors and their activities are dependent on the metabolic status of the cell. Understanding the intricate regulatory mechanisms adopted by sirtuins, is crucial in devising effective therapeutic strategies against angiogenesis, metastasis and tumor progression. Keeping this in mind, the present review focuses on the role of sirtuins in the process of tumor angiogenesis and the regulatory mechanisms employed by them.
Collapse
Affiliation(s)
| | | | | | | | | | - V. B. Sameer Kumar
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, India
| |
Collapse
|
14
|
He L, Zhu W, Chen Q, Yuan Y, Wang Y, Wang J, Wu X. Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics 2019; 9:8206-8220. [PMID: 31754391 PMCID: PMC6857047 DOI: 10.7150/thno.37455] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/14/2019] [Indexed: 12/19/2022] Open
Abstract
Background: By providing oxygen, nutrients and metastatic conduits, tumour angiogenesis is essential for cancer metastasis. Cancer cell-secreted microRNAs can be packaged into exosomes and are implicated in different aspects of tumour angiogenesis. However, the underlying mechanisms are incompletely understood. Methods: The GEPIA database and in situ hybridization assay were used to analyse expression of miR-205 in ovarian tissues. Immunohistochemistry was performed to examine the relationship between miR-205 and microvessel density. Expression of circulating miR-205 was evaluated by RT-PCR and GEO database analysis. Co-culture and exosome labelling experiments were performed to assess exosomal miR-205 transfer from ovarian cancer (OC) cells to endothelial cells ECs. Exosome uptake assays were employed to define the cellular pathways associated with the endocytic uptake of exosomal miR-205. The role of exosomal miR-205 in angiogenesis was further investigated in vivo and in vitro. Western blotting and rescue experiments were applied to detect regulation of the PTEN-AKT pathway by exosomal miR-205 in ECs. Results: miR-205 was up-regulated in OC tissues, and high expression of miR-205 was associated with metastatic progression in OC patients. Moreover, miR-205 was highly enriched in cancer-adjacent ECs, and up-regulation of miR-205 correlated positively with high microvessel density in OC patients. Importantly, miR-205 was markedly enriched in the serum of OC patients, and a high level of miR-205 in circulating exosomes was associated with OC metastasis. In addition, OC-derived miR-205 was secreted into the extracellular space and efficiently transferred to adjacent ECs in an exosome-dependent manner, and the lipid raft-associated pathway plays an important role in regulating uptake of exosomal miR-205. Exosomal miR-205 from OC cells significantly promoted in vitro angiogenesis and accelerated angiogenesis and tumour growth in a mouse model. Furthermore, we found that exosomal miR-205 induces angiogenesis via the PTEN-AKT pathway. Conclusion: These findings demonstrate an exosome-dependent mechanism by which miR-205 derived from cancer cells regulates tumour angiogenesis and implicate exosomal miR-205 as a potential therapeutic target for OC.
Collapse
|
15
|
Naderali E, Valipour B, Khaki AA, Soleymani Rad J, Alihemmati A, Rahmati M, Nozad Charoudeh H. Positive Effects of PI3K/Akt Signaling Inhibition on PTEN and P53 in Prevention of Acute Lymphoblastic Leukemia Tumor Cells. Adv Pharm Bull 2019; 9:470-480. [PMID: 31592121 PMCID: PMC6773944 DOI: 10.15171/apb.2019.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose: The PI3K/Akt signaling pathway regulates cell growth, proliferation and viability in
hematopoietic cells. This pathway always dysregulates in acute lymphoblastic leukemia (ALL).
PTEN and P53 are tumor suppressor genes correlated with PI3K/Akt signaling pathway, and both
have a tight link in regulation of cell proliferation and cell death. In this study, we investigated
the effects of dual targeting of PI3K/Akt pathway by combined inhibition with nvp-BKM-120
(PI3K inhibitor) and MK-2206 (Akt inhibitor) in relation with PTEN and P53 on apoptosis and
proliferation of leukemia cells.
Methods: Both T and B ALL cell lines were treated with both inhibitors alone or in combination
with each other, and induction of apoptosis and inhibition of proliferation were evaluated by
flow cytometry. Expression levels of PTEN as well as p53 mRNA and protein were measured by
real-time qRT-PCR and western blot, respectively.
Results: We indicated that both inhibitors (BKM-120 and MK-2206) decreased cell viability and
increased cytotoxicity in leukemia cells. Reduction in Akt phosphorylation increased PTEN and
p53 mRNA and p53 protein level (in PTEN positive versus PTEN negative cell lines). Additionally,
both inhibitors, particularly in combination with each other, increased apoptosis (evaluated
with Annexin V and caspase 3) and reduced proliferation (Ki67 expression) in leukemia cells.
However, administration of IL7 downregulated PTEN and P53 mRNA expression and rescued
cancer cells following inhibition of BKM-120 and MK-2206.
Conclusion: This investigation suggested that inhibition of Akt and PI3K could be helpful in
leukemia treatment.
Collapse
Affiliation(s)
- Elahe Naderali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afshin Khaki
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Clinical Biochemistry Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
16
|
Zhang Y, Liu J, Lv Y, Zhang C, Guo S. LncRNA meg3 suppresses hepatocellular carcinoma in vitro and vivo studies. Am J Transl Res 2019; 11:4089-4099. [PMID: 31396320 PMCID: PMC6684911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
Although abnormal expression of the long non-coding RNA (lncRNA) MEG3 has been reported in multiple cancer types, the role of MEG3 in the pathobiology of hepatocellular carcinoma (HCC) remains unknown. This study evaluated the expression of lncRNA MEG3 and a microRNA (miRNA-10a-5p) implicated in HCC metastasis in cancer and carcinoma adjacent tissues of HCC samples (n=30 each) via in situ hybridization and quantitative RT-PCR. The effects of overexpressing either MEG3 alone, or MEG3 in combination with miRNA-10a-5p, on the proliferation, apoptosis, cell cycle progression, migration, and invasion of HepG2 cells were evaluated using functional assays. Dual luciferase reporter assays and western blotting were employed to delineate the mechanisms of MEG3 and miRNA-10a-5p regulation of key oncogenes and tumor suppressors in HCC cells. Compared to carcinoma-adjacent regions, MEG3 expression was downregulated in cancer regions of HCC samples; by contrast, miRNA-10a-5p was overexpressed in cancer regions compared to tumor-adjacent areas. Furthermore, overexpression of MEG3 (a) decreased proliferation, migration, and invasion of HepG2 cells; (b) enhanced apoptosis and the proportion of HepG2 cells in G1 of the cell cycle; (c) increased the expression of phosphatase and tensin homolog (PTEN), Bcl2-associated X (Bax), and p53 proteins; and (d) decreased the expression of miRNA-10a-5p, AKT, p-AKT, Bcl-2, and the matrix metalloproteinases (MMPs)-2 and -9. Furthermore, miRNA-10a-5p bound the 3-untranslated region of PTEN mRNA and downregulated PTEN protein expression. Taken together, these data suggest that MEG3 regulates the PTEN/AKT/MMP-2/MMP-9 signaling axis and contributes to HCC development by targeting miRNA-10a-5p.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Hand and Foot Surgery, Linyi Central HospitalLinyi 276400, Shandong, China
| | - Jinfeng Liu
- Department of Oncology, Rizhao Hospital of Traditional Chinese MedicineRizhao 276800, Shandong, China
| | - Yan Lv
- Department of Internal Medicine (4), Shandong Provincial Chest HospitalJinan 250013, Shandong, China
| | - Chao Zhang
- Department of Gastroenterology and Hepatobiliary Discipline, Rizhao Hospital of Traditional Chinese MedicineRizhao 276800, Shandong, China
| | - Shuai Guo
- Department of Oncology, Shandong Provincial Chest HospitalJinan 250013, Shandong, China
| |
Collapse
|
17
|
Molecular interactions in juvenile nasopharyngeal angiofibroma: preliminary signature and relevant review. Eur Arch Otorhinolaryngol 2018; 276:93-100. [DOI: 10.1007/s00405-018-5178-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022]
|
18
|
Tsuji-Tamura K, Ogawa M. Morphology regulation in vascular endothelial cells. Inflamm Regen 2018; 38:25. [PMID: 30214642 PMCID: PMC6130072 DOI: 10.1186/s41232-018-0083-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
Morphological change in endothelial cells is an initial and crucial step in the process of establishing a functional vascular network. Following or associated with differentiation and proliferation, endothelial cells elongate and assemble into linear cord-like vessels, subsequently forming a perfusable vascular tube. In vivo and in vitro studies have begun to outline the underlying genetic and signaling mechanisms behind endothelial cell morphology regulation. This review focuses on the transcription factors and signaling pathways regulating endothelial cell behavior, involved in morphology, during vascular development.
Collapse
Affiliation(s)
- Kiyomi Tsuji-Tamura
- 1Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 Japan.,2Present Address: Oral Biochemistry and Molecular Biology, Department of Oral Health Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan
| | - Minetaro Ogawa
- 1Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 Japan
| |
Collapse
|
19
|
Kashyap D, Sharma A, Tuli HS, Sak K, Garg VK, Buttar HS, Setzer WN, Sethi G. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
20
|
Zhang J, Xiang Z, Malaviarachchi PA, Yan Y, Baltz NJ, Emanuel PD, Liu YL. PTEN is indispensable for cells to respond to MAPK inhibitors in myeloid leukemia. Cell Signal 2018; 50:72-79. [PMID: 29964149 DOI: 10.1016/j.cellsig.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
Abstract
Constitutively activated MAPK and AKT signaling pathways are often found in solid tumors and leukemias. PTEN is one of the tumor suppressors that are frequently found deficient in patients with late-stage cancers or leukemias. In this study we demonstrate that a MAPK inhibitor, PD98059, inhibits both AKT and ERK phosphorylation in a human myeloid leukemia cell line (TF-1), but not in PTEN-deficient leukemia cells (TF-1a). Ectopic expression of wild-type PTEN in myeloid leukemia cells restored cytokine responsiveness at physiological concentrations of GM-CSF (<0.02 ng/mL) and significantly improved cell sensitivity to MAPK inhibitor. We also found that Early Growth Response 1 (EGR1) was constitutively over-expressed in cytokine-independent TF-1a cells, and ectopic expression of PTEN down-regulated EGR1 expression and restored dynamics of EGR1 expression in response to GM-CSF stimulation. Data from primary bone marrow cells from mice with Pten deletion further supports that PTEN is indispensible for myeloid leukemia cells in response to MAPK inhibitors. Finally, We demonstrate that the absence of EGR1 expression dynamics in response to GM-CSF stimulation is one of the mechanisms underlying drug resistance to MAPK inhibitors in leukemia cells with PTEN deficiency. Our data suggest a novel mechanism of PTEN in regulating expression of EGR1 in hematopoietic cells in response to cytokine stimulation. In conclusion, this study demonstrates that PTEN is dispensable for myeloid leukemia cells in response to MAPK inhibitors, and PTEN regulates EGR1 expression and contributes to the cytokine sensitivity in leukemia cells.
Collapse
Affiliation(s)
- Jingliao Zhang
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States; Department of Pediatrics, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Zhifu Xiang
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Priyangi A Malaviarachchi
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Yan Yan
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Nicholas J Baltz
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Peter D Emanuel
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States.
| | - Y Lucy Liu
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States.
| |
Collapse
|
21
|
Ouyang ZH, Wang WJ, Yan YG, Wang B, Lv GH. The PI3K/Akt pathway: a critical player in intervertebral disc degeneration. Oncotarget 2017; 8:57870-57881. [PMID: 28915718 PMCID: PMC5593690 DOI: 10.18632/oncotarget.18628] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is thought to be the primary cause of low back pain, a severe public health problem worldwide. Current therapy for IDD aims to alleviate the symptoms and does not target the underlying pathological alternations within the disc. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway protects against IDD, which is attributed to increase of ECM content, prevention of cell apoptosis, facilitation of cell proliferation, induction or prevention of cell autophagy, alleviation of oxidative damage, and adaptation of hypoxic microenvironment. In the current review, we summarize recent progression on activation and negative regulation of the PI3K/Akt signaling pathway, and highlight its impact on IDD. Targeting this pathway could become an attractive therapeutic strategy for IDD in the near future.
Collapse
Affiliation(s)
- Zhi-Hua Ouyang
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China.,Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Bing Wang
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
22
|
Zhou X, Chen L, Grad S, Alini M, Pan H, Yang D, Zhen W, Li Z, Huang S, Peng S. The roles and perspectives of microRNAs as biomarkers for intervertebral disc degeneration. J Tissue Eng Regen Med 2017; 11:3481-3487. [PMID: 28256798 DOI: 10.1002/term.2261] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 04/22/2016] [Accepted: 07/03/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoya Zhou
- Department of Spine Surgery, Shenzhen People's Hospital; Jinan University School of Medicine; Shenzhen 518020 China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen 518055 China
- Department of Science and Education; Shenzhen Luohu People's Hospital; Shenzhen 518001 China
| | - Lili Chen
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen 518055 China
| | - Sibylle Grad
- AO Research Institute Davos Clavadelerstrasse; 8, 7270 Davos Switzerland
| | - Mauro Alini
- AO Research Institute Davos Clavadelerstrasse; 8, 7270 Davos Switzerland
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen 518055 China
| | - Dazhi Yang
- Department of Spine Surgery, Shenzhen People's Hospital; Jinan University School of Medicine; Shenzhen 518020 China
| | - Wanxin Zhen
- Department of Spine Surgery, Shenzhen People's Hospital; Jinan University School of Medicine; Shenzhen 518020 China
| | - Zhizhong Li
- Department of Orthopedics; The First Affiliated Hospital of Jinan University; Guangzhou 510632 China
| | - Shishu Huang
- Department of Spine Surgery, Shenzhen People's Hospital; Jinan University School of Medicine; Shenzhen 518020 China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen 518055 China
- Department of Spine Surgery; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital; Jinan University School of Medicine; Shenzhen 518020 China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen 518055 China
| |
Collapse
|
23
|
Maurya AK, Vinayak M. Quercetin Attenuates Cell Survival, Inflammation, and Angiogenesis via Modulation of AKT Signaling in Murine T-Cell Lymphoma. Nutr Cancer 2017; 69:470-480. [PMID: 28107044 DOI: 10.1080/01635581.2017.1267775] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AKT signaling is important to maintaining normal physiology. Hyperactivation of AKT signaling is frequent in cancer, which maintains a high oxidative state in a tumor microenvironment that is needed for tumor adaptation. Therefore, antioxidants are proposed to exhibit anticancer properties by interfering with the tumor microenvironment. Quercetin is an ubiquitous bioactive antioxidant rich in vegetables and beverages. The present study aimed to analyze cancer preventive property of quercetin in ascite cells of Dalton's lymphoma-bearing mice. Protein level was determined by Western blotting. Nitric oxide (NO) level was estimated spectrophotometrically using Griess reagent. Results show downregulation in phosphorylation of AKT and PDK1 by quercetin, which was consistent with decreased phosphorylation of downstream survival factors such as BAD, GSK-3β, mTOR, and IkBα. Further, quercetin attenuated the levels of angiogenic factor VEGF-A and inflammatory enzymes COX-2 and iNOS as well as NO levels, whereas it increased the levels of phosphatase PTEN. Overall results suggest that quercetin modulates AKT signaling leading to attenuation of cell survival, inflammation, and angiogenesis in lymphoma-bearing mice.
Collapse
Affiliation(s)
- Akhilendra Kumar Maurya
- a Laboratory of Biochemistry and Molecular Biology , Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University , Varanasi , India
| | - Manjula Vinayak
- a Laboratory of Biochemistry and Molecular Biology , Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University , Varanasi , India
| |
Collapse
|
24
|
Tran P, Nguyen C, Klempner SJ. Targeting the Phosphatidylinositol-3-kinase Pathway in Gastric Cancer: Can Omics Improve Outcomes? Int Neurourol J 2016; 20:S131-140. [PMID: 27915478 PMCID: PMC5169087 DOI: 10.5213/inj.1632740.370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/17/2016] [Indexed: 01/08/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K) pathway signaling is an established oncogenic signal transduction pathway implicated in multiple malignancies. Therapeutic targeting of PI3K pathway components has improved outcomes in chronic lymphocytic leukemia, kidney cancer, breast cancer, and neuroendocrine tumors. Gastric cancers harbor some of the highest rates of oncogenic alterations in PI3K but attempts to translate this genomic observation have met with limited clinical success and novel approaches are needed. In the following review we discuss PI3K signaling, previous preclinical and clinical investigations in gastric cancer, and discuss future strategies aimed at overcoming resistance and improving efficacy. Identification and refinement of molecular tumor subtypes, development of predictive biomarkers along, and rational drug combination strategies are key to capitalizing on the therapeutic potential of PI3K pathway directed therapies in gastric cancers.
Collapse
Affiliation(s)
- Phu Tran
- Division of Hematology-Oncology, University of California Irvine, Orange, CA, USA
| | - Cham Nguyen
- Department of Pharmacy, University of California Irvine, Orange, CA, USA
| | - Samuel J. Klempner
- The Angeles Clinic and Research Institute, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
25
|
Tsuji-Tamura K, Ogawa M. Inhibition of the PI3K-Akt and mTORC1 signaling pathways promotes the elongation of vascular endothelial cells. J Cell Sci 2016; 129:1165-78. [PMID: 26826185 DOI: 10.1242/jcs.178434] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022] Open
Abstract
Endothelial cell morphology needs to be properly regulated during angiogenesis. Vascular endothelial growth factor (VEGF) induces endothelial cell elongation, which promotes sprouting of pre-existing vessels. However, therapeutic angiogenesis using VEGF has been hampered by side effects such as elevated vascular permeability. Here, we attempted to induce endothelial cell elongation without an overdose of VEGF. By screening a library of chemical inhibitors, we identified phosphatidylinositol 3-kinase (PI3K)-Akt pathway inhibitors and mammalian target of rapamycin complex 1 (mTORC1) inhibitors as potent inducers of endothelial cell elongation. The elongation required VEGF at a low concentration, which was insufficient to elicit the same effect by itself. The elongation also depended on Foxo1, a transcription factor indispensable for angiogenesis. Interestingly, the Foxo1 dependency of the elongation was overridden by inhibition of mTORC1, but not by PI3K-Akt, under stimulation by a high concentration of VEGF. Dual inhibition of mTORC1 and mTORC2 failed to induce cell elongation, revealing mTORC2 as a positive regulator of elongation. Our findings suggest that the PI3K-Akt-Foxo1 and mTORC1-mTORC2 pathways differentially regulate endothelial cell elongation, depending on the microenvironmental levels of VEGF.
Collapse
Affiliation(s)
- Kiyomi Tsuji-Tamura
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Minetaro Ogawa
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
26
|
Woo YS, Seo HJ, McIntyre RS, Bahk WM. Obesity and Its Potential Effects on Antidepressant Treatment Outcomes in Patients with Depressive Disorders: A Literature Review. Int J Mol Sci 2016; 17:ijms17010080. [PMID: 26771598 PMCID: PMC4730324 DOI: 10.3390/ijms17010080] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence regarding clinical, neurobiological, genetic, and environmental factors suggests a bidirectional link between obesity and depressive disorders. Although a few studies have investigated the link between obesity/excess body weight and the response to antidepressants in depressive disorders, the effect of weight on treatment response remains poorly understood. In this review, we summarized recent data regarding the relationship between the response to antidepressants and obesity/excess body weight in clinical studies of patients with depressive disorders. Although several studies indicated an association between obesity/excess body weight and poor antidepressant responses, it is difficult to draw definitive conclusions due to the variability of subject composition and methodological differences among studies. Especially, differences in sex, age and menopausal status, depressive symptom subtypes, and antidepressants administered may have caused inconsistencies in the results among studies. The relationship between obesity/excess body weight and antidepressant responses should be investigated further in high-powered studies addressing the differential effects on subject characteristics and treatment. Moreover, future research should focus on the roles of mediating factors, such as inflammatory markers and neurocognitive performance, which may alter the antidepressant treatment outcome in patients with comorbid obesity and depressive disorder.
Collapse
Affiliation(s)
- Young Sup Woo
- Department of Psychiatry, College of Medicine, the Catholic University of Korea, Seoul 07345, Korea.
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada.
| | - Hye-Jin Seo
- Department of Psychiatry, College of Medicine, the Catholic University of Korea, Seoul 07345, Korea.
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 2S8, Canada.
| | - Won-Myong Bahk
- Department of Psychiatry, College of Medicine, the Catholic University of Korea, Seoul 07345, Korea.
| |
Collapse
|
27
|
Wang C, Wang WJ, Yan YG, Xiang YX, Zhang J, Tang ZH, Jiang ZS. MicroRNAs: New players in intervertebral disc degeneration. Clin Chim Acta 2015; 450:333-41. [DOI: 10.1016/j.cca.2015.09.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/29/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022]
|
28
|
Hou M, Lai Y, He S, He W, Shen H, Ke Z. SGK3 (CISK) may induce tumor angiogenesis (Hypothesis). Oncol Lett 2015; 10:23-26. [PMID: 26170971 DOI: 10.3892/ol.2015.3182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/27/2015] [Indexed: 12/18/2022] Open
Abstract
Serum- and glucocorticoid-inducible protein kinase 3 (SGK3), also known as cytokine-independent survival kinase (CISK), encoded by chromosome 8q12.2, is a downstream mediator of phosphatidylinositol 3-kinase (PI3K) oncogenic signaling. As a downstream target of PI3K, SGK3 has been reported to mediate pivotal roles in oncogenic progress in various cancers, including breast cancer, ovarian cancer and hepatocellular carcinoma. Functionally parallel to v-akt murine thymoma viral oncogene homolog (AKT)/protein kinase B, SGK3 serves as a hallmark mediating glycogen synthase kinase-β (GSK3-β), B-cell lymphoma (Bcl)-2-associated death promoter, forkead family of transcription factors, Bcl-extra large, Bcl-2, mammalian target of rapamycin, C-X-C chemokine receptor type 4 (CXCR4) and numerous other molecules in cell proliferation, growth, survival, migration and even tumor angiogenesis. Tumor angiogenesis is recognized as an essential step for tumor growth, invasion and metastasis, and it has become an intriguing target for anticancer drug development for tumor investigators worldwide. An abundance of experiments have been performed to investigate the role of the phosphoinositide 3-kinase (PI3K)/AKT pathway in regulating tumor angiogenesis. The mechanism of angiogenesis regulated by the PI3K/AKT pathway is, to a certain extent, clear. Although a number of SGK3 target molecules, including CXCR4 and GSK3β, have demonstrated potential roles in promoting angiogenesis, the exact association between angiogenesis and SGK3 remains unclear. Thus, we hypothesize that SGK3, parallel to AKT, may also be important in mediating angiogenesis. Identifying the role of SGK3 in tumor angiogenesis will certainly present a novel perspective on the malignant transformation of tumors, as well as a target for tumor therapy.
Collapse
Affiliation(s)
- Minzhi Hou
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yingrong Lai
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shanyang He
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hongwei Shen
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
29
|
PI3K/Akt signaling in osteosarcoma. Clin Chim Acta 2015; 444:182-92. [PMID: 25704303 DOI: 10.1016/j.cca.2014.12.041] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 12/19/2022]
Abstract
Osteosarcoma (OS) is the most common nonhematologic bone malignancy in children and adolescents. Despite the advances of adjuvant chemotherapy and significant improvement of survival, the prognosis remains generally poor. As such, the search for more effective anti-OS agents is urgent. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is thought to be one of the most important oncogenic pathways in human cancer. An increasing body of evidence has shown that this pathway is frequently hyperactivated in OS and contributes to disease initiation and development, including tumorigenesis, proliferation, invasion, cell cycle progression, inhibition of apoptosis, angiogenesis, metastasis and chemoresistance. Inhibition of this pathway through small molecule compounds represents an attractive potential therapeutic approach for OS. The aim of this review is to summarize the roles of the PI3K/Akt pathway in the development and progression of OS, and to highlight the therapeutic potential of targeting this signaling pathway. Knowledge obtained from the application of these compounds will help in further understanding the pathogenesis of OS and designing subsequent treatment strategies.
Collapse
|
30
|
Phosphatase and tension homolog overexpression in insulin resistant diabetic adipose tissue. ACTA ACUST UNITED AC 2014; 29:167-73. [PMID: 25264885 DOI: 10.1016/s1001-9294(14)60063-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the expression of phosphatase and tension homolog (PTEN) in adipose tissue of KKAy diabetic mice, a mouse model of type 2 diabetes. METHODS KKAy diabetic mice were fed with high fat diet for 4 weeks. After blood glucose met the criteria of diabetes (over 16.7 mmol/L), mice were randomly divided into 3 groups: a control group (without any treatment), a rosiglitazone group (treated with rosiglitazone 12.5 mg/kg.d once per day), and a metformin group (treated with metformin 3 g/kg.d twice daily). After 4 weeks, we then determined the expression of PTEN and phosphoserine 473-Akt (pS473-Akt) in the epididymal adipose tissue with Western blots. The mice in each group were further divided into the insulin (-) subgroup and insulin (+) subgroup, which were intraperitoneally injected with saline and insulin (5 mU/g body weight), respectively. RESULTS The expression of PTEN was elevated in the epididymal adipose tissue obtained from KKAy diabetic mice compared with that from the C57BL/6J mice (P<0.001). In accordance with the enhanced expression of PTEN, the level of pS473-Akt stimulated by insulin was decreased in the adipose tissue of KKAy mice compared to the C57BL/6J mice (P<0.001). Treatment with the insulin-sensitizing agents, rosiglitazone and metformin did not inhibit the elevated expression of PTEN in adipose tissue of KKAy diabetic mice. CONCLUSION PTEN may play an important role in the development of insulin resistance in adipose tissue of type 2 diabetes mice model.
Collapse
|
31
|
Tokuhira N, Kitagishi Y, Suzuki M, Minami A, Nakanishi A, Ono Y, Kobayashi K, Matsuda S, Ogura Y. PI3K/AKT/PTEN pathway as a target for Crohn's disease therapy (Review). Int J Mol Med 2014; 35:10-6. [PMID: 25352295 DOI: 10.3892/ijmm.2014.1981] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/16/2014] [Indexed: 11/06/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease, is a subject of increasing interest. Loss-of-function mutations in nucleotide-binding oligomerization domain-containing protein 2 (NOD2) are strong genetic factors linked to Crohn's disease, which eventually leads to an excessive mucosal inflammatory response directed against components of normal gut microbiota. Reactive oxygen species (ROS) play an important role in inflammation processes, as well as in transduction of signals from receptors for several cytokines, such as tumor necrosis factor α (TNFα). ROS activate nuclear factor-κB (NF-κB) via IκB kinase (IKK) through the PI3K/AKT/PTEN pathway. Therefore, this pathway is recognized to play a key role in Crohn's disease. Loss of function has been demonstrated to occur as an early event in a wide variety of diseases. Given this prevalent involvement in a number of diseases, the molecular development that modulates this pathway has been the subject of several studies. In addition, it has been the focus of extensive research and drug discovery activities. A better understanding of the molecular assemblies may reveal novel targets for the therapeutic development against Crohn's disease.
Collapse
Affiliation(s)
- Nana Tokuhira
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Miho Suzuki
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Yuna Ono
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Keiko Kobayashi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| |
Collapse
|
32
|
Setia S, Nehru B, Sanyal SN. The PI3K/Akt pathway in colitis associated colon cancer and its chemoprevention with celecoxib, a Cox-2 selective inhibitor. Biomed Pharmacother 2014; 68:721-7. [PMID: 25107843 DOI: 10.1016/j.biopha.2014.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/02/2014] [Indexed: 01/18/2023] Open
Abstract
Oncogenesis and angiogenesis are the two major pathways involved in tumorigenesis. Oncogenesis involves the PI3K/Akt and Wnt/β-catenin pathways, both of which are upregulated in several types of cancers. We established animal model of ulcerative colitis, colon cancer and colitis associated colon cancer by the incorporation of dextran sufate sodium (DSS) and dimethyl hydrazine (DMH), alone as well as in combination. Apart from the gross morphological analysis, we presently explored the role of various components of the oncogenic pathways, including PI3K, p-Akt, PTEN, PDK1, mTOR, GSK-3β, Wnt and β-catenin and found the elevated levels of these proteins, except the tumor suppressors PTEN and GSK-3β, whose levels were downregulated in both inflammatory and carcinogenic conditions. We also studied the protein expression of some major angiogenic agents, such as Vegf, MMP-2, MMP-9 and iNOS. The angiogenic pathway was also upregulated presently in the DSS, DMH and DSS+DMH groups. Also, the reactive oxygen and nitrogen species, which lead to oxidative stress, were found to be elevated in these groups. All these effects were brought towards normal by the co-administration of celecoxib, a second generation non-steroidal anti-inflammatory drug (NSAID), with DSS, DMH and their combinatorial group.
Collapse
Affiliation(s)
- Shruti Setia
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Bimla Nehru
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
33
|
Zhou J, Ping FF, Lv WT, Feng JY, Shang J. Interleukin-18 directly protects cortical neurons by activating PI3K/AKT/NF-κB/CREB pathways. Cytokine 2014; 69:29-38. [PMID: 25022959 DOI: 10.1016/j.cyto.2014.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/12/2014] [Accepted: 05/01/2014] [Indexed: 12/11/2022]
Abstract
Interleukin-18 (IL-18), a member of the IL-1 family of cytokines, was initially identified as an interferon (IFN)-γ-inducing factor. IL-18 is expressed in both immune and non-immune cells and participates in the adjustment of multitude cellular functions. Nonetheless, the effects of IL-18 on cortical neurons have not been explored. The present study was conducted to investigate the influence of IL-18 on rat primary cortical neurons and elucidate the underlying mechanisms. We proved that rrIL-18 increased the brain-derived neurotrophic factor (BDNF) expression in a time-dependent manner. Treatment with rrIL-18 (50 ng/ml) deactivated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) by facilitating its phosphorylation, enhanced the expression of Phosphoinositide 3-OH kinase (PI3K) and p-Akt, standing for the activation of the PI3K/Akt pathway. As its pivotal downstream pathways, nuclear factor-kappa B (NF-κB), cAMP-responsive element binding protein (CREB)/Bcl-2 and glycogen synthase kinase-3β (GSK-3β) were examined in further steps. Our data revealed that rrIL-18 stimulated NF-κB activation, improved p-CREB and anti-apoptotic Bcl-2 expression levels. But rrIL-18 had little or no effect on GSK-3β pathway. Besides, rrIL-18 increased levels of BDNF and Bcl-2/Bax ratio and decreased cleaved caspase-3 expression to protect cortical neurons from damage induced by oxygen-glucose deprivation (OGD). These results in vitro showed the protection of IL-18 on cortical neurons. And this direct neuroprotective effect of IL-18 is crippled by PI3K inhibitor wortmannin.
Collapse
Affiliation(s)
- Jia Zhou
- Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, China
| | - Feng-feng Ping
- Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Department of Clinical Laboratory Science, Wuxi People's Hospital affiliated to Nanjing Medical University, China
| | - Wen-ting Lv
- Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, China
| | - Jun-yi Feng
- Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, China
| | - Jing Shang
- Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, China.
| |
Collapse
|
34
|
BI-69A11 enhances susceptibility of colon cancer cells to mda-7/IL-24-induced growth inhibition by targeting Akt. Br J Cancer 2014; 111:101-11. [PMID: 24892445 PMCID: PMC4090725 DOI: 10.1038/bjc.2014.227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/14/2014] [Accepted: 04/02/2014] [Indexed: 01/21/2023] Open
Abstract
Background: Akt and its downstream signalling pathways contribute to the aetiology and progression of colorectal carcinoma (CRC). Targeting the Akt pathway is an attractive strategy but few chemotherapeutic drugs have been used to treat CRC with only limited success. BI-69A11, a small molecule inhibitor of Akt, efficiently inhibits growth in melanoma cells. Melanoma differentiation associated gene-7 (mda-7)/interleukin-24 promotes cancer-selective apoptosis when delivered by a tropism-modified replication incompetent adenovirus (Ad.5/3-mda-7). However, Ad.5/3-mda-7 displays diminished antitumour efficacy in several CRC cell lines, which correlates with the expression of K-RAS. Methods: The individual and combinatorial effect of BI-69A11 and Ad.5/3-mda-7 in vitro was studied by cell viability, cell cycle, apoptosis and invasion assays in HT29 and HCT116 cells containing wild type or mutant K-ras, respectively. In vivo HT29 tumour xenografts were used to test the efficacy of the combination treatment. Results: BI-69A11 inhibited growth and induced apoptosis in CRC. However, combinatorial treatment was more effective compared with single treatment. This combination showed profound antitumour and anti angiogenic effects in vitro and in vivo by downregulating Akt activity. Conclusions: BI-69A11 enhances the antitumour efficacy of Ad.5/3-mda-7 on CRC overexpressing K-RAS by inducing apoptosis and regulating Akt activity thereby warranting further evaluation in treating CRC.
Collapse
|
35
|
Mabeta P. Inhibition of phosphoinositide 3-kinase is associated with reduced angiogenesis and an altered expression of angiogenic markers in endothelioma cells. Biomed Pharmacother 2014; 68:611-7. [DOI: 10.1016/j.biopha.2014.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022] Open
|
36
|
Westhoff MA, Brühl O, Nonnenmacher L, Karpel-Massler G, Debatin KM. Killing me softly--future challenges in apoptosis research. Int J Mol Sci 2014; 15:3746-67. [PMID: 24595238 PMCID: PMC3975365 DOI: 10.3390/ijms15033746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 12/28/2022] Open
Abstract
The induction of apoptosis, a highly regulated and clearly defined mode of cell dying, is a vital tenet of modern cancer therapy. In this review we focus on three aspects of apoptosis research which we believe are the most crucial and most exciting areas currently investigated and that will need to be better understood in order to enhance the efficacy of therapeutic measures. First, we discuss which target to select for cancer therapy and argue that not the cancer cell as such, but its interaction with the microenvironment is a more promising and genetically stable site of attack. Second, the complexity of combination therapy is elucidated using the PI3-K-mediated signaling network as a specific example. Here we show that the current clinical approach to sensitize malignancies to apoptosis by maximal, prolonged inhibition of so-called survival pathways can actually be counter productive. Third, we propose that under certain conditions which will need to be clearly defined in future, chronification of a tumor might be preferable to the attempt at a cure. Finally, we discuss further problems with utilizing apoptosis induction in cancer therapy and propose a novel potential therapeutic approach that combines the previously discussed features.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany.
| | - Oliver Brühl
- Laboratorio Analisi Sicilia Catania, Lentini (SR) 96016, Italy.
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany.
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany.
| |
Collapse
|
37
|
Matsuda S, Nakanishi A, Wada Y, Kitagishi Y. Roles of PI3K/AKT/PTEN Pathway as a Target for Pharmaceutical Therapy. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2013; 7:23-9. [PMID: 24222802 PMCID: PMC3821079 DOI: 10.2174/1874104501307010023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/23/2013] [Accepted: 10/05/2013] [Indexed: 12/11/2022]
Abstract
Multiple enzymes participate in the phosphorylation of a group of phosphoinositide lipids. Because of their important role in signal transduction, the dysregulated metabolism of phosphoinositides represents a key step in many disease settings. Loss of their function has been demonstrated to occur as an early event a wide variety of carcinogenesis and has therefore been suggested as a biomarker for the premalignant disease. In addition, genetic alterations at multiple nodes in the pathway have been implicated in several other diseases. Accordingly, given this pervasive involvement in many diseases, the development of molecules that modulates this pathway has been initiated in studies. They have been the focus of extensive research and drug discovery activities. A better understanding of the molecular connections could uncover new targets for drug development.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | | | | | | |
Collapse
|
38
|
Cai J, Yi Z, Lu W, Fang Y, Zhang C. Crosstalk between 5-HT2cR and PTEN signaling pathway in atypical antipsychotic-induced metabolic syndrome and cognitive dysfunction. Med Hypotheses 2013; 80:486-9. [PMID: 23375407 DOI: 10.1016/j.mehy.2013.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/05/2013] [Accepted: 01/09/2013] [Indexed: 12/27/2022]
Abstract
Accumulating evidence indicates that chronic treatment with atypical antipsychotics (AAPs) leads to metabolic syndrome (MetS) and cognitive dysfunction. It has been found that patients receiving antipsychotic treatment with MetS have significantly worse cognitive function when compared to those without the MetS, suggesting an intrinsic relationship between MetS and cognitive dysfunction. Thus, investigating the reasons for the side effects induced by AAPs is an important step in the effort to understand the patholophysiology of this condition. The 5-HT2c receptor (5-HT2cR) antagonist properties of AAPs are likely to contribute to AAP-induced MetS. There is crosstalk between phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and 5-HT2cR. PTEN negatively regulates the activity of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, which plays an important role in obesity-induced insulin resistance in peripheral tissue. In the central nervous system, PI3K/AKT signaling modulates synaptic plasticity, a mechanism underlying learning and memory processes. This suggests that PI3K/AKT signaling contributes to both metabolic and cognitive activities. Since PTEN negatively regulates PI3K/AKT signaling and has crosstalk with 5-HT2cR, we hypothesized that the 5-HT2cR antagonism of AAPs may disrupt its crosstalk with PTEN and then trigger the PI3K/AKT signaling, and AAP-induced MetS and cognitive impairments may occur via this analogous signaling pathway.
Collapse
Affiliation(s)
- Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | | | | | | | | |
Collapse
|
39
|
Roles for PI3K/AKT/PTEN Pathway in Cell Signaling of Nonalcoholic Fatty Liver Disease. ISRN ENDOCRINOLOGY 2013; 2013:472432. [PMID: 23431468 PMCID: PMC3570922 DOI: 10.1155/2013/472432] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver pathologies and is associated with obesity and the metabolic syndrome, which represents a range of fatty liver diseases associated with an increased risk of type 2 diabetes. Molecular mechanisms underlying how to make transition from simple fatty liver to nonalcoholic steatohepatitis (NASH) are not well understood. However, accumulating evidence indicates that deregulation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in hepatocytes is a common molecular event associated with metabolic dysfunctions including obesity, metabolic syndrome, and the NAFLD. A tumor suppressor PTEN negatively regulates the PI3K/AKT pathways through its lipid phosphatase activity. Molecular studies in the NAFLD support a key role for PTEN in hepatic insulin sensitivity and the development of steatosis, steatohepatitis, and fibrosis. We review recent studies on the features of the PTEN and the PI3K/AKT pathway and discuss the protein functions in the signaling pathways involved in the NAFLD. The molecular mechanisms contributing to the diseases are the subject of considerable investigation, as a better understanding of the pathogenesis will lead to novel therapies for a condition.
Collapse
|
40
|
Wang G, Chen C, Yang R, Cao X, Lai S, Luo X, Feng Y, Xia X, Gong J, Hu J. p55PIK-PI3K stimulates angiogenesis in colorectal cancer cell by activating NF-κB pathway. Angiogenesis 2013; 16:561-73. [PMID: 23354733 DOI: 10.1007/s10456-013-9336-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/15/2013] [Indexed: 12/19/2022]
Abstract
Vascular growth factor (VEGF) is an important mediator of angiogenesis. PI3K plays essential roles in angiogenesis; however, the mechanisms and specific functions of individual isoforms of PI3K members in tumor angiogenesis regulation are still not fully understood. In this study, we evaluate the role of p55PIK, a PI3K regulatory subunit encoded by PIK3R3 gene, in tumor angiogenesis. We reported that overexpression of p55PIK in cancer cells up-regulated HIF-1α expression and increased VEGF expression. Furthermore, overexpression of p55PIK increased tumor angiogenesis in vivo and in vitro. Moreover, data indicated enhanced HIF-1α expression by p55PIK-PI3K depended on its ability to activate NF-кB signaling pathways, especially to increase the phosphorylation of p65 subunits of NF-κB. Our study suggested that p55PIK-PI3K was essential in regulating cancer cell-mediated angiogenesis and contributed to tumor growth and that the p55PIK provides a potential and specific target for new anti-angiogenesis drug development.
Collapse
Affiliation(s)
- Guihua Wang
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kitagishi Y, Matsuda S. Redox regulation of tumor suppressor PTEN in cancer and aging (Review). Int J Mol Med 2013; 31:511-5. [PMID: 23313933 DOI: 10.3892/ijmm.2013.1235] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/18/2012] [Indexed: 11/05/2022] Open
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has been shown to act as a tumor suppressor whose function includes important roles in regulating oxidative stress, indicating a potential role in oxidative damage-associated cancer. Accumulating evidence has revealed that PTEN also acts as a pivotal determinant of cell fate, regarding senescence and apoptosis, which is mediated by intracellular reactive oxygen species (ROS) generation. Cells are continuously exposed to ROS, which represent mutagens and are thought to be a major contributor to cancer and the aging process. Therefore, cellular ROS sensing and metabolism are firmly regulated by a variety of proteins involved in the redox mechanism. In this review, PTEN and the roles of oxidative stress in phosphoinositide-3 kinase/AKT signaling are summarized with a focus on the links between the pathways and ROS in cancer and aging.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Environmental Health Science, Nara Women's University, Nara 630-8506, Japan
| | | |
Collapse
|
42
|
Wang Y, Huang X, Han J, Zheng W, Ma W. Extract of Perilla frutescens inhibits tumor proliferation of HCC via PI3K/AKT signal pathway. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2012; 10:251-257. [PMID: 24146448 PMCID: PMC3746572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, isoegomaketone(IK) was isolated from Perilla frutescens(L.), a Chinese herbal. The effects of IK were examined by cell viability assay, colony formation assay, xenograft tumor assay and western blotting in HCC cells. We found that IK inhibited cell viability, and its administration decreased tumor volume and weight profoundly. The presence of IK(10 nmol/l) produced a dramatic decrease of pAkt, while total Akt level was not affected. The data suggested that IK from perilla suppressed HCC tumor growth via blocking PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Genetic Engineering, Southern Medical University, Tonghe, Guangzhou 510515, P.R. China
| | | | | | | | | |
Collapse
|
43
|
Kitagishi Y, Kobayashi M, Kikuta K, Matsuda S. Roles of PI3K/AKT/GSK3/mTOR Pathway in Cell Signaling of Mental Illnesses. DEPRESSION RESEARCH AND TREATMENT 2012; 2012:752563. [PMID: 23320155 PMCID: PMC3535741 DOI: 10.1155/2012/752563] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/09/2012] [Accepted: 11/21/2012] [Indexed: 12/26/2022]
Abstract
Several pharmacological agents acting on monoamine neurotransmission are used for the management of mental illnesses. Regulation of PI3K/AKT and GSK3 pathways may constitute an important signaling center in the subcellular integration of the synaptic neurotransmission. The pathways also modulate neuronal cell proliferation, migration, and plasticity. There are evidences to suggest that inflammation of neuron contributes to the pathology of depression. Inflammatory activation of neuron contributes to the loss of glial elements, which are consistent with pathological findings characterizing the depression. A mechanism of anti-inflammatory reactions from antidepressant medications has been found to be associated with an enhancement of heme oxygenase-1 expression. This induction in brain is also important in neuroprotection and neuroplasticity. As enzymes involved in cell survival and neuroplasticity are relevant to neurotrophic factor dysregulation, the PI3K/AKT/GSK3 may provide an important signaling for the neuroprotection in depression. In this paper, we summarize advances on the involvement of the PI3K/AKT/GSK3 pathways in cell signaling of neuronal cells in mental illnesses.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Mayumi Kobayashi
- Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kanae Kikuta
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|