1
|
Okoye CO, Gao L, Wu Y, Li X, Wang Y, Jiang J. Identification, characterization and optimization of culture medium conditions for organic acid-producing lactic acid bacteria strains from Chinese fermented vegetables. Prep Biochem Biotechnol 2024; 54:49-60. [PMID: 37114667 DOI: 10.1080/10826068.2023.2204507] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lactic acid bacteria (LAB) are widely exploited in fermented foods and are gaining attention for novel uses due to their safety as biopreservatives. In this study, several organic acid-producing LAB strains were isolated from fermented vegetables for their potential application in fermentation. We identified nine novel strains belonging to four genera and five species, Lactobacillus plantarum PC1-1, YCI-2 (8), YC1-1-4B, YC1-4 (4), and YC2-9, Lactobacillus buchneri PC-C1, Pediococcus pentosaceus PC2-1 (F2), Weissella hellenica PC1A, and Enterococcus sp. YC2-6. Based on the results of organic acids, acidification, growth rate, antibiotic activity and antimicrobial inhibition, PC1-1, YC1-1-4B, PC2-1(F2), and PC-C1 showed exceptional biopreservative potential. Additionally, PC-C1, YC1-1-4B, and PC2-1(F2) recorded higher (p < 0.05) growth by utilizing lower concentrations of glucose (20 g/L) and soy peptone (10 g/L) as carbon and nitrogen sources in optimized culture conditions (pH 6, temperature 32 °C, and agitation speed 180 rpm) at 24hr and acidification until 72hr in batch fermentation, which suggests their application as starter cultures in industrial fermentation.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Lu Gao
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xia Li
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yongli Wang
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianxiong Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Mahakhan P, Apiso P, Srisunthorn K, Vichitphan K, Vichitphan S, Punyauppa-path S, Sawaengkaew J. Alkaline Protease Production from Bacillus gibsonii 6BS15-4 Using Dairy Effluent and Its Characterization as a Laundry Detergent Additive. J Microbiol Biotechnol 2023; 33:195-202. [PMID: 36697226 PMCID: PMC9998202 DOI: 10.4014/jmb.2210.10007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 01/27/2023]
Abstract
Protease is a widely used enzyme particularly in the detergent industry. In this research, we aimed to isolate alkaline protease-producing bacteria for characterization as a laundry detergent additive. The screening of alkaline protease production was investigated on basal medium agar plus 1% skim milk at pH 11, with incubation at 30°C. The highest alkaline protease-producing bacterium was 6BS15-4 strain, identified as Bacillus gibsonii by 16S rRNA gene sequencing. While the optimum pH was 12.0, the strain was stable at pH range 7.0-12.0 when incubated at 45°C for 60 min. The alkaline protease produced by B. gibsonii 6BS15-4 using dairy effluent was characterized. The optimum temperature was 60°C and the enzyme was stable at 55°C when incubated at pH 11.0 for 60 min. Metal ions K+, Mg2+, Cu2+, Na+, and Zn2+ exhibited a slightly stimulatory effect on enzyme activity. The enzyme retained over 80% of its activity in the presence of Ca2+, Ba2+, and Mn2+. Thiol reagent and ethylenediaminetetraacetic acid did not inhibit the enzyme activity, whereas phenylmethylsulfonyl fluoride significantly inhibited the protease activity. The alkaline protease from B. gibsonii 6BS15-4 demonstrated efficiency in blood stain removal and could therefore be used as a detergent additive, with potential for various other industrial applications.
Collapse
Affiliation(s)
- Polson Mahakhan
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patapee Apiso
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kannika Srisunthorn
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanit Vichitphan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
- Fermentation Research Center for Value-Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sukanda Vichitphan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
- Fermentation Research Center for Value-Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sukrita Punyauppa-path
- Department of Mathematics and Science, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan Surin Campus, Surin 32000, Thailand
| | - Jutaporn Sawaengkaew
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Fermentation Research Center for Value-Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Cahyaningtyas HAA, Suyotha W, Cheirsilp B, Prihanto AA, Yano S, Wakayama M. Optimization of protease production by Bacillus cereus HMRSC30 for simultaneous extraction of chitin from shrimp shell with value-added recovered products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22163-22178. [PMID: 34780017 DOI: 10.1007/s11356-021-17279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Chitin extraction from shrimp shell powder (SSP) using protease-producing microbes is an attractive approach for valorizing shrimp shell waste because it is simple and environmentally friendly. In this study, the protease production and chitin extraction from SSP by Bacillus cereus HMRSC30 were simultaneously optimized using statistical approaches. As a result, fermentation in medium composed of 30 g/L SSP, 0.2 g/L MgSO4 · 7H2O, 3 g/L (NH4)2SO4, 0.5 g/L K2HPO4, and 1.5 g/L KH2PO4 (pH 6.5) for 7 days maximized protease production (197.75 ± 0.33 U/mL) to approximately 1.64-fold compared to unoptimized condition (126.8 ± 0.047 U/mL). This level of enzyme production was enough to achieve 97.42 ± 0.28% deproteinization (DP) but low demineralization (DM) of 53.76 ± 0.21%. The high DM of 90% could be easily accomplished with the post-treatment using 0.4 M HCl and acetic acid. In addition, the study evaluated the possible roadmap to maximize the value of generated products and obtain additional profits from this microbial process. The observation showed the possibility of serving crude chitin as a bio-adsorbent with the highest removal capacity against Coomassie brilliant blue (97.99%), followed by methylene blue (74.42%). The recovered protease exhibited the function to remove egg yolk stain, indicating its potential for use as a detergent in de-staining. The results corroborated the benefits of microbial fermentation by B. cereus HMRSC30 as green process for comprehensive utilization of shrimp shell waste as well as minimizing waste generation along the established process.
Collapse
Affiliation(s)
- Hilmi Amanah Aditya Cahyaningtyas
- International Program in Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Wasana Suyotha
- International Program in Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand.
| | - Benjamas Cheirsilp
- International Program in Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Asep Awaludin Prihanto
- Department Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang, 65415, East Java, Indonesia
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
4
|
Proteomic analysis and optimized production of Alkalihalobacillus patagoniensis PAT 05 T extracellular proteases. Bioprocess Biosyst Eng 2020; 44:225-234. [PMID: 32888092 DOI: 10.1007/s00449-020-02436-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Extracellular proteolytic extracts from the haloalkalitolerant strain Alkalihalobacillus patagoniensis PAT 05T have proved highly efficient to reduce wool felting, as part of an ecofriendly treatment suitable for organic wool. In the present study, we identified the extracellular proteases produced by PAT 05T and we optimized its growth conditions for protease production through statistical methods. A total of 191 proteins were identified in PAT 05T culture supernatants through mass spectrometry analysis. Three of the 6 detected extracellular proteases belonged to the serine-endopeptidase family S8 (EC 3.4.21); two of them showed 86.3 and 67.9% identity with an alkaline protease from Bacillus alcalophilus and another one showed 50.4% identity with Bacillopeptidase F. The other 3 proteases exhibited 55.3, 49.4 and 61.1% identity with D-alanyl-D-alanine carboxypeptidase DacF, D-alanyl-D-alanine carboxypeptidase DacC and endopeptidase LytE, respectively. Using a Fractional Factorial Design followed by a Central Composite Design optimization, a twofold increase in protease production was reached. NaCl concentration was the most influential factor on protease production. The usefulness of PAT 05T extracellular proteolytic extracts to reduce wool felting was possible associated with the activity of the serine-endopeptidases closely related to highly alkaline keratinolytic proteases. The other identified proteases could cooperate, improving protein hydrolysis. This study provided valuable information for the exploitation of PAT 05T proteases which have potential for the valorization of organic wool as well as for other industrial applications.
Collapse
|
5
|
Pathak AP, Rathod MG, Mahabole MP, Khairnar RS. Enhanced catalytic activity of Bacillus aryabhattai P1 protease by modulation with nanoactivator. Heliyon 2020; 6:e04053. [PMID: 32529068 PMCID: PMC7276444 DOI: 10.1016/j.heliyon.2020.e04053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/26/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
In the developing area of modern nanobiotechnology, the research is being focused on enhancement of catalytic performance in terms of efficiency and stability of enzymes to fulfill the industrial demand. In the context of this interdisciplinary era, we isolated and identified alkaline protease producer Bacillus aryabhattai P1 by polyphasic approach and then followed one variable at a time approach to optimize protease production from P1. The modified components of fermentation medium (g/L) were wheat bran 10, soybean flour 10, yeast extract 5, NaCl 10, KH2PO4 1, K2HPO4 1 and MgSO4·7H2O 0.2 (pH 9). The optimum alkaline protease production from P1 was recorded 75 ± 3 U/mg at 35 °C and pH 9 after 96 h of fermentation period. Molecular weight of partially purified P1 alkaline protease was 26 KDa as revealed by SDS-PAGE. Calcium based nanoceramic material was prepared by wet chemical precipitation method and doped in native P1 protease for catalytic activity enhancement. Catalytic activity of modified P1 protease was attained by nanoactivator mediated modulation was more by 5.58 fold at pH 10 and 30 °C temperature. The nanoceramic material named as nanoactivator, with grain size of 40–60 nm was suitable to redesign the active site of P1 protease. Such types of modified proteases can be used in different nanobiotechnological applications.
Collapse
Affiliation(s)
- Anupama P Pathak
- School of Life Sciences (DST-FIST Phase-I & UGC-SAP DRS-II Sponsored School), Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
| | - Mukundraj G Rathod
- Department of Biotechnology & Bioinformatics (U.G. & P.G.), Yeshwant College of Information Technology (BT & BI) Parbhani (affiliated to S.R.T.M. University, Nanded), Maharashtra, India
| | - Megha P Mahabole
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
| | - Rajendra S Khairnar
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
| |
Collapse
|
6
|
Statistical optimisation of protease production using a freshwater bacterium Chryseobacterium cucumeris SARJS-2 for multiple industrial applications. 3 Biotech 2020; 10:279. [PMID: 32537379 DOI: 10.1007/s13205-020-02259-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022] Open
Abstract
Feathers, rich in keratin, are usually the unused by-products of poultry industries. In addition, the cast-off X-ray films serve as secondary sources of silver, and the traditional method of silver extraction from this source is costly and not eco-friendly. Therefore, the current study focuses on protease production using a freshwater bacterium Chryseobacterium cucumeris SARJS-2, aiming to convert these wastes into useful products. The protease production was optimized by one-factor-at-a-time (OFAT), followed by Plackett Burman design (PBD) and response surface methodology (RSM). The protease production got enhanced by more than two folds after the statistical optimisation. Upon partial purification, the enzyme activity increased by approximately three folds. The protease was active in the range of temperatures from 25 to 75 °C, but the optimum temperature was recorded as 35 °C. The protease exhibited detergent compatibility and organic solvent stability. The detergent compatibility suggests the protease could be a detergent additive. It was also found that the presence of Fe+2 enhanced protease activity. The protease was tested for stain removal, feather degradation and silver recovery applications. It was found that the protease could efficiently remove stains of blood and tomato sauce. In addition, the protease was found to be a successful candidate for feather degradation, thereby feather-hydrolysate production which has prominent roles as nature-friendly fertilizer and animal feed ingredient. The protease also degraded gelatin from the X-ray films to release the silver-halides for silver recovery. The results recommend that the SARJS-2 protease is a potential candidate for use in eco-friendly applications in various industrial sectors.
Collapse
|
7
|
Ahmad MN, Mohd Azli NH, Ismail H, Mohamed Iqbal MA, Mat Piah B, Normaya E. Inhibitory effects of
Manihot esculenta
extracts on
Food‐Borne
pathogens and their antioxidant properties: Supercritical fluid extraction, statistical analysis, and molecular docking study. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of ScienceInternational Islamic University Malaysia Kuantan Malaysia
- IUM Poison CentreInternational Islamic University Malaysia Kuantan Malaysia
| | - Nur Hidayah Mohd Azli
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of ScienceInternational Islamic University Malaysia Kuantan Malaysia
| | - Hakimah Ismail
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of ScienceInternational Islamic University Malaysia Kuantan Malaysia
| | | | - Bijarimi Mat Piah
- Faculty of Chemical & Natural Resources EngineeringUniversiti Malaysia Pahang Kuantan Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of ScienceInternational Islamic University Malaysia Kuantan Malaysia
| |
Collapse
|
8
|
Rapid Protocol for Screening of Biocatalyst for Application in Microbial Fuel Cell: A Study with Shewanella algae. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04444-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Statistical modelling and optimization of protease production by an autochthonous Bacillus aryabhattai Ab15-ES: A response surface methodology approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101528] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Liu G, Jiang YM, Liu YC, Han LL, Feng H. A novel DNA methylation motif identified in Bacillus pumilus BA06 and possible roles in the regulation of gene expression. Appl Microbiol Biotechnol 2020; 104:3445-3457. [PMID: 32088759 DOI: 10.1007/s00253-020-10475-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 01/26/2023]
Abstract
Single-molecule real-time (SMRT) sequencing can be used to identify a wide variety of chemical modifications of the genome, such as methylation. Here, we applied this approach to identify N6-methyl-adenine (m6A) and N4-methyl-cytosine (m4C) modification in the genome of Bacillus pumilus BA06. A typical methylation recognition motif of the type I restriction-modification system (R-M), 5'-TCm6AN8TTGG-3'/3'-AGTN8m6AACC-5', was identified. We confirmed that this motif was a new type I methylation site using REBASE analysis and that it was recognized by a type I R-M system, Bpu6ORFCP, according to methylation sensitivity assays in vivo and vitro. Furthermore, we found that deletion of the R-M system Bpu6ORFCP induced transcriptional changes in many genes and led to increased gene expression in pathways related to ABC transporters, sulfur metabolism, ribosomes, cysteine and methionine metabolism and starch and sucrose metabolism, suggesting that the R-M system in B. pumilus BA06 has other significant biological functions beyond protecting the B. pumilus BA06 genome from foreign DNA.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Yang-Mei Jiang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Yong-Cheng Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Lin-Li Han
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Hong Feng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.
| |
Collapse
|
11
|
Optimization, isolation, characterization and hepatoprotective effect of a novel pigment-protein complex (phycocyanin) producing microalga: Phormidium versicolorNCC-466 using response surface methodology. Int J Biol Macromol 2019; 137:647-656. [PMID: 31265852 DOI: 10.1016/j.ijbiomac.2019.06.237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/07/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022]
Abstract
In our study, we focused on the optimization; antioxidant and hepatoprotective potentials of novel pigment-protein complex(C-PC) isolated from Phormidium versicolor against cadmium induced liver injury in rats. From analysis, the C-PC extraction parameters were optimized using the response surface methodology (RSM) for optimal recoveries of C-PC extraction. For analysis, the optimum operational conditions for maximizing phycocyanins concentration (67.45mg/g DM) were found to be water/solid 2, temperature 32.5°C and pH7.2.This pigment was identified using HPLC and FTIR analysis. In addition, the molecular masses of α and β subunits were 17 and 19kDa. Scavenging activity of superoxide anion, hydroxyl, nitric oxide radicals and metal chelating in vitro results indicated that C-PC has an excellent capacity as antioxidant. In vivo study, C-PC significantly prevented cadmium-induced elevation of ALAT, ASAT and bilirubin levels in rats. The histopathological observations supported the results serum enzymes assays. The results of this study revealed that C-PC has significant hepatoprotective potential. C-PC (50mgkg-1 body weight) significantly enhanced the levels of antioxidant enzymes. It can be concluded that C-PC possesses prevention action against hepatotoxicity caused by cadmium.
Collapse
|
12
|
Priyanka P, Kinsella G, Henehan GT, Ryan BJ. Isolation, purification and characterization of a novel solvent stable lipase from Pseudomonas reinekei. Protein Expr Purif 2019; 153:121-130. [DOI: 10.1016/j.pep.2018.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/04/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023]
|
13
|
Production, Partial Purification and Based SDS-PAGE Profiles of Caseinolytic Enzyme in two Bacillus Strains Isolated from Fermented Cassava leaves "Ntoba mbodi" in Congo Brazzaville. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Yu P, Zhang Y, Gu D. Production optimization of a heat-tolerant alkaline pectinase from Bacillus subtilis ZGL14 and its purification and characterization. Bioengineered 2017; 8:613-623. [PMID: 28282260 DOI: 10.1080/21655979.2017.1292188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Alkaline pectinase has important applications in the pretreatment of waste water from food processing and in both the fabric and paper industries. In this study, a 2-level factorial design was used to screen significant factors that affect the activity of alkaline pectinase, and the response surface methodology (RSM) with a Box-Behnken design (BBD) was used to optimize their concentrations. Starch, peptone, KH2PO4 and K2HPO4·3H2O were found to significantly affect the activity of alkaline pectinase. Their optimal concentrations were as follows: 4.68% starch, 1.6% peptone, 0.26% KH2PO4 and 0.68% K2HPO4·3H2O. Under the above conditions, the activity of alkaline pectinase was significantly improved to 734.11 U/mL. Alkaline pectinase was purified to homogeneity with a recovery rate of 9.6% and a specific activity of 52372.52 U/mg. Its optimal temperature and pH were 50°C and 8.6, respectively. The purified enzyme showed strong thermo-stability and good alkali resistance. In addition, the activity of alkaline pectinase was improved in the presence of Mg2+. Cu2+, Mn2+, and Co2+ significantly inhibited its activity. This study provides an important basis for the future development and use of a heat-tolerant alkaline pectinase from B. subtilis ZGL14.
Collapse
Affiliation(s)
- Ping Yu
- a College of Food Science and Biotechnology, Zhejiang Gongshang University , Hangzhou , Zhejiang Province , People's Republic of China
| | - Yishu Zhang
- a College of Food Science and Biotechnology, Zhejiang Gongshang University , Hangzhou , Zhejiang Province , People's Republic of China
| | - Donglu Gu
- a College of Food Science and Biotechnology, Zhejiang Gongshang University , Hangzhou , Zhejiang Province , People's Republic of China
| |
Collapse
|
15
|
Eida MAK, Amira HAA. Effect of activators and inhibitors on extracellular thermostable alkaline protease isolated from Bacillus subtilis obtained from eastern province of Saudi Arabia. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2016.15429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Novel Sequential Screening and Enhanced Production of Fibrinolytic Enzyme by Bacillus sp. IND12 Using Response Surface Methodology in Solid-State Fermentation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3909657. [PMID: 28321408 PMCID: PMC5340989 DOI: 10.1155/2017/3909657] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/30/2016] [Accepted: 12/13/2016] [Indexed: 11/24/2022]
Abstract
Fibrinolytic enzymes have wide applications in clinical and waste treatment. Bacterial isolates were screened for fibrinolytic enzyme producing ability by skimmed milk agar plate using bromocresol green dye, fibrin plate method, zymography analysis, and goat blood clot lysis. After these sequential screenings, Bacillus sp. IND12 was selected for fibrinolytic enzyme production. Bacillus sp. IND12 effectively used cow dung for its growth and enzyme production (687 ± 6.5 U/g substrate). Further, the optimum bioprocess parameters were found out for maximum fibrinolytic enzyme production using cow dung as a low cost substrate under solid-state fermentation. Two-level full-factorial experiments revealed that moisture, pH, sucrose, peptone, and MgSO4 were the vital parameters with statistical significance (p < 0.001). Three factors (moisture, sucrose, and MgSO4) were further studied through experiments of central composite rotational design and response surface methodology. Enzyme production of optimized medium showed 4143 ± 12.31 U/g material, which was more than fourfold the initial enzyme production (978 ± 36.4 U/g). The analysis of variance showed that the developed response surface model was highly significant (p < 0.001). The fibrinolytic enzyme digested goat blood clot (100%), chicken skin (83 ± 3.6%), egg white (100%), and bovine serum albumin (29 ± 4.9%).
Collapse
|
17
|
Prasad Uday US, Bandyopadhyay TK, Goswami S, Bhunia B. Optimization of physical and morphological regime for improved cellulase free xylanase production by fed batch fermentation using Aspergillus niger (KP874102.1) and its application in bio-bleaching. Bioengineered 2016; 8:137-146. [PMID: 27780405 DOI: 10.1080/21655979.2016.1218580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The physiological and morphological changes were extensively studied during fed batch fermentation using newly isolated Aspergillus niger (KP874102.1). Significantly higher xylanase production was possible through optimization of environmental stresses by fed batch process. The fed batch fermentation was carried out for improved xylanase production (2524 U) where initial xylan was kept 1.5 g/L in the production medium. However, 3 g/L of xylan with 50 mM K2HPO4 having pH-7 was consecutively fed at 72 and 120 h of fermentation. K2HPO4 showed significant role both the morphology of the microorganism and produces enzymes in fed batch fermentation. During feeding phase, the pH was found in the range of 6.5 to 7 which was used as marker for the fed batch process. The crude enzyme was used for the bio-bleaching of banana pulp.
Collapse
Affiliation(s)
| | | | - Saswata Goswami
- b Department of Biotechnology , Birla Institute of Technology, Mesra , Ranchi , India
| | - Biswanath Bhunia
- c Department of Bioengineering , National Institute of Technology , Agartala , India
| |
Collapse
|
18
|
Rathod MG, Pathak AP. Optimized production, characterization and application of alkaline proteases from taxonomically assessed microbial isolates from Lonar soda lake, India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Embaby AM, Saeed H, Hussein A. SHG10 keratinolytic alkaline protease fromBacillus licheniformisSHG10 DSM 28096: Robust stability and unusual non-cumbersome purification. J Basic Microbiol 2016; 56:1317-1330. [DOI: 10.1002/jobm.201600073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/29/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Amira M. Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research; Alexandria University; Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research; Alexandria University; Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research; Alexandria University; Egypt
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock Texas USA
| |
Collapse
|
20
|
Salihi A, Asoodeh A, Aliabadian M. Production and biochemical characterization of an alkaline protease from Aspergillus oryzae CH93. Int J Biol Macromol 2016; 94:827-835. [PMID: 27293035 DOI: 10.1016/j.ijbiomac.2016.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
In this study, Aspergillus oryzae CH93 was isolated from soil sample and examined using molecular analysis. Following culture of A. oryzae CH93 under optimal enzyme production, a 47.5kDa extracellular protease was purified using ammonium sulfate precipitation and Q-Sepharose chromatography. The optimal pH 8 and temperature of 50°C obtained for the isolated protease. Sodium dodecyl sulfate (SDS), cetyltrimethyl ammonium bromide (CTAB), H2O2 decreased activity, while Triton X-100 and phenylmethanesulfonyl fluoride (PMSF) had no inhibitory effect on the enzyme activity; meanwhile, 2-mercaptoethanol and ethylenediaminetetraacetic acid (EDTA) declined the protease activity. Isoamyl alcohol and acetone (30%) enhanced activity whereas 2-propanol, isopropanol and dimethyl sulfoxide (DMSO) (30%) reduced protease activity. The enzyme exhibited a half-life of 100min at its optimum temperature. Among five substrates of bovine serum albumin (BSA), N-acetyl-l-tyrosine ethyl ester monohydrate (ATEE), casein, azocasein and gelatin results showed that casein is the best substrate with Vmax of 0.1411±0.004μg/min and Km of 2.432±0.266μg/ml. In conclusion, the extracted protease from A. oryzae CH93 as a fungal source possessed biochemical features which could be useful in some application usages.
Collapse
Affiliation(s)
- Ahsan Salihi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mansour Aliabadian
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
21
|
Han SJ, Park H, Kim S, Kim D, Park HJ, Yim JH. Enhanced production of protease by Pseudoalteromonas arctica PAMC 21717 via statistical optimization of mineral components and fed-batch fermentation. Prep Biochem Biotechnol 2016; 46:328-35. [PMID: 25830556 DOI: 10.1080/10826068.2015.1031390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of this study was to statistically optimize the mineral components of the nutritional medium required for enhancing the production of a cold-active extracellular serine-type protease, W-Pro21717, by the Antarctic bacterium Pseudoalteromonas arctica PAMC 21717. Skim milk was identified as the major efficient inducer. Among the 12 components included in the unoptimized medium, skim milk, NaCl, Na2SO4, Fe(C6H5O7) (ferric citrate), and KCl were determined, by the Plackett-Burman and Box-Behnken design, to have a major effect on W-Pro21717 production. Fed-batch fermentation (5 L scale) using the mineral-optimized medium supplemented with concentrated skim milk (critical medium component) resulted in a W-Pro21717 activity of 53.4 U/L, a 15-fold increment in production over that obtained using unoptimized flask culture conditions. These findings could be applied to scale up the production of cold-active protease.
Collapse
Affiliation(s)
- Se Jong Han
- a Division of Polar Life Sciences , Korea Polar Research Institute , Incheon , South Korea.,b Department of Polar Sciences , University of Science and Technology , Incheon , South Korea
| | - Heeyong Park
- a Division of Polar Life Sciences , Korea Polar Research Institute , Incheon , South Korea
| | - Sunghui Kim
- a Division of Polar Life Sciences , Korea Polar Research Institute , Incheon , South Korea
| | - Dockyu Kim
- a Division of Polar Life Sciences , Korea Polar Research Institute , Incheon , South Korea
| | - Ha Ju Park
- a Division of Polar Life Sciences , Korea Polar Research Institute , Incheon , South Korea
| | - Joung Han Yim
- a Division of Polar Life Sciences , Korea Polar Research Institute , Incheon , South Korea
| |
Collapse
|
22
|
Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int J Biol Macromol 2016; 82:1041-54. [DOI: 10.1016/j.ijbiomac.2015.10.086] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/07/2023]
|
23
|
Yilmaz B, Baltaci MO, Sisecioglu M, Adiguzel A. Thermotolerant alkaline protease enzyme from Bacillus licheniformis A10: purification, characterization, effects of surfactants and organic solvents. J Enzyme Inhib Med Chem 2015; 31:1241-7. [PMID: 26634394 DOI: 10.3109/14756366.2015.1118687] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, the extracellular thermostable alkaline protease out of A10 strain was purified 1.38-fold with 9.44% efficiency through the ammonium sulfate precipitation-dialysis and DE52 anion exchange chromatography methods. The molecular weight of the enzyme in question along with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was determined to be approximately 40.55 kDa, whereas the optimum pH and temperature ratings were identified as 9.0 and 70 °C, respectively. It was seen that the enzyme had remained stable between pH 7.5-10.5 range, protecting more than 90% of its activity in the wake of 1 h incubation at 60-70 °C. It was also observed that the enzyme enhanced its activity in the presence of Mg(2+), Mn(2+), K(+), while Fe(2+), Ni(2+), Zn(2+), Ag(+ )and Co(2+ ) decreased the activity. Ca(2+), however, did not cause any change in the activity. The enzyme was seen to have been totally inhibited by phenylmethylsulfonyl fluoride, therefore, proved to be a serine alkaline protease.
Collapse
Affiliation(s)
- Bahar Yilmaz
- a Department of Molecular Biology and Genetics , Faculty of Science, Atatürk University , Erzurum , Turkey
| | - Mustafa Ozkan Baltaci
- a Department of Molecular Biology and Genetics , Faculty of Science, Atatürk University , Erzurum , Turkey
| | - Melda Sisecioglu
- a Department of Molecular Biology and Genetics , Faculty of Science, Atatürk University , Erzurum , Turkey
| | - Ahmet Adiguzel
- a Department of Molecular Biology and Genetics , Faculty of Science, Atatürk University , Erzurum , Turkey
| |
Collapse
|
24
|
Xiao YZ, Wu DK, Zhao SY, Lin WM, Gao XY. Statistical Optimization of Alkaline Protease Production fromPenicillium citrinumYL-1 Under Solid-State Fermentation. Prep Biochem Biotechnol 2014; 45:447-62. [DOI: 10.1080/10826068.2014.923450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Mhamdi S, Haddar A, Mnif IH, Frikha F, Nasri M, Kamoun AS. Optimization of Protease Production by Bacillus mojavensis A21 on Chickpea and Faba Bean. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abb.2014.514120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|