1
|
Valdemar-Aguilar CM, Manisekaran R, Acosta-Torres LS, López-Marín LM. Spotlight on mycobacterial lipid exploitation using nanotechnology for diagnosis, vaccines, and treatments. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102653. [PMID: 36646193 PMCID: PMC9839462 DOI: 10.1016/j.nano.2023.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Tuberculosis (TB), historically the most significant cause of human morbidity and mortality, has returned as the top infectious disease worldwide, under circumstances worsened by the COVID-19 pandemic's devastating effects on public health. Although Mycobacterium tuberculosis, the causal agent, has been known of for more than a century, the development of tools to control it has been largely neglected. With the advancement of nanotechnology, the possibility of engineering tools at the nanoscale creates unique opportunities to exploit any molecular type. However, little attention has been paid to one of the major attributes of the pathogen, represented by the atypical coat and its abundant lipids. In this review, an overview of the lipids encountered in M. tuberculosis and interest in exploiting them for the development of TB control tools are presented. Then, the amalgamation of nanotechnology with mycobacterial lipids from both reported and future works are discussed.
Collapse
Affiliation(s)
- Carlos M. Valdemar-Aguilar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37689 León, Mexico.
| | - Laura S. Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37689 León, Mexico
| | - Luz M. López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico,Corresponding authors
| |
Collapse
|
2
|
Targeting MmpL3 for anti-tuberculosis drug development. Biochem Soc Trans 2021; 48:1463-1472. [PMID: 32662825 PMCID: PMC7458404 DOI: 10.1042/bst20190950] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
The unique architecture of the mycobacterial cell envelope plays an important role in Mycobacterium tuberculosis (Mtb) pathogenesis. A critical protein in cell envelope biogenesis in mycobacteria, required for transport of precursors, trehalose monomycolates (TMMs), is the Mycobacterial membrane protein large 3 (MmpL3). Due to its central role in TMM transport, MmpL3 has been an attractive therapeutic target and a key target for several preclinical agents. In 2019, the first crystal structures of the MmpL3 transporter and its complexes with lipids and inhibitors were reported. These structures revealed several unique structural features of MmpL3 and provided invaluable information on the mechanism of TMM transport. This review aims to highlight the recent advances made in the function of MmpL3 and summarises structural findings. The overall goal is to provide a mechanistic perspective of MmpL3-mediated lipid transport and inhibition, and to highlight the prospects for potential antituberculosis therapies.
Collapse
|
3
|
Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro. J Immunol Res 2016; 2016:4325646. [PMID: 27066505 PMCID: PMC4811625 DOI: 10.1155/2016/4325646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/07/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells.
Collapse
|
4
|
Tirado Y, Puig A, Alvarez N, Borrero R, Aguilar A, Camacho F, Reyes F, Fernández S, Pérez JL, Espinoza DM, Payán JAB, Sarmiento ME, Norazmi MN, Hernández-Pando R, Acosta A. Protective capacity of proteoliposomes from Mycobacterium bovis BCG in a mouse model of tuberculosis. Hum Vaccin Immunother 2015; 11:657-61. [PMID: 25671612 PMCID: PMC4517452 DOI: 10.1080/21645515.2015.1011566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tuberculosis (TB) is one of the most important causes of mortality and morbidity due to infectious diseases. BCG, the vaccine in use, is not fully protective against TB. In a previous study, we have shown that proteoliposomes (outer membrane extracts), obtained from BCG (PLBCG) were able to induce humoral immune responses against Mycobacterium tuberculosis (Mtb) antigens. With the objective to evaluate the protective capability of PLBCG alone or as a booster with BCG, a murine model of progressive pulmonary TB was used. Animals immunized with PLBCG adjuvanted with alum (PLBCG-Al) showed similar protection to that conferred by BCG. The group immunized with PLBCG-Al as a booster to BCG gave superior protection than BCG as evidenced by a reduction of bacterial load in lungs 2 months after infection with Mtb. Animals immunized with BCG, PLBCG-Al and this formulation as a booster of BCG, showed a significant decrease of tissue damage (percentage of pneumonic area/lung) compared with non-immunized animals. These results demonstrate that immunization with PLBCG-Al alone or as a booster to BCG induce appropriate protection against challenge with Mtb in mice and support the future evaluation of PLBCG as a promising vaccine candidate against Mtb.
Collapse
|
5
|
Sahloul K, Lowary TL. Development of an Orthogonal Protection Strategy for the Synthesis of Mycobacterial Arabinomannan Fragments. J Org Chem 2015; 80:11417-34. [DOI: 10.1021/acs.joc.5b02083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Kamar Sahloul
- Alberta
Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Todd L. Lowary
- Alberta
Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| |
Collapse
|
6
|
Bailo R, Bhatt A, Aínsa JA. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development. Biochem Pharmacol 2015; 96:159-67. [DOI: 10.1016/j.bcp.2015.05.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
|
7
|
Protective effect of a lipid-based preparation from Mycobacterium smegmatis in a murine model of progressive pulmonary tuberculosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:273129. [PMID: 25548767 PMCID: PMC4274834 DOI: 10.1155/2014/273129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/17/2022]
Abstract
A more effective vaccine against tuberculosis (TB) is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb), the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms), could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL) or nonadjuvanted (LMs) showed significant reductions in bacterial load (P < 0.01) compared to the negative control group (animals immunized with phosphate buffered saline (PBS)). Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG). Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P < 0.01) and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB.
Collapse
|
8
|
Kumar A, Kumar S, Kumar D, Mishra A, Dewangan RP, Shrivastava P, Ramachandran S, Taneja B. The structure of Rv3717 reveals a novel amidase from Mycobacterium tuberculosis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2543-54. [PMID: 24311595 PMCID: PMC3852659 DOI: 10.1107/s0907444913026371] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/24/2013] [Indexed: 11/16/2022]
Abstract
Bacterial N-acetylmuramoyl-L-alanine amidases are cell-wall hydrolases that hydrolyze the bond between N-acetylmuramic acid and L-alanine in cell-wall glycopeptides. Rv3717 of Mycobacterium tuberculosis has been identified as a unique autolysin that lacks a cell-wall-binding domain (CBD) and its structure has been determined to 1.7 Å resolution by the Pt-SAD phasing method. Rv3717 possesses an α/β-fold and is a zinc-dependent hydrolase. The structure reveals a short flexible hairpin turn that partially occludes the active site and may be involved in autoregulation. This type of autoregulation of activity of PG hydrolases has been observed in Bartonella henselae amidase (AmiB) and may be a general mechanism used by some of the redundant amidases to regulate cell-wall hydrolase activity in bacteria. Rv3717 utilizes its net positive charge for substrate binding and exhibits activity towards a broad spectrum of substrate cell walls. The enzymatic activity of Rv3717 was confirmed by isolation and identification of its enzymatic products by LC/MS. These studies indicate that Rv3717, an N-acetylmuramoyl-L-alanine amidase from M. tuberculosis, represents a new family of lytic amidases that do not have a separate CBD and are regulated conformationally.
Collapse
Affiliation(s)
- Atul Kumar
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Sanjiv Kumar
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Dilip Kumar
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Arpit Mishra
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Rikeshwer P. Dewangan
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Priyanka Shrivastava
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | | | - Bhupesh Taneja
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| |
Collapse
|
9
|
|