1
|
Hirata N, Yamada S, Yanagida S, Ono A, Kanda Y. FTY720 Inhibits Expansion of Breast Cancer Stem Cells via PP2A Activation. Int J Mol Sci 2021; 22:ijms22147259. [PMID: 34298877 PMCID: PMC8329924 DOI: 10.3390/ijms22147259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/06/2023] Open
Abstract
Growing evidence suggests that breast cancer originates from a minor population of cancer cells termed cancer stem cells (CSCs), which can be identified by aldehyde dehydrogenase (ALDH) activity-based flow cytometry analysis. However, novel therapeutic drugs for the eradication of CSCs have not been discovered yet. Recently, drug repositioning, which finds new medical uses from existing drugs, has been expected to facilitate drug discovery. We have previously reported that sphingosine kinase 1 (SphK1) induced proliferation of breast CSCs. In the present study, we focused on the immunosuppressive agent FTY720 (also known as fingolimod or Gilenya), since FTY720 is known to be an inhibitor of SphK1. We found that FTY720 blocked both proliferation of ALDH-positive cells and formation of mammospheres. In addition, we showed that FTY720 reduced the expression of stem cell markers such as Oct3/4, Sox2 and Nanog via upregulation of protein phosphatase 2A (PP2A). These results suggest that FTY720 is an effective drug for breast CSCs in vitro.
Collapse
Affiliation(s)
- Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.)
- Pharmacological Evaluation Institute of Japan (PEIJ), Kanagawa 210-0821, Japan
| | - Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.)
- Pharmacological Evaluation Institute of Japan (PEIJ), Kanagawa 210-0821, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.)
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan;
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan;
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.)
- Correspondence:
| |
Collapse
|
2
|
Erkisa M, Sariman M, Geyik OG, Geyik CG, Stanojkovic T, Ulukay E. Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells. Curr Med Chem 2021; 29:741-783. [PMID: 34182899 DOI: 10.2174/0929867328666210628131409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Cancer is still a deadly disease, and its treatment desperately needs to be managed in a very sophisticated way through fast-developing novel strategies. Most of the cancer cases eventually develop into recurrencies, for which cancer stem cells (CSCs) are thought to be responsible. They are considered as a subpopulation of all cancer cells of tumor tissue with aberrant regulation of self-renewal, unbalanced proliferation, and cell death properties. Moreover, CSCs show a serious degree of resistance to chemotherapy or radiotherapy and immune surveillance as well. Therefore, new classes of drugs are rushing into the market each year, which makes the cost of therapy increase dramatically. Natural products are also becoming a new research area as a diverse chemical library to suppress CSCs. Some of the products even show promise in this regard. So, the near future could witness the introduction of natural products as a source of new chemotherapy modalities, which may result in the development of novel anticancer drugs. They could also be a reasonably-priced alternative to highly expensive current treatments. Nowadays, considering the effects of natural compounds on targeting surface markers, signaling pathways, apoptosis, and escape from immunosurveillance have been a highly intriguing area in preclinical and clinical research. In this review, we present scientific advances regarding their potential use in the inhibition of CSCs and the mechanisms by which they kill the CSCs.
Collapse
Affiliation(s)
- Merve Erkisa
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Melda Sariman
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Oyku Gonul Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Caner Geyik Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Tatjana Stanojkovic
- Experimental Oncology Deparment, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Pasterova 14. Serbia
| | - Engin Ulukay
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| |
Collapse
|
3
|
Najafzadeh B, Asadzadeh Z, Motafakker Azad R, Mokhtarzadeh A, Baghbanzadeh A, Alemohammad H, Abdoli Shadbad M, Vasefifar P, Najafi S, Baradaran B. The oncogenic potential of NANOG: An important cancer induction mediator. J Cell Physiol 2020; 236:2443-2458. [PMID: 32960465 DOI: 10.1002/jcp.30063] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a unique population in the tumor, but they only comprise 2%-5% of the tumor bulk. Although CSCs share several features with embryonic stem cells, CSCs can give rise to the tumor cells. CSCs overexpress embryonic transcription factor NANOG, which is downregulated in differentiated tissues. This transcription factor confers CSC's stemness, unlimited self-renewal, metastasis, invasiveness, angiogenesis, and drug-resistance with the assistance of WNT, OCT4, SOX2, Hedgehog, BMI-1, and other complexes. NANOG facilitates CSCs development via multiple pathways, like angiogenesis and lessening E-cadherin expression levels, which paves the road for metastasis. Moreover, NANOG represses apoptosis and leads to drug-resistance. This review aims to highlight the pivotal role of NANOG and the pertained pathways in CSCs. Also, this current study intends to demonstrate that targeting NANOG can dimmish the CSCs, sensitize the tumor to chemotherapy, and eradicate the cancer cells.
Collapse
Affiliation(s)
- Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Wu KC, Ho YL, Kuo YH, Huang SS, Huang GJ, Chang YS. Hepatoprotective Effect of Ugonin M, A Helminthostachyszeylanica Constituent, on Acetaminophen-Induced Acute Liver Injury in Mice. Molecules 2018; 23:E2420. [PMID: 30241403 PMCID: PMC6222678 DOI: 10.3390/molecules23102420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to discover the possible effectiveness of Ugonin M, a unique flavonoid isolated from Helminthostachys zeylanica-a traditional Chinese medicine used as anti-inflammatory medicine-and to elucidate the potential mechanisms of Ugonin M in the acute liver injury induced by acetaminophen (APAP). In this study, Ugonin M significantly ameliorated APAP-induced histopathological changes and the typical liver function biomarkers (i.e., alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (T-Bil)). It also affected APAP-induced abnormal lipid metabolism including total cholesterol (TC) and triglyceride (TG) in the serum. In inflammatory pharmacological action, Ugonin M suppressed the pro-inflammatory mediators such as nitric oxide (NO) and the lipid peroxidation indicator malondialdehyde (MDA). In addition, Ugonin M reinforced hemeoxygenase-1 (HO-1) protein expression and the production of antioxidant enzymes viz superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). Furthermore, inflammation-associated cytokines including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β as well as proteins such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were decreased by the pretreatment of Ugonin M. Moreover, this study found that pretreatment of Ugonin M apparently decreased nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) activation via inhibition of the degradation of NF-κB, inhibitory κB-α (IκB-α), extracellular regulated kinase (ERK), c-Jun-N-terminal (JNK), and p38 active phosphorylation. In conclusion, Ugonin M significantly showed a protective effect against APAP-induced liver injury by reducing oxidative stress and inflammation. Thus, Ugonin M could be one of the effective components of H. zeylanica that plays a major role in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Kun-Chang Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung 43302, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Shyh-Shyun Huang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Chinese Crude Drug Pharmacy, China Medical University Hospital, Taichung 40402, Taiwan.
| |
Collapse
|
5
|
Jurisevic M, Arsenijevic A, Pantic J, Gajovic N, Milovanovic J, Milovanovic M, Poljarevic J, Sabo T, Vojvodic D, Radosavljevic GD, Arsenijevic N. The organic ester O,O'-diethyl-( S,S)-ethylenediamine- N,N'-di-2-(3-cyclohexyl)propanoate dihydrochloride attenuates murine breast cancer growth and metastasis. Oncotarget 2018; 9:28195-28212. [PMID: 29963272 PMCID: PMC6021340 DOI: 10.18632/oncotarget.25610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/24/2018] [Indexed: 01/05/2023] Open
Abstract
Pharmacological treatment of cancer is mostly limited by drug-toxicity and resistance. It has been noticed that new organic ester ligand, O,O’-diethyl-(S,S)-ethylenediamine-N,N’-di-2-(3-cyclohexyl)propanoate dihydrochloride (named DE-EDCP) showed effective cytotoxic capacities against several human and mouse cancer cell lines. However, its effects on tumor growth and metastasis are unexplored. The aim of present study was to examine the ability of DE-EDCP to inhibit 4T1 murine breast cancer growth and progression and to explore possible molecular mechanisms. DE-EDCP exhibited significant tumoricidal activity on human and murine breast cancer cell lines. Further, marked reduction of murine breast cancer growth and progression by DE-EDCP was shown. DE-EDCP exhibits fewer side-effects compared to cisplatin as a conventional chemotherapeutic. Results obtained from in vivo and in vitro experiments indicate that DE-EDCP induces apoptosis and inhibits proliferation of 4T1 cells. DE-EDCP increases percentage of 4T1 cells in late apoptosis, expression of pro-apoptotic Bax and caspase-3, while decreases expression of anti-apoptotic Bcl-2. DE-EDCP treatment increased the percentage of TUNEL-positive nuclei and reduced Ki-67 expression in breast cancer tissue. DE-EDCP decreased expression of cyclin D3 and Ki-67, increased expression of cyclin-dependent kinase inhibitors p16, p21 and p27 and arrested 4T1 cells in G0/G1 cell cycle phase. Expression of STAT3 and downstream regulated molecules, NANOG and SOX2, was reduced in 4T1 cells after DE-EDCP treatment. In conclusion, DE-EDCP impairs breast cancer growth and progression by triggering cancer cell death and inhibition of cancer cell proliferation. DE-EDCP might be of interest in the development of the new anticancer agent.
Collapse
Affiliation(s)
- Milena Jurisevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Tibor Sabo
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Danilo Vojvodic
- Institute of Medical Research, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - Gordana D Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
6
|
Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anticancer Drugs 2018; 29:208-215. [DOI: 10.1097/cad.0000000000000584] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Pan CH, Li PC, Chien YC, Yeh WT, Liaw CC, Sheu MJ, Wu CH. Suppressive activities and mechanisms of ugonin J on vascular smooth muscle cells and balloon angioplasty-induced neointimal hyperplasia. Phytother Res 2017; 32:312-320. [PMID: 29250830 DOI: 10.1002/ptr.5979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/30/2017] [Accepted: 10/18/2017] [Indexed: 11/06/2022]
Abstract
Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G0 /G1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation.
Collapse
Affiliation(s)
- Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Pei-Chuan Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA.,USC-Taiwan Center for Translational Research, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yi-Chung Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Wan-Ting Yeh
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
8
|
Wu KC, Kao CP, Ho YL, Chang YS. Quality Control of the Root and Rhizome of Helminthostachys zeylanica (Daodi-Ugon) by HPLC Using Quercetin and Ugonins as Markers. Molecules 2017; 22:molecules22071115. [PMID: 28678195 PMCID: PMC6152333 DOI: 10.3390/molecules22071115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/26/2017] [Accepted: 07/02/2017] [Indexed: 11/23/2022] Open
Abstract
Daodi-Ugon is the dried root and rhizome of Helminthostachys zeylanica (L.) Hook. and has been used for centuries in the treatment of inflammation, fever, pneumonia, burns, and various disorders. However, the chromatographic methods to determine the phytochemical composition of H. zeylanica have never been reported. This study not only aims to develop a valid high-performance liquid chromatography (HPLC) method and to establish a chromatographic fingerprint for the quality control of H. zeylanica, it also establish the proposed content limits of Quercetin, Ugonin J, and Ugonin M. An HPLC method with a RP18 column (250 × 4.6 mm, 5 μm) was developed for the quantitative analysis of Quercetin, Ugonin J, and Ugonin M in H. zeylanica. A simple gradient of (A) methanol/(B) phosphoric acid in water (5–45 min, 70–80% A; 50–55 min, 80–70% A) was used and 360 nm was selected as the detection wavelength. The average contents and proposed content limits for H. zeylanica were calculated with a t-test and a measurement uncertainty test based on 20 batches of authentic H. zeylanica samples. Limits of detection (LOD), quantification (LOQ), linearity, precision, repeatability, stability, and recovery of the developed method were validated. All of the validation results of quantitative determination and fingerprinting methods were satisfactory. The developed method was then applied to assay the contents of Quercetin, Ugonin J, and Ugonin M and to acquire the fingerprints of all of the collected H. zeylanica samples. At the 99% confidence level, the calculated content limits were 56.45, 112.15, and 277.98 mg/kg for Quercetin, Ugonin J, and Ugonin M, respectively. Those validated HPLC quantitative method, fingerprinting profile, and the proposed content limits of three chemical markers that could be used in the quality control of H. zeylanica in the market.
Collapse
Affiliation(s)
- Kun-Chang Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Chun-Pin Kao
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan 32544, Taiwan.
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung 43302, Taiwan.
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Chinese Crude Drug Pharmacy, China Medical University Hospital, Taichung 40402, Taiwan.
| |
Collapse
|
9
|
Jiang Z, Liu Y, Wang C. Oncogenic NanogP8 expression regulates cell proliferation and migration through the Akt/mTOR signaling pathway in human gastric cancer - SGC-7901cell line. Onco Targets Ther 2016; 9:4859-66. [PMID: 27563247 PMCID: PMC4984828 DOI: 10.2147/ott.s97861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although elevated expression of NanogP8 has been detected in many human tumor tissues, its role in gastric tumorigenesis remains unclear. Therefore, this study aimed to investigate the function and regulatory mechanism of NanogP8 in gastric cancer. METHODS In this study, NanogP8 cDNA was amplified by real time polymerase chain reaction from the human gastric cancer cell line SGC-7901. The shRNA for RNA interference was established. The NanogP8, pAkt, Akt, pERK, ERK, p-mTOR, and mTOR proteins were detected by using the Western blot assay. Cell viability was evaluated by using the CCK-8 assay. Cell migration and invasion were also examined by using the transwell assay. RESULTS The results indicated that the NanogP8 overexpression promoted proliferation and migration of SGC-7901 cell line, whereas its ablation exerted opposite effects. Interestingly, NanogP8 activated Akt, a key mediator of survival signals, and without affecting total Akt protein level. The NanogP8-increased gastric cell proliferation was downregulated by Akt inhibition. Our results further showed that increasing NanogP8 expression in human gastric cancer cells promoted cell proliferation by activating the AKT/mTOR pathway and further maintained gastric cell survival. CONCLUSION Our findings extend the knowledge regarding the oncogenic functions and proved that the NanogP8 regulates cell proliferation and migration by Akt/mTOR signaling pathway in human gastric cancer SGC-7901cell line.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People's Republic of China
| | - Yao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People's Republic of China
| | - Chuan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People's Republic of China
| |
Collapse
|
10
|
Voutsadakis IA. The network of pluripotency, epithelial-mesenchymal transition, and prognosis of breast cancer. BREAST CANCER-TARGETS AND THERAPY 2015; 7:303-19. [PMID: 26379447 PMCID: PMC4567227 DOI: 10.2147/bctt.s71163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Breast cancer is the leading female cancer in terms of prevalence. Progress in molecular biology has brought forward a better understanding of its pathogenesis that has led to better prognostication and treatment. Subtypes of breast cancer have been identified at the genomic level and guide therapeutic decisions based on their biology and the expected benefit from various interventions. Despite this progress, a significant percentage of patients die from their disease and further improvements are needed. The cancer stem cell theory and the epithelial-mesenchymal transition are two comparatively novel concepts that have been introduced in the area of cancer research and are actively investigated. Both processes have their physiologic roots in normal development and common mediators have begun to surface. This review discusses the associations of these networks as a prognostic framework in breast cancer.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, Sault Ste Marie, ON, Canada ; Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
11
|
Wang D, Lu P, Zhang H, Luo M, Zhang X, Wei X, Gao J, Zhao Z, Liu C. Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget 2015; 5:10803-15. [PMID: 25301732 PMCID: PMC4279411 DOI: 10.18632/oncotarget.2506] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022] Open
Abstract
Oct-4 and Nanog in regulating the epithelial-mesenchymal transition (EMT) and metastasis of breast cancer has not been clarified. We found that both Oct-4 and Nanog expression were significantly associated with tumor pathology and poor prognosis in 126 breast cancer patients. Characterization of CD44+CD24-Cancer stem cell(CSC) derived from breast cancer cells indicated that CSC rapidly formed mammospheres and had potent tumorigenicity in vivo. Furthermore, TGF-β up-regulated the expression of Oct-4, Nanog, N-cadherin, vimentin, Slug, and Snail, but down-regulated E-cadherin and cytokeratin 18 expression, demonstrating that CSC underwent EMT. Knockdown of both Oct-4 and Nanog expression inhibited spontaneous changes in the expression of EMT-related genes, while induction of both Oct-4 and Nanog over-expression enhanced spontaneous changes in the expression of EMT-related genes in CSC. However, perturbing alternation of Oct-4 and Nanog expression also modulated TGF-β-induced EMT-related gene expression in CSC. Induction of Oct-4 and Nanog over-expression enhanced the invasiveness of CSC, but knockdown of both Oct-4 and Nanog inhibited the migration of CSC in vitro. Our data suggest that both Oct-4 and Nanog may serve as biomarkers for evaluating breast cancer prognosis. Our findings indicate that Oct-4 and Nanog positively regulate the EMT process, contributing to breast cancer metastasis.
Collapse
Affiliation(s)
- Dan Wang
- Breast disease and Reconstruction center, Breast cancer key lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ping Lu
- Breast disease and Reconstruction center, Breast cancer key lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Hao Zhang
- Breast disease and Reconstruction center, Breast cancer key lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Minna Luo
- Breast disease and Reconstruction center, Breast cancer key lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xin Zhang
- Breast disease and Reconstruction center, Breast cancer key lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaofei Wei
- Breast disease and Reconstruction center, Breast cancer key lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jiyue Gao
- Breast disease and Reconstruction center, Breast cancer key lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zuowei Zhao
- Breast disease and Reconstruction center, Breast cancer key lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Caigang Liu
- Breast disease and Reconstruction center, Breast cancer key lab of Dalian, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
12
|
Vini R, Sreeja S. Punica granatum and its therapeutic implications on breast carcinogenesis: A review. Biofactors 2015; 41:78-89. [PMID: 25857627 DOI: 10.1002/biof.1206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022]
Abstract
Punica granatum has a recorded history of pharmacological properties which can be attributed to its rich reservoir of phytochemicals. Investigations in recent years have established its tremendous potential as an antitumorogenic agent against various cancers including breast cancer, which is the second leading cause of cancer-related deaths in women. The plausible role of Punica as a therapeutic agent, as an adjuvant in chemotherapy, and its dietary implications as chemopreventive agent in breast cancer have been explored. Mechanistic studies have revealed that Punica extracts and its components, individually or in combination, can modulate and target key proteins and genes involved in breast cancer. Our earlier finding also demonstrated the role of methanolic extract of pomegranate pericarp in reducing proliferation in breast cancer by binding to estrogen receptor at the same time not affecting uterine weight unlike estradiol or tamoxifen. This review analyses other plausible mechanisms of Punica in preventing the progression of breast cancer and how it can possibly be a therapeutic agent by acting at various steps of carcinogenesis including proliferation, invasion, migration, metastasis, angiogenesis, and inflammation via various molecular mechanisms.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Research Programme, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | |
Collapse
|
13
|
BMP-2 inhibits tumor-initiating ability in human renal cancer stem cells and induces bone formation. J Cancer Res Clin Oncol 2014; 141:1013-24. [PMID: 25431339 DOI: 10.1007/s00432-014-1883-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/22/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE We have previously shown that BMP-2 induces bone formation and inhibits tumorigenicity of cancer stem cells (CSCs) in a human osteosarcoma OS99-1 cell line. In this study, we sought to determine whether BMP-2 can similarly induce bone formation and inhibit the tumorigenicity of renal CSCs identified based on aldehyde dehydrogenase (ALDH) activity in renal cell carcinoma (RCC) cell lines and primary tumors. METHODS Using a xenograft model in which cells from human RCC cell lines ACHN, Caki-2, and primary tumors were grown in NOD/SCID mice, renal CSCs were identified as a subset of ALDH(br) cells. The ALDH(br) cells possessed a greater colony-forming efficiency, higher proliferative output, increased expression of stem cell marker genes Oct3/4A, Nanog, renal embryonic marker Pax-2, and greater tumorigenicity compared to cells with low ALDH activity (ALDH(lo) cells), generating new tumors with as few as 25 cells in mice. RESULTS In vitro, BMP-2 was found to inhibit the ALDH(br) cell growth, down-regulate the expression of embryonic stem cell markers, and up-regulate the transcription of osteogenic markers. In vivo, all animals receiving a low number of ALDH(br) cells (5 × 10(3)) from ACHN, Caki-2, and primary tumor xenografts treated with 30 µg BMP-2 per animal showed limited tumor growth with significant bone formation, while untreated cells developed large tumor masses without bone formation. CONCLUSIONS These results suggest that BMP-2 inhibits the tumor-initiating ability of renal CSCs and induces osseous bone formation. BMP-2 may therefore provide a beneficial strategy for human RCC treatment by targeting the CSC-enriched population.
Collapse
|
14
|
Sun AX, Liu CJ, Sun ZQ, Wei Z. NANOG: A promising target for digestive malignant tumors. World J Gastroenterol 2014; 20:13071-13078. [PMID: 25278701 PMCID: PMC4177486 DOI: 10.3748/wjg.v20.i36.13071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/03/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
NANOG has been extensively researched since its discovery by Chambers et al. NANOG is a homeodomain transcription factor and an essential regulator of embryonic stem cell (ESC) self-renewal, which inhibits differentiation. Cancer stem cells (CSCs) are a small subset of cells that are thought to drive uncontrolled tumor growth; CSCs retain the tumor capabilities of self-renewal and propagation. The existence of CSCs was recently shown by direct experimental evidence. NANOG is expressed in CSCs and ESCs, although it remains unclear whether ESCs and CSCs share similar mechanisms in the regulation of physical and biological processes. Several studies suggest that the expression level of NANOG is high in cancer tissues and low or absent in normal tissues. High levels of NANOG expression are associated with advanced stages of cancer and a poor prognosis, indicating that it plays a vital role in tumor transformation, tumorigenesis, and tumor metastasis. NANOG is part of a complex regulatory network that controls cell fate determination, proliferation, and apoptosis. NANOG cooperates with other regulators, such as microflora, transcription factors, and kinases, in cancer cells. NANOG might have a promising future in anti-cancer and other therapeutic treatments, which could improve human health.
Collapse
|
15
|
Tian B, Zhang Y, Zhang J. Periostin is a new potential prognostic biomarker for glioma. Tumour Biol 2014; 35:5877-83. [PMID: 24719188 DOI: 10.1007/s13277-014-1778-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/18/2014] [Indexed: 02/07/2023] Open
Abstract
The objective of this study is to investigate the expression level of periostin in cancer stem cells as well as in the glioma tissues and the relationship between periostin expression and clinical and pathological characteristics and prognosis of gliomas. ESA+/CD133+/lin- tumor cells were selected by flow cytometry from glioma tissues, and the periostin expression in ESA+/CD133+/lin- tumor cells and non-ESA+/CD133+/lin- tumor cells was detected by quantitative real-time polymerase chain reaction (RT-PCR) and Western blot analysis. The expression status of periostin in glioma tissues was analyzed by immunohistochemistry staining, and the relationship between periostin and clinicopathological parameters of gliomas was determined. It showed that periostin is expressed higher in ESA+/CD133+/lin- tumor cells compared to non-ESA+/CD133+/lin- tumor cells in both mRNA and protein levels. One hundred eighteen (37.82 %) glioma patients were observed with highly expressed periostin protein in immunohistochemistry. Moreover, we observed that the expression of periostin protein was related to Karnofsky performance scale score (KPS), extent of resection, Ki67, and WHO grade of gliomas in universal analysis (P=0.008, 0.045, 0.001, and 0.001, respectively). However, only WHO grade was identified to be related to periostin expression in gliomas after multivariate analysis. After survival analysis, the cases with highly expressed periostin protein attained a significantly poorer postoperative disease-specific survival and distant metastasis than those with none/low expressed periostin protein (P=0.001 and 0.002). In the Cox regression test, KPS, extent of resection, Ki67, WHO grade, and periostin were detected as the independent prognostic factors (P=0.008, 0.007, 0.032, 0.001, and 0.001, respectively). Periostin can be an important prognostic marker for gliomas, which may present a new therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Buxian Tian
- Department of Neurology, First Affiliated Hospital of Liaoning Medical College, Jinzhou, 121000, Liaoning Province, China,
| | | | | |
Collapse
|
16
|
Effects of 6-Hydroxyflavone on Osteoblast Differentiation in MC3T3-E1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:924560. [PMID: 24795772 PMCID: PMC3984785 DOI: 10.1155/2014/924560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/05/2014] [Accepted: 01/22/2014] [Indexed: 12/20/2022]
Abstract
Osteoblast differentiation plays an essential role in bone integrity. Isoflavones and some flavonoids are reported to have osteogenic activity and potentially possess the ability to treat osteoporosis. However, limited information concerning the osteogenic characteristics of hydroxyflavones is available. This study investigates the effects of various hydroxyflavones on osteoblast differentiation in MC3T3-E1 cells. The results showed that 6-hydroxyflavone (6-OH-F) and 7-hydroxyflavone (7-OH-F) stimulated ALP activity. However, baicalein and luteolin inhibited ALP activity and flavone showed no effect. Up to 50 μM of each compound was used for cytotoxic effects study; flavone, 6-OH-F, and 7-OH-F had no cytotoxicity on MC3T3-E1 cells. Moreover, 6-OH-F activated AKT and serine/threonine kinases (also known as protein kinase B or PKB), extracellular signal-regulated kinases (ERK 1/2), and the c-Jun N-terminal kinase (JNK) signaling pathways. On the other hand, 7-OH-F promoted osteoblast differentiation mainly by activating ERK 1/ 2 signaling pathways. Finally, after 5 weeks of 6-OH-F induction, MC3T3-E1 cells showed a significant increase in the calcein staining intensity relative to merely visible mineralization observed in cells cultured in the osteogenic medium only. These results suggested that 6-OH-F could activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation.
Collapse
|