1
|
Lu R, Hong J, Fu T, Zhu Y, Tong R, Ai D, Wang S, Huang Q, Chen C, Zhang Z, Zhang R, Guo H, Li B. Loss of OVOL2 in Triple-Negative Breast Cancer Promotes Fatty Acid Oxidation Fueling Stemness Characteristics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308945. [PMID: 38627980 PMCID: PMC11199980 DOI: 10.1002/advs.202308945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/10/2024] [Indexed: 06/27/2024]
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, has a poor prognosis and lacks effective treatment strategies. Here, the study discovered that TNBC shows a decreased expression of epithelial transcription factor ovo-like 2 (OVOL2). The loss of OVOL2 promotes fatty acid oxidation (FAO), providing additional energy and NADPH to sustain stemness characteristics, including sphere-forming capacity and tumor initiation. Mechanistically, OVOL2 not only suppressed STAT3 phosphorylation by directly inhibiting JAK transcription but also recruited histone deacetylase 1 (HDAC1) to STAT3, thereby reducing the transcriptional activation of downstream genes carnitine palmitoyltransferase1 (CPT1A and CPT1B). PyVT-Ovol2 knockout mice develop a higher number of primary breast tumors with accelerated growth and increased lung-metastases. Furthermore, treatment with FAO inhibitors effectively reduces stemness characteristics of tumor cells, breast tumor initiation, and metastasis, especially in OVOL2-deficient breast tumors. The findings suggest that targeting JAK/STAT3 pathway and FAO is a promising therapeutic strategy for OVOL2-deficient TNBC.
Collapse
Affiliation(s)
- Ruipeng Lu
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| | - Jingjing Hong
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| | - Tong Fu
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| | - Yu Zhu
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| | - Ruiqi Tong
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| | - Di Ai
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| | - Shuai Wang
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| | - Qingsong Huang
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| | - Ceshi Chen
- Academy of Biomedical EngineeringKunming Medical UniversityKunming650500China
- The Third Affiliated HospitalKunming Medical UniversityKunming650118China
| | - Zhiming Zhang
- Department of Breast SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamen361009China
| | - Rui Zhang
- Xiamen Cell Therapy Research CenterThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamen361003China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| | - Boan Li
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| |
Collapse
|
2
|
Evergren E, Mills IG, Kennedy G. Adaptations of membrane trafficking in cancer and tumorigenesis. J Cell Sci 2024; 137:jcs260943. [PMID: 38770683 PMCID: PMC11166456 DOI: 10.1242/jcs.260943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.
Collapse
Affiliation(s)
- Emma Evergren
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ian G. Mills
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Grace Kennedy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
3
|
Huang LJ, Zhan ST, Pan YQ, Bao W, Yang Y. The role of Vps4 in cancer development. Front Oncol 2023; 13:1203359. [PMID: 37404768 PMCID: PMC10315677 DOI: 10.3389/fonc.2023.1203359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
VPS4 series proteins play a crucial role in the endosomal sorting complexes required for the transport (ESCRT) pathway, which is responsible for sorting and trafficking cellular proteins and is involved in various cellular processes, including cytokinesis, membrane repair, and viral budding. VPS4 proteins are ATPases that mediate the final steps of membrane fission and protein sorting as part of the ESCRT machinery. They disassemble ESCRT-III filaments, which are vital for forming multivesicular bodies (MVBs) and the release of intraluminal vesicles (ILVs), ultimately leading to the sorting and degradation of various cellular proteins, including those involved in cancer development and progression. Recent studies have shown a potential relationship between VPS4 series proteins and cancer. Evidence suggests that these proteins may have crucial roles in cancer development and progression. Several experiments have explored the association between VPS4 and different types of cancer, including gastrointestinal and reproductive system tumors, providing insight into the underlying mechanisms. Understanding the structure and function of VPS4 series proteins is critical in assessing their potential role in cancer. The evidence supporting the involvement of VPS4 series proteins in cancer provides a promising avenue for future research and therapeutic development. However, further researches are necessary to fully understand the mechanisms underlying the relationship between VPS4 series proteins and cancer and to develop effective strategies for targeting these proteins in cancer therapy. This article aims to review the structures and functions of VPS4 series proteins and the previous experiments to analyze the relationship between VPS4 series proteins and cancer.
Collapse
Affiliation(s)
- Li Juan Huang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Shi Tong Zhan
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Yu Qin Pan
- Surgical Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Wei Bao
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| |
Collapse
|
4
|
Role of ESCRT component HD-PTP/ PTPN23 in cancer. Biochem Soc Trans 2017; 45:845-854. [PMID: 28620046 DOI: 10.1042/bst20160332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
Sustained cellular signalling originated from the receptors located at the plasma membrane is widely associated with cancer susceptibility. Endosomal sorting and degradation of the cell surface receptors is therefore crucial to preventing chronic downstream signalling and tumorigenesis. Since the Endosomal Sorting Complexes Required for Transport (ESCRT) controls these processes, ESCRT components were proposed to act as tumour suppressor genes. However, the bona fide role of ESCRT components in tumorigenesis has not been clearly demonstrated. The ESCRT member HD-PTP/PTPN23 was recently identified as a novel haplo-insufficient tumour suppressor in vitro and in vivo, in mice and humans. In this mini-review, we outline the role of the ESCRT components in cancer and summarize the functions of HD-PTP/PTPN23 in tumorigenesis.
Collapse
|
5
|
Peng Z, Liao Z, Matsumoto Y, Yang A, Tomkinson AE. Human DNA Ligase I Interacts with and Is Targeted for Degradation by the DCAF7 Specificity Factor of the Cul4-DDB1 Ubiquitin Ligase Complex. J Biol Chem 2016; 291:21893-21902. [PMID: 27573245 DOI: 10.1074/jbc.m116.746198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
The synthesis, processing, and joining of Okazaki fragments during DNA replication is complex, requiring the sequential action of a large number of proteins. Proliferating cell nuclear antigen, a DNA sliding clamp, interacts with and coordinates the activity of several DNA replication proteins, including the enzymes flap endonuclease 1 (FEN-1) and DNA ligase I that complete the processing and joining of Okazaki fragments, respectively. Although it is evident that maintaining the appropriate relative stoichiometry of FEN-1 and DNA ligase I, which compete for binding to proliferating cell nuclear antigen, is critical to prevent genomic instability, little is known about how the steady state levels of DNA replication proteins are regulated, in particular the proteolytic mechanisms involved in their turnover. Because DNA ligase I has been reported to be ubiquitylated, we used a proteomic approach to map ubiquitylation sites and screen for DNA ligase I-associated E3 ubiquitin ligases. We identified three ubiquitylated lysine residues and showed that DNA ligase I interacts with and is targeted for ubiquitylation by DCAF7, a specificity factor for the Cul4-DDB1 complex. Notably, knockdown of DCAF7 reduced the degradation of DNA ligase I in response to inhibition of proliferation and replacement of ubiquitylated lysine residues reduced the in vitro ubiquitylation of DNA ligase I by Cul4-DDB1 and DCAF7. In contrast, a different E3 ubiquitin ligase regulates FEN-1 turnover. Thus, although the expression of many of the genes encoding DNA replication proteins is coordinately regulated, our studies reveal that different mechanisms are involved in the turnover of these proteins.
Collapse
Affiliation(s)
- Zhimin Peng
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Zhongping Liao
- the Department of Anatomy and Neurobiology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yoshihiro Matsumoto
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Austin Yang
- the Department of Anatomy and Neurobiology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Alan E Tomkinson
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131 and
| |
Collapse
|
6
|
Yang Q, Chen D, Xiong F, Chen D, Liu C, Liu Y, Yu Q, Xiong J, Liu J, Li K, Zhao L, Ye Y, Zhou H, Hu L, Tian Z, Shang X, Zhang L, Wei X, Zhou W, Li D, Zhang W, Xu X. A splicing mutation inVPS4Bcauses dentin dysplasia I. J Med Genet 2016; 53:624-33. [DOI: 10.1136/jmedgenet-2015-103619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022]
|
7
|
Chen Z, Liu J, Lin L, Xie H, Zhang W, Zhang H, Wang G. [Analysis of differentially expressed proteome in urine
from non-small cell lung cancer patients]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:138-45. [PMID: 25800569 PMCID: PMC6000009 DOI: 10.3779/j.issn.1009-3419.2015.03.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
背景与目的 筛查非小细胞肺癌(non-small cell lung cancer, NSCLC)患者尿液中差异表达蛋白,确定可用于NSCLC早期诊断、监测预后和治疗评估的生物标记物。 方法 分别收集40例已病理证实初诊NSCLC患者、8例肺部良性疾病患者和22例健康志愿者的尿液样本。利用0.9%一维十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dode-cyl sulfate polyacrylamide gel electrophoresis, 1D SDS-PAGE)技术和MS-Thermo-Orbitrap-Velos质谱分析仪对NSCLC组和非肿瘤组尿液中蛋白质进行分离、提取及识别,鉴定出NSCLC患者尿液中的差异表达蛋白。应用SPSS 20.0软件中受试者工作特征曲线(receiver operating characteristic curve, ROC)分别对其敏感性、特异性进行分析,并进行实验验证,从而确定出与NSCLC相关的生物标记物。 结果 NSCLC患者组和非肿瘤组尿液差异性表达蛋白质集中表现在90 kDa、60 kDa和20 kDa-30 kDa凝胶条带中。在NSCLC患者尿液蛋白分析中发现了4种与NSCLC相关的差异表达蛋白,包括上调蛋白LRG1、CA1和下调蛋白VPS4B、YWHAZ。这4种差异表达蛋白作为独立的NSCLC生物标记物其敏感性较低:LRG1蛋白敏感性83.0%(25/30)、特异性90.0%(18/20);CA1蛋白敏感性60.0%(18/30)、特异性90.0%(18/20);VPS4B蛋白敏感性73.3%(22/30)、特异性90.0%(18/20);YWHAZ蛋白敏感性60.0%(18/30)、特异性95.0%(19/20)。而采用蛋白质组合模式对NSCLC进行筛查、诊断,则其敏感性和特异性分别可高达96.7%(29/30)和85%(17/20)。 结论 LRG1、CA1蛋白在NSCLC患者尿液中高表达,而VPS4B、YWHAZ蛋白呈低表达,差异表达蛋白均提示有可能成为用于NSCLC早期筛查、监测预后和治疗评估的生物标记物。LRG1、CA1、VPS4B和YWHAZ尿液蛋白作为单一生物标记物应用于NSCLC筛查和诊断的敏感性较低,而采用蛋白质组合模式明显优于独立模式对NSCLC的筛查和诊断,故蛋白质组合模式在临床诊疗中将更具有良好应用价值和前景。
Collapse
Affiliation(s)
- Zhengang Chen
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Jinbo Liu
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Ling Lin
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Hui Xie
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Wencheng Zhang
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Hongbo Zhang
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Guangshun Wang
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| |
Collapse
|
8
|
Tang J, Ji L, Wang Y, Huang Y, Yin H, He Y, Liu J, Miao X, Wu Y, Xu X, He S, Cheng C. Cell adhesion down-regulates the expression of vacuolar protein sorting 4B (VPS4B) and contributes to drug resistance in multiple myeloma cells. Int J Hematol 2015; 102:25-34. [DOI: 10.1007/s12185-015-1783-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022]
|
9
|
Mattissek C, Teis D. The role of the endosomal sorting complexes required for transport (ESCRT) in tumorigenesis. Mol Membr Biol 2014; 31:111-9. [PMID: 24641493 PMCID: PMC4059258 DOI: 10.3109/09687688.2014.894210] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/30/2014] [Accepted: 02/07/2014] [Indexed: 11/30/2022]
Abstract
The endosomal sorting complexes required for transport (ESCRT) are needed for three distinct cellular functions in higher eukaryotes: (i) Multivesicular body formation for the degradation of transmembrane proteins in lysosomes, (ii) midbody abscission during cytokinesis and (iii) retroviral budding. Not surprisingly, loss of ESCRT function has severe consequences, which include the failure to down-regulate growth factor receptors leading to deregulated mitogenic signaling. While it is clear that the function of the ESCRT machinery is important for embryonic development, its role in cancer is more controversial. Various experimental approaches in different model organisms arrive at partially divergent conclusions regarding the contribution of ESCRTs to tumorigenesis. Therefore the aim of this review is to provide an overview on different model systems used to study the role of the ESCRT machinery in cancer development, to highlight common grounds and present certain controversies in the field.
Collapse
Affiliation(s)
- Claudia Mattissek
- Division of Cell Biology, Biocenter, Innsbruck Medical University
InnsbruckAustria
| | - David Teis
- Division of Cell Biology, Biocenter, Innsbruck Medical University
InnsbruckAustria
| |
Collapse
|
10
|
Thomas SN, Liao Z, Clark D, Chen Y, Samadani R, Mao L, Ann DK, Baulch JE, Shapiro P, Yang AJ. Exosomal Proteome Profiling: A Potential Multi-Marker Cellular Phenotyping Tool to Characterize Hypoxia-Induced Radiation Resistance in Breast Cancer. Proteomes 2013; 1:87-108. [PMID: 24860738 PMCID: PMC4029595 DOI: 10.3390/proteomes1020087] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Radiation and drug resistance are significant challenges in the treatment of locally advanced, recurrent and metastatic breast cancer that contribute to mortality. Clinically, radiotherapy requires oxygen to generate cytotoxic free radicals that cause DNA damage and allow that damage to become fixed in the genome rather than repaired. However, approximately 40% of all breast cancers have hypoxic tumor microenvironments that render cancer cells significantly more resistant to irradiation. Hypoxic stimuli trigger changes in the cell death/survival pathway that lead to increased cellular radiation resistance. As a result, the development of noninvasive strategies to assess tumor hypoxia in breast cancer has recently received considerable attention. Exosomes are secreted nanovesicles that have roles in paracrine signaling during breast tumor progression, including tumor-stromal interactions, activation of proliferative pathways and immunosuppression. The recent development of protocols to isolate and purify exosomes, as well as advances in mass spectrometry-based proteomics have facilitated the comprehensive analysis of exosome content and function. Using these tools, studies have demonstrated that the proteome profiles of tumor-derived exosomes are indicative of the oxygenation status of patient tumors. They have also demonstrated that exosome signaling pathways are potentially targetable drivers of hypoxia-dependent intercellular signaling during tumorigenesis. This article provides an overview of how proteomic tools can be effectively used to characterize exosomes and elucidate fundamental signaling pathways and survival mechanisms underlying hypoxia-mediated radiation resistance in breast cancer.
Collapse
Affiliation(s)
- Stefani N Thomas
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | | - David Clark
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.C.); (Y.C.); (P.S.) ; Division of Oncology, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Yangyi Chen
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.C.); (Y.C.); (P.S.)
| | - Ramin Samadani
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA;
| | - Li Mao
- Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
| | - David K Ann
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; ; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA;
| | - Paul Shapiro
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.C.); (Y.C.); (P.S.) ; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA;
| | - Austin J Yang
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.C.); (Y.C.); (P.S.) ; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Liu Y, Lv L, Xue Q, Wan C, Ni T, Chen B, Liu Y, Zhou Y, Ni R, Mao G. Vacuolar protein sorting 4B, an ATPase protein positively regulates the progression of NSCLC via promoting cell division. Mol Cell Biochem 2013; 381:163-71. [DOI: 10.1007/s11010-013-1699-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/23/2013] [Indexed: 12/25/2022]
|