1
|
DeFilipp Z, Ciurea SO, Cutler C, Robin M, Warlick ED, Nakamura R, Brunner AM, Dholaria B, Walker AR, Kröger N, Bejanyan N, Atallah E, Tamari R, Solh MM, Percival ME, de Lima M, Scott B, Oran B, Garcia-Manero G, Hamadani M, Carpenter P, DeZern AE. Hematopoietic Cell Transplantation in the Management of Myelodysplastic Syndrome: An Evidence-Based Review from the American Society for Transplantation and Cellular Therapy Committee on Practice Guidelines. Transplant Cell Ther 2023; 29:71-81. [PMID: 36436780 DOI: 10.1016/j.jtct.2022.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
The sole curative therapy for myelodysplastic syndrome (MDS) is allogeneic hematopoietic cell transplantation (HCT). Here this therapeutic modality is reviewed and critically evaluated in the context of the evidence. Specific criteria were used for searching the published literature and for grading the quality and strength of the evidence and the strength of the recommendations. A panel of MDS experts comprising transplantation and nontransplantation physicians developed consensus treatment recommendations. This review summarizes the standard MDS indications for HCT and addresses areas of controversy. Recent prospective trials have confirmed that allogeneic HCT confers survival benefits in patients with advanced or high-risk MDS compared with nontransplantation approaches, and the use of HCT is increasing in older patients with good performance status. However, patients with high-risk cytogenetic or molecular mutations remain at high risk for relapse. It is unknown whether administration of novel therapies before or after transplantation may decrease the risk of disease relapse in selected populations. Ongoing and future studies will investigate revised approaches to disease risk stratification, patient selection, and post-transplantation approaches to optimize allogeneic HCT outcomes for patients with MDS.
Collapse
Affiliation(s)
- Zachariah DeFilipp
- Hematopoieitic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Boston, Massachusetts.
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Orange, California
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapy, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Marie Robin
- Service d'Hématologie-Greffe, Hôpital Saint-Louis, APHP, Université de Paris-Cité, Paris, France
| | - Erica D Warlick
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Andrew M Brunner
- Center for Leukemia, Massachusetts General Hospital, Boston, Massachusetts
| | - Bhagirathbhai Dholaria
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alison R Walker
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida
| | - Nicolaus Kröger
- University Hospital Eppendorf, Bone Marrow Transplant Centre, Hamburg, Germany
| | - Nelli Bejanyan
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Ehab Atallah
- Division of Hematology and Oncology, Medical College of Wisconsin, Cancer Center-Froedtert Hospital, Milwaukee, Wisconsin
| | - Roni Tamari
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melhem M Solh
- Blood and Marrow Transplant Program at Northside Hospital, Atlanta, Georgia
| | - Mary-Elizabeth Percival
- Fred Hutchinson Cancer Research Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Marcos de Lima
- The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Bart Scott
- Fred Hutchinson Cancer Research Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Mehdi Hamadani
- Blood and Marrow Transplant and Cellular Therapy Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul Carpenter
- Fred Hutchinson Cancer Research Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
2
|
Girard S, Genevieve F, Rault E, Fenneteau O, Lesesve JF. When Ring Sideroblasts on Bone Marrow Smears Are Inconsistent with the Diagnosis of Myelodysplastic Neoplasms. Diagnostics (Basel) 2022; 12:1752. [PMID: 35885655 PMCID: PMC9320983 DOI: 10.3390/diagnostics12071752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 01/19/2023] Open
Abstract
Ring sideroblasts are commonly seen in myelodysplastic neoplasms and are a key condition for identifying distinct entities of myelodysplastic neoplasms according to the WHO classification. However, the presence of ring sideroblasts is not exclusive to myelodysplastic neoplasms. Ring sideroblasts are as well either encountered in non-clonal secondary acquired disorders, such as exposure to toxic substances, drug/medicine, copper deficiency, zinc overload, lead poison, or hereditary sideroblastic anemias related to X-linked, autosomal, or mitochondrial mutations. This review article will discuss diseases associated with ring sideroblasts outside the context of myelodysplastic neoplasms. Knowledge of the differential diagnoses characterized by the presence of ring sideroblasts in bone marrow is essential to prevent any misdiagnosis, which leads to delayed diagnosis and subsequent management of patients that differ in the different forms of sideroblastic anemia.
Collapse
Affiliation(s)
- Sandrine Girard
- Laboratory of Hematology, Center of Biology and Pathology East, Hospices Civils de Lyon, 69500 Bron, France
- French-Speaking Cellular Hematology Group, 69500 Bron, France; (F.G.); (E.R.); (O.F.); (J.-F.L.)
| | - Franck Genevieve
- French-Speaking Cellular Hematology Group, 69500 Bron, France; (F.G.); (E.R.); (O.F.); (J.-F.L.)
- Laboratory of Hematology, Angers University Hospital, 49100 Angers, France
| | - Emmanuelle Rault
- French-Speaking Cellular Hematology Group, 69500 Bron, France; (F.G.); (E.R.); (O.F.); (J.-F.L.)
- Department of Biological Hematology, Tours University Hospital, 37081 Tours, France
| | - Odile Fenneteau
- French-Speaking Cellular Hematology Group, 69500 Bron, France; (F.G.); (E.R.); (O.F.); (J.-F.L.)
- Laboratory of Hematology, Robert Debré Hospital, APHP, 75019 Paris, France
| | - Jean-François Lesesve
- French-Speaking Cellular Hematology Group, 69500 Bron, France; (F.G.); (E.R.); (O.F.); (J.-F.L.)
- Laboratory of Hematology, Nancy University Hospital, 54000 Nancy, France
| |
Collapse
|
3
|
Jain AG, Elmariah H. BMT for Myelodysplastic Syndrome: When and Where and How. Front Oncol 2022; 11:771614. [PMID: 35070975 PMCID: PMC8770277 DOI: 10.3389/fonc.2021.771614] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a diverse group of hematological malignancies distinguished by a combination of dysplasia in the bone marrow, cytopenias and the risk of leukemic transformation. The hallmark of MDS is bone marrow failure which occurs due to selective growth of somatically mutated clonal hematopoietic stem cells. Multiple prognostic models have been developed to help predict survival and leukemic transformation, including the international prognostic scoring system (IPSS), revised international prognostic scoring system (IPSS-R), WHO prognostic scoring system (WPSS) and MD Anderson prognostic scoring system (MDAPSS). This risk stratification informs management as low risk (LR)-MDS treatment focuses on improving quality of life and cytopenias, while the treatment of high risk (HR)-MDS focuses on delaying disease progression and improving survival. While therapies such as erythropoiesis stimulating agents (ESAs), erythroid maturation agents (EMAs), immunomodulatory imide drugs (IMIDs), and hypomethylating agents (HMAs) may provide benefit, allogeneic blood or marrow transplant (alloBMT) is the only treatment that can offer cure for MDS. However, this therapy is marred, historically, by high rates of toxicity and transplant related mortality (TRM). Because of this, alloBMT is considered in a minority of MDS patients. With modern techniques, alloBMT has become a suitable option even for patients of advanced age or with significant comorbidities, many of whom who would not have been considered for transplant in prior years. Hence, a formal transplant evaluation to weigh the complex balance of patient and disease related factors and determine the potential benefit of transplant should be considered early in the disease course for most MDS patients. Once alloBMT is recommended, timing is a crucial consideration since delaying transplant can lead to disease progression and development of other comorbidities that may preclude transplant. Despite the success of alloBMT, relapse remains a major barrier to success and novel approaches are necessary to mitigate this risk and improve long term cure rates. This review describes various factors that should be considered when choosing patients with MDS who should pursue transplant, approaches and timing of transplant, and future directions of the field.
Collapse
Affiliation(s)
- Akriti G Jain
- Fellow, Hematology Oncology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL, United States
| | - Hany Elmariah
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer and Research Institute, Tampa, FL, United States
| |
Collapse
|
4
|
Metheny L, Callander NS, Hall AC, Zhang MJ, Bo-Subait K, Wang HL, Agrawal V, Al-Homsi AS, Assal A, Bacher U, Beitinjaneh A, Bejanyan N, Bhatt VR, Bredeson C, Byrne M, Cairo M, Cerny J, DeFilipp Z, Perez MAD, Freytes CO, Ganguly S, Grunwald MR, Hashmi S, Hildebrandt GC, Inamoto Y, Kanakry CG, Kharfan-Dabaja MA, Lazarus HM, Lee JW, Nathan S, Nishihori T, Olsson RF, Ringdén O, Rizzieri D, Savani BN, Savoie ML, Seo S, van der Poel M, Verdonck LF, Wagner JL, Yared JA, Hourigan CS, Kebriaei P, Litzow M, Sandmaier BM, Saber W, Weisdorf D, de Lima M. Allogeneic Transplantation to Treat Therapy-Related Myelodysplastic Syndrome and Acute Myelogenous Leukemia in Adults. Transplant Cell Ther 2021; 27:923.e1-923.e12. [PMID: 34428556 PMCID: PMC9064046 DOI: 10.1016/j.jtct.2021.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/22/2023]
Abstract
Patients who develop therapy-related myeloid neoplasm, either myelodysplastic syndrome (t-MDS) or acute myelogenous leukemia (t-AML), have a poor prognosis. An earlier Center for International Blood and Marrow Transplant Research (CIBMTR) analysis of 868 allogeneic hematopoietic cell transplantations (allo-HCTs) performed between 1990 and 2004 showed a 5-year overall survival (OS) and disease-free survival (DFS) of 22% and 21%, respectively. Modern supportive care, graft-versus-host disease prophylaxis, and reduced-intensity conditioning (RIC) regimens have led to improved outcomes. Therefore, the CIBMTR analyzed 1531 allo-HCTs performed in adults with t-MDS (n = 759) or t-AML (n = 772) between and 2000 and 2014. The median age was 59 years (range, 18 to 74 years) for the patients with t-MDS and 52 years (range, 18 to 77 years) for those with t-AML. Twenty-four percent of patients with t-MDS and 11% of those with t-AML had undergone a previous autologous (auto-) HCT. A myeloablative conditioning (MAC) regimen was used in 49% of patients with t-MDS and 61% of patients with t-AML. Nonrelapse mortality at 5 years was 34% (95% confidence interval [CI], 30% to 37%) for patients with t-MDS and 34% (95% CI, 30% to 37%) for those with t-AML. Relapse rates at 5 years in the 2 groups were 46% (95% CI, 43% to 50%) and 43% (95% CI, 40% to 47%). Five-year OS and DFS were 27% (95% CI, 23% to 31%) and 19% (95% CI, 16% to 23%), respectively, for patients with t-MDS and 25% (95% CI, 22% to 28%) and 23% (95% CI, 20% to 26%), respectively, for those with t-AML. In multivariate analysis, OS and DFS were significantly better in young patients with low-risk t-MDS and those with t-AML undergoing HCT with MAC while in first complete remission, but worse for those with previous auto-HCT, higher-risk cytogenetics or Revised International Prognostic Scoring System score, and a partially matched unrelated donor. Relapse remains the major cause of treatment failure, with little improvement seen over the past 2 decades. These data mandate caution when recommending allo-HCT in these conditions and indicate the need for more effective antineoplastic approaches before and after allo-HCT.
Collapse
Affiliation(s)
- Leland Metheny
- Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| | | | - Aric C Hall
- University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Mei-Jei Zhang
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Khalid Bo-Subait
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hai-Lin Wang
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vaibhav Agrawal
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Amer Assal
- Columbia University Irving Medical Center, Department of Medicine, Bone Marrow Transplant and Cell Therapy Program, New York, New York
| | - Ulrike Bacher
- Department of Hematology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amer Beitinjaneh
- Division of Transplantation and Cellular Therapy, University of Miami, Miami, Florida
| | - Nelli Bejanyan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Minneapolis, Minnesota
| | - Vijaya Raj Bhatt
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chris Bredeson
- The Ottawa Hospital Blood and Marrow Transplant Program and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael Byrne
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mitchell Cairo
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Jan Cerny
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts
| | - Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Miguel Angel Diaz Perez
- Department of Hematology/Oncology, Hospital Infantil Universitario Niño Jesus, Madrid, Spain
| | - César O Freytes
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Siddhartha Ganguly
- Division of Hematological Malignancy and Cellular Therapeutics, University of Kansas Health System, Kansas City, Kansas
| | - Michael R Grunwald
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Shahrukh Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota; Department of Medicine, Sheikh Shakhbout Medical City, Abu Dhavi, United Arab Emirates
| | | | - Yoshihiro Inamoto
- Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Christopher G Kanakry
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology, Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, Florida
| | - Hillard M Lazarus
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Jong Wook Lee
- Division of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sunita Nathan
- Section of Bone Marrow Transplant and Cell Therapy, Rush University Medical Center, Chicago, Illinois
| | - Taiga Nishihori
- Department of Blood & Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, Tampa, Florida
| | - Richard F Olsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research Sormland, Uppsala University, Uppsala, Sweden
| | - Olov Ringdén
- Translational Cell Therapy Group, CLINTEC (Clinical Science, Intervention, and Technology) Karolinska Institutet, Stockholm Sweden
| | - David Rizzieri
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina
| | - Bipin N Savani
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Sachiko Seo
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | | | - Leo F Verdonck
- Department of Hematology/Oncology, Isala Clinic, Zwolle, The Netherlands
| | - John L Wagner
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jean A Yared
- Blood & Marrow Transplantation Program, Division of Hematology/Oncology, Department of Medicine, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| | - Christopher S Hourigan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Partow Kebriaei
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Litzow
- Division of Hematology and Transplant Center, Mayo Clinic Rochester, Rochester, Minnesota
| | - Brenda M Sandmaier
- Division of Medical Oncology, University of Washington and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel Weisdorf
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Marcos de Lima
- Department of Medicine, Seidman Cancer Center, University Hospitals Case Medical Center, Cleveland, Ohio
| |
Collapse
|
5
|
Hematopoietic stem and progenitor cell-restricted Cdx2 expression induces transformation to myelodysplasia and acute leukemia. Nat Commun 2020; 11:3021. [PMID: 32541670 PMCID: PMC7296000 DOI: 10.1038/s41467-020-16840-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/28/2020] [Indexed: 02/08/2023] Open
Abstract
The caudal-related homeobox transcription factor CDX2 is expressed in leukemic cells but not during normal blood formation. Retroviral overexpression of Cdx2 induces AML in mice, however the developmental stage at which CDX2 exerts its effect is unknown. We developed a conditionally inducible Cdx2 mouse model to determine the effects of in vivo, inducible Cdx2 expression in hematopoietic stem and progenitor cells (HSPCs). Cdx2-transgenic mice develop myelodysplastic syndrome with progression to acute leukemia associated with acquisition of additional driver mutations. Cdx2-expressing HSPCs demonstrate enrichment of hematopoietic-specific enhancers associated with pro-differentiation transcription factors. Furthermore, treatment of Cdx2 AML with azacitidine decreases leukemic burden. Extended scheduling of low-dose azacitidine shows greater efficacy in comparison to intermittent higher-dose azacitidine, linked to more specific epigenetic modulation. Conditional Cdx2 expression in HSPCs is an inducible model of de novo leukemic transformation and can be used to optimize treatment in high-risk AML.
Collapse
|
6
|
Natelson EA, Baker KR, Pyatt DW. Anemia and leukopenia following intravenous colloidal silver infusions-Clinical and hematological features, unique peripheral blood film appearance and effective therapy with supplemental oral copper and apheresis. Clin Case Rep 2019; 7:1757-1762. [PMID: 31534743 PMCID: PMC6745401 DOI: 10.1002/ccr3.2316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/06/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Alternative medical therapy with multiple intravenous colloidal silver infusions may cause severe illness, including profound copper deficiency-induced anemia and hepatic toxicity. No chelating agent for silver poisoning exists and effective therapy requires apheresis in combination with continuous administration of oral copper.
Collapse
Affiliation(s)
- Ethan A. Natelson
- Department of Clinical MedicineWeill Cornell Medical CollegeNew YorkNYUSA
- Department of Academic MedicineHouston Methodist Hospital, Methodist Hospital Research InstituteHoustonTXUSA
- Houston Methodist HospitalHoustonTXUSA
| | | | - David W. Pyatt
- School of Public HealthUniversity of ColoradoBoulderCOUSA
- School of PharmacyUniversity of ColoradoBoulderCOUSA
- Summit Technology, LLPWest HartfordCTUSA
| |
Collapse
|
7
|
Wang F, Ni J, Wu L, Wang Y, He B, Yu D. Gender disparity in the survival of patients with primary myelodysplastic syndrome. J Cancer 2019; 10:1325-1332. [PMID: 30854142 PMCID: PMC6400681 DOI: 10.7150/jca.28220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
Several prognostic scoring systems have been developed to assess prognosis in myelodysplastic syndrome (MDS). However, currently there are no systems that list gender as a prognostic factor. We queried a National Cancer Institute database to investigate the prognostic influence of gender on the survival of patients with MDS. We first identified 34,681 qualified patients diagnosed with MDS from 2001-2014 in the Surveillance, Epidemiology, and End Results (SEER) database, and then analyzed the characteristics of these patients using chi-squared tests. The Kaplan-Meier method and the multivariate Cox regression model were used to examine whether gender disparity in the survival of patients with MDS existed. We found that male patients had higher incidence rate of MDS (55.3% vs 44.7%, P<0.001) and a significant survival disadvantage (27.6% vs 33.6%, P<0.001) compared to female patients. Moreover, the less favorable survival rate of male MDS patients was associated with the age at diagnosis, race, marital status at diagnosis and the histological subtypes including refractory anemia (RA), refractory cytopenia with multilineage dysplasia (RCMD), myelodysplastic associated with isolated del 5q (MDS 5q-), myelodysplastic/myeloproliferative neoplasm (MDS/MPN) and not otherwise specified (NOS). In conclusion, gender can be considered as an independent prognostic factor for the overall survival of patients with MDS.
Collapse
Affiliation(s)
- Fangfang Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China
| | - Jun Ni
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Lei Wu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China
| | - Ying Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China
| | - Bin He
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Duonan Yu
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225001, China
| |
Collapse
|
8
|
Mambet C, Matei L, Necula LG, Diaconu CC. A link between the driver mutations and dysregulated apoptosis in BCR-ABL1 negative myeloproliferative neoplasms. J Immunoassay Immunochem 2016; 37:331-45. [PMID: 26890068 DOI: 10.1080/15321819.2016.1152276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The current understanding of BCR-ABL1 negative myeloproliferative neoplasms pathogenesis is centred on the phenotypic driver mutations in JAK2, MPL, or CALR genes, and the constitutive activation of JAK-STAT pathway. Nonetheless, there is still a need to better characterize the cellular processes that are triggered by these genetic alterations, such as apoptosis that might play a role in the pathological expansion of the myeloid lineages and, especially, in the morphological anomalies of the bone marrow megakaryocytes. In this article we will explore the connection between the driver mutations in MPN and the abnormal apoptosis that might be translated in new therapeutic strategies.
Collapse
Affiliation(s)
- Cristina Mambet
- a Cellular and Molecular Pathology Department , Ştefan S. Nicolau Institute of Virology , Bucharest , Romania
| | - Lilia Matei
- a Cellular and Molecular Pathology Department , Ştefan S. Nicolau Institute of Virology , Bucharest , Romania
| | - Laura Georgiana Necula
- a Cellular and Molecular Pathology Department , Ştefan S. Nicolau Institute of Virology , Bucharest , Romania.,b Biochemistry-Proteomics Department , Victor Babes National Institute of Pathology , Bucharest , Romania.,c Titu Maiorescu University , Bucharest , Romania
| | - Carmen C Diaconu
- a Cellular and Molecular Pathology Department , Ştefan S. Nicolau Institute of Virology , Bucharest , Romania
| |
Collapse
|
9
|
Guezguez B, Almakadi M, Benoit YD, Shapovalova Z, Rahmig S, Fiebig-Comyn A, Casado FL, Tanasijevic B, Bresolin S, Masetti R, Doble BW, Bhatia M. GSK3 Deficiencies in Hematopoietic Stem Cells Initiate Pre-neoplastic State that Is Predictive of Clinical Outcomes of Human Acute Leukemia. Cancer Cell 2016; 29:61-74. [PMID: 26766591 DOI: 10.1016/j.ccell.2015.11.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 04/23/2015] [Accepted: 11/17/2015] [Indexed: 01/20/2023]
Abstract
Initial pathway alternations required for pathogenesis of human acute myeloid leukemia (AML) are poorly understood. Here we reveal that removal of glycogen synthase kinase-3α (GSK-3α) and GSK-3β dependency leads to aggressive AML. Although GSK-3α deletion alone has no effect, GSK-3β deletion in hematopoietic stem cells (HSCs) resulted in a pre-neoplastic state consistent with human myelodysplastic syndromes (MDSs). Transcriptome and functional studies reveal that each GSK-3β and GSK-3α uniquely contributes to AML by affecting Wnt/Akt/mTOR signaling and metabolism, respectively. The molecular signature of HSCs deleted for GSK-3β provided a prognostic tool for disease progression and survival of MDS patients. Our study reveals that GSK-3α- and GSK-3β-regulated pathways can be responsible for stepwise transition to MDS and subsequent AML, thereby providing potential therapeutic targets of disease evolution.
Collapse
Affiliation(s)
- Borhane Guezguez
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Mohammed Almakadi
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Oncology, Juravinski Cancer Center, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Yannick D Benoit
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Zoya Shapovalova
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Susann Rahmig
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Aline Fiebig-Comyn
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Fanny L Casado
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Borko Tanasijevic
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Silvia Bresolin
- Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Riccardo Masetti
- Department of Pediatric Oncology and Hematology, University of Bologna, Bologna, Italy
| | - Bradley W Doble
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Mickie Bhatia
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; McMaster Stem Cell and Cancer Research Institute (SCC-RI), Michael G. DeGroote School of Medicine, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
10
|
Rady K, Westerman D, Blombery P, Turner P, Seymour J. Copper deficiency mimicking myelodysplastic syndrome. Leuk Lymphoma 2015; 57:1223-6. [PMID: 26693885 DOI: 10.3109/10428194.2015.1086920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - David Westerman
- b Department of Pathology , Peter MacCallum Cancer Centre , East Melbourne , VIC , Australia ;,c Department of Medicine, University of Melbourne , Parkville , VIC , Australia
| | - Piers Blombery
- b Department of Pathology , Peter MacCallum Cancer Centre , East Melbourne , VIC , Australia
| | - Paul Turner
- d Department of Hematology , Austin Health , Heidelberg , VIC , Australia
| | - John Seymour
- a Department of Hematology ;,c Department of Medicine, University of Melbourne , Parkville , VIC , Australia
| |
Collapse
|
11
|
The Effects of Alcohol and Aldehyde Dehydrogenases on Disorders of Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:349-59. [DOI: 10.1007/978-3-319-09614-8_20] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|