1
|
Maciel F, Madureira L, Geada P, Teixeira JA, Silva J, Vicente AA. The potential of Pavlovophyceae species as a source of valuable carotenoids and polyunsaturated fatty acids for human consumption. Biotechnol Adv 2024; 74:108381. [PMID: 38777244 DOI: 10.1016/j.biotechadv.2024.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Microalgae are a group of microorganisms, mostly photoautotrophs with high CO2 fixation capacity, that have gained increased attention in the last decades due to their ability to produce a wide range of valuable metabolites, such as carotenoids and polyunsaturated fatty acids, for application in food/feed, pharmaceutical, and cosmeceutical industries. Their increasing relevance has highlighted the importance of identifying and culturing new bioactive-rich microalgae species, as well as of a thorough understanding of the growth conditions to optimize the biomass production and master the biochemical composition according to the desired application. Thus, this review intends to describe the main cell processes behind the production of carotenoids and polyunsaturated fatty acids, in order to understand the possible main triggers responsible for the accumulation of those biocompounds. Their economic value and the biological relevance for human consumption are also summarized. In addition, an extensive review of the impact of culture conditions on microalgae growth performance and their biochemical composition is presented, focusing mainly on the studies involving Pavlovophyceae species. A complementary description of the biochemical composition of these microalgae is also presented, highlighting their potential applications as a promising bioresource of compounds for large-scale production and human and animal consumption.
Collapse
Affiliation(s)
- Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Leandro Madureira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana Silva
- ALLMICROALGAE, Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal.
| | - António Augusto Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Mecca M, Sichetti M, Giuseffi M, Giglio E, Sabato C, Sanseverino F, Marino G. Synergic Role of Dietary Bioactive Compounds in Breast Cancer Chemoprevention and Combination Therapies. Nutrients 2024; 16:1883. [PMID: 38931238 PMCID: PMC11206589 DOI: 10.3390/nu16121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer is the most common tumor in women. Chemotherapy is the gold standard for cancer treatment; however, severe side effects and tumor resistance are the major obstacles to chemotherapy success. Numerous dietary components and phytochemicals have been found to inhibit the molecular and signaling pathways associated with different stages of breast cancer development. In particular, this review is focused on the antitumor effects of PUFAs, dietary enzymes, and glucosinolates against breast cancer. The major databases were consulted to search in vitro and preclinical studies; only those with solid scientific evidence and reporting protective effects on breast cancer treatment were included. A consistent number of studies highlighted that dietary components and phytochemicals can have remarkable therapeutic effects as single agents or in combination with other anticancer agents, administered at different concentrations and via different routes of administration. These provide a natural strategy for chemoprevention, reduce the risk of breast cancer recurrence, impair cell proliferation and viability, and induce apoptosis. Some of these bioactive compounds of dietary origin, however, show poor solubility and low bioavailability; hence, encapsulation in nanoformulations are promising tools able to increase clinical efficiency.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Marzia Sichetti
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Martina Giuseffi
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Eugenia Giglio
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Claudia Sabato
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Francesca Sanseverino
- Unit of Gynecologic Oncology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy;
| | - Graziella Marino
- Unit of Breast Cancer, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy;
| |
Collapse
|
3
|
Loukil I, Mutch DM, Plourde M. Genetic association between FADS and ELOVL polymorphisms and the circulating levels of EPA/DHA in humans: a scoping review. GENES & NUTRITION 2024; 19:11. [PMID: 38844860 PMCID: PMC11157910 DOI: 10.1186/s12263-024-00747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two omega-3 fatty acids that can be synthesized out of their precursor alpha-linolenic acid (ALA). FADS and ELOVL genes encode the desaturase and elongase enzymes required for EPA and DHA synthesis from ALA; however, single nucleotide polymorphisms (SNPs) in FADS and ELOVL genes could modify the levels of EPA and DHA synthesized from ALA although there is no consensus in this area. This review aims to investigate EPA and DHA circulating levels in human blood and their association with FADS or ELOVL. METHODS PubMed, Cochrane, and Scopus databases were used to identify research articles. They were subsequently reviewed by two independent investigators. RESULTS Initially, 353 papers were identified. After removing duplicates and articles not meeting inclusion criteria, 98 full text papers were screened. Finally, this review included 40 studies investigating FADS and/or ELOVL polymorphisms. A total of 47 different SNPs in FADS genes were reported. FADS1 rs174537, rs174547, rs174556 and rs174561 were the most studied SNPs, with minor allele carriers having lower levels of EPA and DHA. SNPs in the FADS genes were in high linkage disequilibrium. SNPs in FADS were correlated with levels of EPA and DHA. No conclusion could be drawn with the ELOVL polymorphisms since the number of studies was too low. CONCLUSION Specific SNPs in FADS gene, such as rs174537, have strong associations with circulating levels of EPA and DHA. Continued investigation regarding the impact of genetic variants related to EPA and DHA synthesis is warranted.
Collapse
Affiliation(s)
- Insaf Loukil
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, Guelph, ON, N1G 2W1, Canada
| | - Mélanie Plourde
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada.
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
4
|
Ali AH, Hachem M, Ahmmed MK. Docosahexaenoic acid-loaded nanoparticles: A state-of-the-art of preparation methods, characterization, functionality, and therapeutic applications. Heliyon 2024; 10:e30946. [PMID: 38774069 PMCID: PMC11107210 DOI: 10.1016/j.heliyon.2024.e30946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), an omega-3 polyunsaturated fatty acid, offers several beneficial effects. DHA helps in reducing depression, autoimmune diseases, rheumatoid arthritis, attention deficit hyperactivity syndrome, and cardiovascular diseases. It can stimulate the development of brain and nerve, alleviate lipids metabolism-related disorders, and enhance vision development. However, DHA susceptibility to chemical oxidation, poor water solubility, and unpleasant order could restrict its applications for nutritional and therapeutic purposes. To avoid these drawbacks and enhance its bioavailability, DHA can be encapsulated using an effective delivery system. Several encapsulation methods are recognized, and DHA-loaded nanoparticles have demonstrated numerous benefits. In clinical studies, positive influences on the development of several diseases have been reported, but some assumptions are conflicting and need more exploration, since DHA has a systemic and not a targeted release at the required level. This might cause the applications of nanoparticles that could allow DHA release at the required level and improve its efficiency, thus resulting in a better controlling of several diseases. In the current review, we focused on researches investigating the formulation and development of DHA-loaded nanoparticles using different delivery systems, including low-density lipoprotein, zinc oxide, silver, zein, and resveratrol-stearate. Silver-DHA nanoparticles presented a typical particle size of 24 nm with an incorporation level of 97.67 %, while the entrapment efficiency of zinc oxide-DHA nanoparticles represented 87.3 %. By using zein/Poly (lactic-co-glycolic acid) stabilized nanoparticles, DHA's encapsulation level reached 84.6 %. We have also highlighted the characteristics, functionality and medical implementation of these nanoparticles in the treatment of inflammations, brain disorders, diabetes as well as hepatocellular carcinoma.
Collapse
Affiliation(s)
- Abdelmoneim H. Ali
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Wang J, Liu YM, Hu J, Chen C. Potential of natural products in combination with arsenic trioxide: Investigating cardioprotective effects and mechanisms. Biomed Pharmacother 2023; 162:114464. [PMID: 37060657 DOI: 10.1016/j.biopha.2023.114464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 04/17/2023] Open
Abstract
Over the past few decades, clinical trials conducted worldwide have demonstrated the efficacy of arsenic trioxide (ATO) in the treatment of relapsed acute promyelocytic leukemia (APL). Currently, ATO has become the frontline treatments for patients with APL. However, its therapeutic applicability is severely constrained by ATO-induced cardiac side effects. Any cardioprotective agents that can ameliorate the cardiac side effects and allow exploiting the full therapeutic potential of ATO, undoubtedly gain significant attention. The knowledge and use of natural products for evidence-based therapy have grown rapidly in recent years. Here we discussed the potential mechanism of ATO-induced cardiac side effects and reviewed the studies on cardiac side effects as well as the research history of ATO in the treatment of APL. Then, We summarized the protective effects and underlying mechanisms of natural products in the treatment of ATO-induced cardiac side effects. Based on the efficacy and safety of the natural product, it has a promising future in the development of cardioprotective agents against ATO-induced cardiac side effects.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| |
Collapse
|
6
|
Liang L, Saunders C, Sanossian N. Food, gut barrier dysfunction, and related diseases: A new target for future individualized disease prevention and management. Food Sci Nutr 2023; 11:1671-1704. [PMID: 37051344 PMCID: PMC10084985 DOI: 10.1002/fsn3.3229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 03/09/2023] Open
Abstract
Dysfunction of gut barrier is known as "leaky gut" or increased intestinal permeability. Numerous recent scientific evidences showed the association between gut dysfunction and multiple gastrointestinal tract (GI) and non-GI diseases. Research also demonstrated that food plays a crucial role to cause or remedy gut dysfunction related to diseases. We reviewed recent articles from electronic databases, mainly PubMed. The data were based on animal models, cell models, and human research in vivo and in vitro models. In this comprehensive review, our aim focused on the relationship between dietary factors, intestinal permeability dysfunction, and related diseases. This review synthesizes currently available literature and is discussed in three parts: (a) the mechanism of gut barrier and function, (b) food and dietary supplements that may promote gut health, and food or medication that may alter gut function, and (c) a table that organizes the synthesized information by general mechanisms for diseases related to leaky gut/intestinal permeability and associated dietary influences. With future research, dietary intervention could be a new target for individualized disease prevention and management.
Collapse
Affiliation(s)
- Linda Liang
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Nerses Sanossian
- Department of NeurologyMedical School of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
7
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
8
|
Neto J, Jantsch J, Rodrigues F, Squizani S, Eller S, Oliveira TF, Silveira AK, Moreira JCF, Giovenardi M, Porawski M, Guedes RP. Impact of cafeteria diet and n3 supplementation on the intestinal microbiota, fatty acids levels, neuroinflammatory markers and social memory in male rats. Physiol Behav 2023; 260:114068. [PMID: 36567032 DOI: 10.1016/j.physbeh.2022.114068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To assess the effects of omega-3 (n3) supplementation on intestinal microbiota, fatty acids profile, neuroinflammation, and social memory of cafeteria diet (CAF)-fed rats. METHODS Male Wistar rats were fed with CAF for 20 weeks. Omega-3 (500 mg/kg/day) was supplemented between the 16th and 20th week. Colon morphology, intestinal microbiota composition, short-chain fatty acids (SCFA) and lipopolysaccharide (LPS) in the plasma, fatty acids profile, TLR-4 and claudin-5 expressions in the brain, and social memory were investigated. RESULTS CAF reduced colon length, crypts' depth, and microbiota diversity, while n3 increased the Firmicutes/Bacteroidetes ratio. CAF increased SCFA plasma levels, but n3 reduced butyrate and isobutyrate in obese rats. LPS was increased in CAF-fed rats, and n3 decreased its levels. In the cerebral cortex, n3 increased caprylic, palmitic, stearic, tricosanoic, lignoceric, myristoleic, and linoleic acids. CAF increased palmitic acid and TLR-4 expression in the cerebral cortex while decreasing claudin-5 in the hippocampus. In the social memory test, CAF-fed animals showed greater social interaction with no effect of n3. CONCLUSIONS The lack of n3 effect in some of the evaluated parameters may be due to the severity of the obesity caused by CAF. However, n3 reduced LPS levels, suggesting its ability to reverse endotoxemia.
Collapse
Affiliation(s)
- João Neto
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Fernanda Rodrigues
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Samia Squizani
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Sarah Eller
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Tiago Franco Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | | | - José Cláudio Fonseca Moreira
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil; Departamento de Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Marcia Giovenardi
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Marilene Porawski
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Hepatologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Carré C, Baudin F, Buteau B, Martine L, Grégoire S, Vasku G, Berdeaux O, Béduneau A, Pellequer Y, Jamoussi J, Desrumeaux C, Aho S, Bron AM, Acar N, Creuzot-Garcher C, Gabrielle PH. Effects of topical docosahexaenoic acid on postoperative fibrosis in an animal model of glaucoma filtration surgery. Acta Ophthalmol 2023; 101:e61-e68. [PMID: 35920328 DOI: 10.1111/aos.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE The aim of this study was to evaluate docosahexaenoic acid (DHA) as a potential antifibrotic agent after glaucoma filtration surgery (GFS) in rats. METHODS A total of 36 10-week-old Brown Norway rats underwent GFS. Animals were equally divided into three groups: a control group, a DHA group and a mitomycin C (MMC) group. Intraocular pressure (IOP) was measured using a dynamic rebound tonometer, and a photograph of the surgical site was taken on days 1, 3, 7, 10, 14 and 17. The incorporation of DHA into fibroblasts was evaluated by gas chromatography. The expression of alfa-smooth muscle actin (α-SMA) and Smad proteins was assessed by Western blotting. RESULTS IOP decreased after surgery in animals from the three groups on day 1 after surgery. Over time, IOP remained lower in the DHA and MMC groups than in the control group (median [interquartile range] 8.0 [7.0-8.0] and 8.0 [7.3-8.0] mmHg vs. 9.0 [8.0-9.0] mmHg, respectively; p < 0.001). Bleb area in the DHA and MMC groups remained larger than that of the control group from day 7 to day 14 (3.9 [2.9-5.2] and 3.5 [2.3-4.4] mm2 vs. 2.3 [2.0-2.8] mm2 , respectively; p = 0.0021). We did not observe any change in DHA concentrations in the fibroblasts of the DHA group compared with the other groups. CONCLUSION The impact of DHA on IOP and bleb area was similar to that of MMC. The mechanisms of action of DHA in rat eye fibroblasts deserve further investigation.
Collapse
Affiliation(s)
- Chloé Carré
- Department of Ophthalmology, University Hospital, Dijon, France.,Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Florian Baudin
- Department of Ophthalmology, University Hospital, Dijon, France.,Équipe d'Accueil (EA 7460): Physiopathologie et Épidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Bénédicte Buteau
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Lucy Martine
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Grégoire
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Glenda Vasku
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Olivier Berdeaux
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Arnaud Béduneau
- PEPITE EA4267, Labex LipSTIC, Bourgogne-Franche-Comté University, Besançon, France
| | - Yann Pellequer
- PEPITE EA4267, Labex LipSTIC, Bourgogne-Franche-Comté University, Besançon, France
| | - Jasmine Jamoussi
- PEPITE EA4267, Labex LipSTIC, Bourgogne-Franche-Comté University, Besançon, France
| | - Catherine Desrumeaux
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France.,MMDN, University of Montpellier, INSERM, EPHE, Montpellier, France
| | - Serge Aho
- Department of Epidemiology and Biostatistics, University Hospital, Dijon, France
| | - Alain-Marie Bron
- Department of Ophthalmology, University Hospital, Dijon, France.,Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Catherine Creuzot-Garcher
- Department of Ophthalmology, University Hospital, Dijon, France.,Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre Henri Gabrielle
- Department of Ophthalmology, University Hospital, Dijon, France.,Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
10
|
Serum Fatty Acids Are Associated with a Higher Risk of Ischemic Stroke. Nutrients 2023; 15:nu15030585. [PMID: 36771293 PMCID: PMC9921638 DOI: 10.3390/nu15030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Stroke prevention, a significant public-health concern, begins with recognizing and addressing risk factors. Interventions targeted at modifiable risk factors can effectively prevent ischemic stroke, while Omega-3 fatty acids have been shown to improve stroke outcomes. Our study aimed to investigate the relationship between ischemic-stroke risk factors and fatty acids using a prospective observational study with 274 patients. We collected clinical data on risk factors and measured fatty-acid levels using high-performance liquid chromatography coupled with mass spectrometry. We found that several risk factors, including age, sex, smoking, atrial fibrillation, dyslipidemia, and previous stroke history, had a direct relationship with fatty acids. Of these, smoking had the most significant impact, negatively impacting levels of docosahexaenoic and eicosapentaenoic acid. Conversely, dyslipidemia and atrial fibrillation positively correlated with fatty acids, particularly in female patients and those with recurrent strokes. Age was found to directly correlate with other risk factors and variations in fatty-acid ratios. The stroke rate was higher in males than females before the age of 70, but this trend reversed. Our findings suggest that better management of risk factors, particularly modifiable lifestyle factors, could improve fatty-acid profiles and the balance of Omega-3 and Omega-6 in patients with ischemic stroke.
Collapse
|
11
|
Jayapala HPS, Lim SY. N-3 Polyunsaturated Fatty Acids and Gut Microbiota. Comb Chem High Throughput Screen 2023; 26:892-905. [PMID: 35786331 DOI: 10.2174/1386207325666220701121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/09/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022]
Abstract
For several decades, studies have reported that n-3 polyunsaturated fatty acids (PUFAs) play a beneficial role in cardiovascular, immune, cognitive, visual, mental and metabolic health. The mammalian intestine is colonized by microbiota, including bacteria, archaea, viruses, protozoans, and fungi. The composition of the gut microbiota is influenced by long-term dietary habits, disease-associated dysbiosis, and the use of antibiotics. Accumulating evidence suggests a relationship between n-3 PUFAs and the gut microbiota. N-3 PUFAs can alter the diversity and abundance of the gut microbiome, and gut microbiota can also affect the metabolism and absorption of n-3 PUFAs. Changes in the populations of certain gut microbiota can lead to negative effects on inflammation, obesity, and metabolic diseases. An imbalanced consumption of n-3/n-6 PUFAs may lead to gut microbial dysbiosis, in particular, a significant increase in the ratio of Firmicutes to Bacteroidetes, which eventually results in being overweight and obesity. N-3 PUFA deficiency disrupts the microbiota community in metabolic disorders. In addition, accumulating evidence indicates that the interplay between n-3 PUFAs, gut microbiota, and immune reactions helps to maintain the integrity of the intestinal wall and interacts with host immune cells. Supplementation with n-3 PUFAs may be an effective therapeutic measure to restore gut microbiota homeostasis and correct metabolic disturbances associated with modern chronic diseases. In particular, marine extracts from seaweed contain a considerable dry weight of lipids, including n-3 PUFAs such as eicosapentaenoic acid (EPA, C20: 5) and docosahexaenoic acid (DHA, C22: 6). This review describes how gut microbiota function in intestinal health, how n-3 PUFAs interact with the gut microbiota, and the potential of n-3 PUFAs to influence the gut-brain axis, acting through gut microbiota composition.
Collapse
Affiliation(s)
| | - Sun Young Lim
- Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan, 49112, Korea
| |
Collapse
|
12
|
Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs) for Immunomodulation in COVID-19 Related Acute Respiratory Distress Syndrome (ARDS). J Clin Med 2022; 12:jcm12010304. [PMID: 36615103 PMCID: PMC9820910 DOI: 10.3390/jcm12010304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), might be complicated by Acute Respiratory Distress Syndrome (ARDS) caused by severe lung damage. It is relevant to find treatments for COVID-19-related ARDS. Currently, DHA and EPA n-3 PUFAs, known for their immunomodulatory activities, have been proposed for COVID-19 management, and clinical trials are ongoing. Here, examining COVID-19-related ARDS immunopathology, we reference in vitro and in vivo studies, indicating n-3 PUFA immunomodulation on lung microenvironment (bronchial and alveolar epithelial cells, macrophages, infiltrating immune cells) and ARDS, potentially affecting immune responses in COVID-19-related ARDS. Concerning in vitro studies, evidence exists of the potential anti-inflammatory activity of DHA on airway epithelial cells and monocytes/macrophages; however, it is necessary to analyze n-3 PUFA immunomodulation using viral experimental models relevant to SARS-CoV-2 infection. Then, although pre-clinical investigations in experimental acute lung injury/ARDS revealed beneficial immunomodulation by n-3 PUFAs when extracellular pathogen infections were used as lung inflammatory models, contradictory results were reported using intracellular viral infections. Finally, clinical trials investigating n-3 PUFA immunomodulation in ARDS are limited, with small samples and contradictory results. In conclusion, further in vitro and in vivo investigations are needed to establish whether n-3 PUFAs may have some therapeutic potential in COVID-19-related ARDS.
Collapse
|
13
|
Oliveira CYB, Abreu JL, Santos EP, Matos ÂP, Tribuzi G, Oliveira CDL, Veras BO, Bezerra RS, Müller MN, Gálvez AO. Light induces peridinin and docosahexaenoic acid accumulation in the dinoflagellate Durusdinium glynnii. Appl Microbiol Biotechnol 2022; 106:6263-6276. [PMID: 35972515 DOI: 10.1007/s00253-022-12131-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Peridinin is a light-harvesting carotenoid present in phototrophic dinoflagellates and has great potential for new drug applications and cosmetics development. Herein, the effects of irradiance mediated by light-emitting diodes on growth performance, carotenoid and fatty acid profiles, and antioxidant activity of the endosymbiotic dinoflagellate Durusdinium glynnii were investigated. The results demonstrate that D. glynnii is particularly well adapted to low-light conditions; however, it can be high-light-tolerant. In contrast to other light-harvesting carotenoids, the peridinin accumulation in D. glynnii occurred during high-light exposure. The peridinin to chlorophyll-a ratio varied as a function of irradiance, while the peridinin to total carotenoids ratio remained stable. Under optimal irradiance for growth, there was a peak in docosahexaenoic acid (DHA) bioaccumulation. This study contributes to the understanding of the photoprotective role of peridinin in endosymbiont dinoflagellates and highlights the antioxidant activity of peridinin-rich extracts. KEY POINTS: • Peridinin has a protective role against chlorophyll photo-oxidation • High light conditions induce cellular peridinin accumulation • D. glynnii accumulates high amounts of DHA under optimal light supply.
Collapse
Affiliation(s)
- Carlos Yure B Oliveira
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil.
| | - Jéssika L Abreu
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil
| | - Elizabeth P Santos
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil
| | - Ângelo P Matos
- Center of Agricultural Sciences, Federal University of Santa Catarina, Florianópolis, 88034-001, Brazil
| | - Giustino Tribuzi
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, 88034-801, Brazil
| | - Cicero Diogo L Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Bruno O Veras
- Department of Biochemistry, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Railson S Bezerra
- Department of Biochemistry, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Marius N Müller
- Department of Oceanography, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Alfredo O Gálvez
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil
| |
Collapse
|
14
|
Doxorubicin-Based Hybrid Compounds as Potential Anticancer Agents: A Review. Molecules 2022; 27:molecules27144478. [PMID: 35889350 PMCID: PMC9318127 DOI: 10.3390/molecules27144478] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The scarcity of novel and effective therapeutics for the treatment of cancer is a pressing and alarming issue that needs to be prioritized. The number of cancer cases and deaths are increasing at a rapid rate worldwide. Doxorubicin, an anticancer agent, is currently used to treat several types of cancer. It disrupts myriad processes such as histone eviction, ceramide overproduction, DNA-adduct formation, reactive oxygen species generation, Ca2+, and iron hemostasis regulation. However, its use is limited by factors such as drug resistance, toxicity, and congestive heart failure reported in some patients. The combination of doxorubicin with other chemotherapeutic agents has been reported as an effective treatment option for cancer with few side effects. Thus, the hybridization of doxorubicin and other chemotherapeutic drugs is regarded as a promising approach that can lead to effective anticancer agents. This review gives an update on hybrid compounds containing the scaffolds of doxorubicin and its derivatives with potent chemotherapeutic effects.
Collapse
|
15
|
Shadyro O, Sosnovskaya A, Edimecheva I, Ihnatovich L, Dubovik B, Krasny S, Tzerkovsky D, Protopovich E. In Vivo Antitumoral Effects of Linseed Oil and Its Combination With Doxorubicin. Front Pharmacol 2022; 13:882197. [PMID: 35800445 PMCID: PMC9254224 DOI: 10.3389/fphar.2022.882197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Linseed oil (LO) is known for its exceptional nutritional value due to the high content of alpha-linolenic acid (ALA), an essential omega-3 polyunsaturated fatty acid; its anticarcinogenic effect has been established in several experimental and epidemiological studies. As an adjuvant of chemotherapeutic agents, LO and other ALA-rich vegetable oils have been studied in only a handful of studies at the experimental level. However, the efficacy of antitumoral therapy using doxorubicin (Dox) in combination with ALA and ALA-rich substrates has not yet been investigated. In this work, the antitumor activity of LO in a wide dose range was studied with monotherapy and combined with Dox in animal models with Pliss lymphosarcoma (PLS) and Lewis lung adenocarcinoma (LLC). It was founded the daily oral administration of LO (1, 3, and 10 ml per 1 kg) to rats (PLS) and 6 ml/kg to mice (LLC) for 11–12 days from 7 days after subcutaneous transplantation of tumors has a stable statistically significant effect on the dynamics of tumor growth, reducing the intensity of tumor growth and increasing the frequency of complete tumor regressions (CR) compared with the control. LO showed high antimetastatic activity in the LLC model. Furthermore, LO at a dose of 3 ml/kg potentiates the antitumor effect of Dox in the PLS model, reducing the volume of tumors at the end of treatment by 2.0 times (p = 0.013), the value of the tumor growth index by 1.6 times (p < 0.03) and increasing the frequency of CR 60 days after the start of therapy by 3.5 times (p = 0.019) compared with the use of Dox alone. The combination of Dox and LO or fish oil allows growing efficiency therapy of LLC in comparison with Dox alone, increasing the frequency of CR to 73.68% and 94.4%, respectively, and reducing the frequency of metastasis to zero.
Collapse
Affiliation(s)
- Oleg Shadyro
- Laboratory of Chemistry of Free-Radical Processes, Research Institute for Physical and Chemical Problems, Belarusian State University, Minsk, Belarus
- Department of Chemistry, Belarusian State University, Minsk, Belarus
- *Correspondence: Oleg Shadyro,
| | - Anna Sosnovskaya
- Laboratory of Chemistry of Free-Radical Processes, Research Institute for Physical and Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Irina Edimecheva
- Laboratory of Chemistry of Free-Radical Processes, Research Institute for Physical and Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Lana Ihnatovich
- Laboratory of Chemistry of Free-Radical Processes, Research Institute for Physical and Chemical Problems, Belarusian State University, Minsk, Belarus
- Department of Chemistry, Belarusian State University, Minsk, Belarus
| | - Boris Dubovik
- Department of Pharmacology, Belarusian State Medical University, Minsk, Belarus
| | - Sergei Krasny
- Laboratory of Photodynamic Therapy and Hyperthermia, N.N. Alexandrov National Cancer Center, Lesnoy, Belarus
| | - Dmitry Tzerkovsky
- Laboratory of Photodynamic Therapy and Hyperthermia, N.N. Alexandrov National Cancer Center, Lesnoy, Belarus
| | - Egor Protopovich
- Laboratory of Photodynamic Therapy and Hyperthermia, N.N. Alexandrov National Cancer Center, Lesnoy, Belarus
| |
Collapse
|
16
|
Petermann AB, Reyna-Jeldes M, Ortega L, Coddou C, Yévenes GE. Roles of the Unsaturated Fatty Acid Docosahexaenoic Acid in the Central Nervous System: Molecular and Cellular Insights. Int J Mol Sci 2022; 23:5390. [PMID: 35628201 PMCID: PMC9141004 DOI: 10.3390/ijms23105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acids (FAs) are essential components of the central nervous system (CNS), where they exert multiple roles in health and disease. Among the FAs, docosahexaenoic acid (DHA) has been widely recognized as a key molecule for neuronal function and cell signaling. Despite its relevance, the molecular pathways underlying the beneficial effects of DHA on the cells of the CNS are still unclear. Here, we summarize and discuss the molecular mechanisms underlying the actions of DHA in neural cells with a special focus on processes of survival, morphological development, and synaptic maturation. In addition, we examine the evidence supporting a potential therapeutic role of DHA against CNS tumor diseases and tumorigenesis. The current results suggest that DHA exerts its actions on neural cells mainly through the modulation of signaling cascades involving the activation of diverse types of receptors. In addition, we found evidence connecting brain DHA and ω-3 PUFA levels with CNS diseases, such as depression, autism spectrum disorders, obesity, and neurodegenerative diseases. In the context of cancer, the existing data have shown that DHA exerts positive actions as a coadjuvant in antitumoral therapy. Although many questions in the field remain only partially resolved, we hope that future research may soon define specific pathways and receptor systems involved in the beneficial effects of DHA in cells of the CNS, opening new avenues for innovative therapeutic strategies for CNS diseases.
Collapse
Affiliation(s)
- Ana B. Petermann
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
| | - Mauricio Reyna-Jeldes
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Lorena Ortega
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Claudio Coddou
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Gonzalo E. Yévenes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
| |
Collapse
|
17
|
Newell M, Goruk S, Schueler J, Mazurak V, Postovit LM, Field CJ. Docosahexaenoic acid enrichment of tumor phospholipid membranes increases tumor necroptosis in mice bearing triple negative breast cancer patient-derived xenografts. J Nutr Biochem 2022; 107:109018. [PMID: 35489658 DOI: 10.1016/j.jnutbio.2022.109018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 10/04/2021] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Docosahexaenoic acid (DHA) reduces breast cancer tumor growth in preclinical models. To better understand how DHA amplifies the actions of docetaxel (TXT) chemotherapy, we examined the effects of two doses of dietary DHA on tumor size, membrane DHA content and necroptosis using a drug resistant triple negative breast cancer (TNBC) patient derived xenograft (PDX) model. Female NSG mice bearing TNBC PDXs were randomized to one of three nutritionally complete diets (20% w/w fat): control (0% DHA), high DHA (3.8% HDHA), or low DHA (1.6% LDHA) with or without intraperitoneal injections of 5 mg/kg TXT, twice weekly for 6 weeks (n=8 per group). Tumors from mice fed either HDHA+TXT or LDHA+TXT were similar in size to each other, but were 36% and 32% smaller than tumors from mice fed control+TXT, respectively (P<0.05). A dose effect of DHA incorporation was observed in plasma total phospholipids and in phosphatidylethanolamine and phosphatidylinositol. Both doses of DHA resulted in similarly increased necrotic tissue and decreased NFκB protein expression compared to control tumors, however only the HDHA+TXT had increased expression of necroptosis related proteins: RIPK1, RIPK3 and MLKL (P<0.05). Increased MLKL was observed in the lipid raft portion of HDHA+TXT tumor extracts. This work confirms the efficacy of a combination therapy consisting of DHA supplementation and TXT chemotherapy using two doses of DHA as indicated by reduced tumor growth in a TNBC PDX model. Moreover, the results suggest that decreased growth may occur through increased DHA incorporation into tumor phospholipid membranes and necroptosis.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Julia Schueler
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | - Vera Mazurak
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R7; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1.
| |
Collapse
|
18
|
Rodríguez-España M, Mendoza-Sánchez LG, Magallón-Servín P, Salgado-Cervantes MA, Acosta-Osorio AA, García HS. Supercritical fluid extraction of lipids rich in DHA from Schizochytrium sp. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Different chemical forms of dietary selenium influence the fatty acid profile and the malondialdehyde content of selected edible organs in broiler chickens. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Lin K, Zhang J, Lin Y, Pei Z, Wang S. Metabolic Characteristics and M2 Macrophage Infiltrates in Invasive Nonfunctioning Pituitary Adenomas. Front Endocrinol (Lausanne) 2022; 13:901884. [PMID: 35898456 PMCID: PMC9309300 DOI: 10.3389/fendo.2022.901884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the metabolic differences between invasive and non-invasive nonfunctioning pituitary adenomas (NFPAs), determine the expression of an M2 macrophage marker in NFPAs, and analyze the effects of metabolic changes in invasive NFPAs on M2 macrophage infiltrates. METHODS Tissue samples of NFPAs from patients who underwent transsphenoidal or craniotomy surgery from January 2021 to August 2021 were collected. NFPA tissues were analyzed based on a gas chromatography-mass spectrometry non-targeted metabolomics platform, and immunohistochemical staining for M2 macrophage marker CD206 was performed. RESULTS We evaluated 15 invasive and 21 non-invasive NFPAs. A total of 22 metabolites were identified through non-targeted metabolomics analysis. Among them, the expression of 1-octadecanol, inosine 5'-monophosphate, adenosine 5'-monophosphate, guanosine 5'-monophosphate, creatinine, desmosterol, taurine, hypotaurine, lactic acid, and succinic acid was upregulated in invasive NFPAs, while that of 1-oleoylglycerol, arachidonic acid, cis-11-eicosenoic acid, docosahexaenoic acid, glyceric acid, hypoxanthine, linoleic acid, lysine, oleic acid, uracil, valine, and xanthine was downregulated. Immunohistochemical analysis suggested that the number of CD206-positive cells was higher in invasive NFPAs than in non-invasive NFPAs. CONCLUSION Invasive and non-invasive NFPAs showed distinct metabolite profiles. The levels of succinic acid and lactic acid were higher in invasive NFPAs, and the high expression of the M2 macrophage marker was verified in invasive NFPAs.
Collapse
Affiliation(s)
- Kunzhe Lin
- Department of Neurosurgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jianping Zhang
- Department of Urology, 910th Hospital of Joint Logistics Support Force, Quanzhou, China
| | - Yinghong Lin
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhijie Pei
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, 900th Hospital, Fuzhou, China
- *Correspondence: Shousen Wang,
| |
Collapse
|
21
|
Costa EHS, Krüger JF, Camargo CQ, Preti VB, Hillesheim E, Rabito EI. Effects of Fasting on Chemotherapy Treatment Response: A Systematic Review of Current Evidence and Suggestions for the Design of Future Clinical Trials. Nutr Cancer 2022; 74:1213-1221. [PMID: 34121530 DOI: 10.1080/01635581.2021.1938147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fasting associated with chemotherapy could improve the efficacy of anticancer treatments without increasing their adverse effects. We conducted a systematic review following the PRISMA Statement to summarize the evidence on the effects of fasting on treatment response of adults undergoing chemotherapy and make suggestions for the design of future clinical trials The search was performed on CENTRAL, PubMed/MEDLINE, LILACS and Embase. Randomized and non-randomized clinical trials evaluating the effects of fasting (above 12 h, at anytime) on treatment response of adult cancer patients undergoing chemotherapy were included. The risk of bias assessment was conducted in accordance with the Cochrane Handbook. Literature search retrieved 1393 citations and three studies were included in the review. All studies had as an intervention fasting of at least 24 h, before chemotherapy. Two studies showed that immediately after chemotherapy, damage to healthy cells was increased, however after 48 and 72 h, of fasting there was a decrease on damage magnitude. There was no difference in chemotherapy-related adverse events between intervention and control groups. All studies presented two or more criteria with a high risk of bias. Fasting of at least 24 h, appears to be safe and showed some beneficial effects on chemotherapy toxicity, that could be further investigated, however studies presented heterogeneous samples and protocols. We highlight the need and provide recommendations for well-designed randomized clinical trials that evaluate the effect of fasting on chemotherapy-related adverse events. This systematic review was registered on PROSPERO as CRD42019120071.
Collapse
Affiliation(s)
| | | | - Carolina Q Camargo
- School of Health Sciences, Positivo University, Curitiba, Parana, Brazil
| | - Vinícius Basso Preti
- Oncology Surgeon and Department of Nutritional Therapy, Hospital Erasto Gaertner, Curitiba, Parana, Brazil
| | - Elaine Hillesheim
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, UCD, Belfield, Dublin, Ireland
| | - Estela I Rabito
- Department of Nutrition and Postgraduate Program on Food and Nutrition, Federal University of Paraná, Curitiba, Parana, Brazil
| |
Collapse
|
22
|
Barta DG, Coman V, Vodnar DC. Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog Lipid Res 2021; 83:101116. [PMID: 34293403 DOI: 10.1016/j.plipres.2021.101116] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
The dysregulation of fat metabolism is involved in various disorders, including neurodegenerative, cardiovascular, and cancers. The uptake of long-chain fatty acids (LCFAs) with 14 or more carbons plays a pivotal role in cellular metabolic homeostasis. Therefore, the uptake and metabolism of LCFAs must constantly be in tune with the cellular, metabolic, and structural requirements of cells. Many metabolic diseases are thought to be driven by the abnormal flow of fatty acids either from the dietary origin and/or released from adipose stores. Cellular uptake and intracellular trafficking of fatty acids are facilitated ubiquitously with unique combinations of fatty acid transport proteins and cytoplasmic fatty acid-binding proteins in every tissue. Extensive data are emerging on the defective transporters and metabolism of LCFAs and their clinical implications. Uptake and metabolism of LCFAs are crucial for the brain's functional development and cardiovascular health and maintenance. In addition, data suggest fatty acid metabolic transporter can normalize activated inflammatory response by reprogramming lipid metabolism in cancers. Here we review the current understanding of how LCFAs and their proteins contribute to the pathophysiology of three crucial diseases and the mechanisms involved in the processes.
Collapse
|
24
|
Burgarelli Lages E, Silva Marques Borges G, Assis Castro Goulart G, Miranda Ferreira LA. Nanomedicine to deliver docosahexaenoic acid: potential applications to improve health. Nanomedicine (Lond) 2021; 16:1549-1552. [PMID: 34165319 DOI: 10.2217/nnm-2021-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Eduardo Burgarelli Lages
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Silva Marques Borges
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gisele Assis Castro Goulart
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Antônio Miranda Ferreira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Anelli L, Di Nardo A, Bonucci M. Integrative Treatment of Lung Cancer Patients: Observational Study of 57 Cases. ASIAN JOURNAL OF ONCOLOGY 2021. [DOI: 10.1055/s-0040-1722380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
Introduction A retrospective clinical study was performed to identify the characteristics of patients with lung cancer treated with integrative cancer treatment in addition to conventional medicine.
Materials and Methods We reviewed medical records for lung cancer patients who visited a single integrative setting in Rome, Italy. A total of 57 patients were included, and the majority had advanced-stage cancer. All of them underwent integrative therapy with nutrition and phytotherapy indications. The diet was designed to reduce most of possible factors promoting cancer proliferation, inflammation, and obesity. Foods with anti-inflammatory, prebiotic, antioxidant, and anticancer properties had been chosen. Herbal supplements with known effects on lung cancer were prescribed. In particular, astragal, apigenine, fucosterol, polydatin, epigallocatechin gallate, cannabis, curcumin, and inositol were used. Furthermore, medical mushrooms and other substances were used to improve the immune system and to reduce chemotherapy side effects. Five key parameters have been evaluated for 2 years starting at the first surgery: nutritional status, immune status, discontinuation of therapy, quality of life, and prognosis of the disease.
Results A relevant improvement in parameters relative to nutritional status, immune status, and quality of life has been observed after integrative therapy compared with the same parameters at the first medical visit before starting such approach.
Conclusion The results suggest that integrative therapy may have benefits in patients with lung cancer. Even though there are limitations, the study suggests that integrative therapy could improve nutritional status and quality of life, with possible positive effect on overall survival.
Collapse
Affiliation(s)
- Lorenzo Anelli
- Integrative Oncology Ambulatory, Nuova Villa Claudia, Rome, Italy
- ARTOI, Rome, Italy
| | | | - Massimo Bonucci
- Integrative Oncology Ambulatory, Nuova Villa Claudia, Rome, Italy
- ARTOI, Rome, Italy
| |
Collapse
|
26
|
Ortega L, Lobos-González L, Reyna-Jeldes M, Cerda D, De la Fuente-Ortega E, Castro P, Bernal G, Coddou C. The Ω-3 fatty acid docosahexaenoic acid selectively induces apoptosis in tumor-derived cells and suppress tumor growth in gastric cancer. Eur J Pharmacol 2021; 896:173910. [PMID: 33508285 DOI: 10.1016/j.ejphar.2021.173910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/25/2022]
Abstract
Despite current achievements and innovations in cancer treatment, conventional chemotherapy has several limitations, such as unsatisfactory long-term survival, cancer drug resistance and toxicity against non-tumoral cells. In the search for safer therapeutic alternatives, docosahexaenoic acid (DHA) has shown promising effects inhibiting tumor growth without significant side effects in several types of cancer, but in gastric cancer (GC) its effects have not been completely described. In this study, we characterized the effects of DHA in GC using in vivo and in vitro models. Among all of the evaluated Ω-3 and Ω-6 fatty acids, DHA showed the highest antiproliferative potency and selectivity against the GC-derived cell line AGS. 10-100 μM DHA decreased AGS cell viability in a concentration-dependent manner but had no effect on non-tumoral GES-1 cells. To evaluate if the effects of DHA were due to apoptosis induction, cells were stained with Annexin V-PI, observing that 75 and 100 μM DHA increased apoptosis in AGS, but not in GES-1 cells. Additionally, levels of several proapoptotic and antiapoptotic regulators were assessed by qPCR, western blot and activity assays, showing similar results. In order to evaluate DHA efficacy in vivo, xenografts in an immunodeficient mouse model (BALB/cNOD-SCID) were used. In these experiments, DHA treatment for six weeks consistently reduced subcutaneous tumor size, ascitic fluid volume and liver metastasis. In summary, we found that DHA has a selective antiproliferative effect on GC, being this effect driven by apoptosis induction. Our investigation provides promising features for DHA as potential therapeutic agent in GC.
Collapse
Affiliation(s)
- Lorena Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo, Chile
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina-Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile; Fundación Ciencia y Vida, Santiago, Chile
| | - Mauricio Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Chile
| | - Daniela Cerda
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo, Chile
| | - Erwin De la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo, Chile
| | - Patricio Castro
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Giuliano Bernal
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo, Chile
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Chile.
| |
Collapse
|
27
|
DHA inhibits Gremlin-1-induced epithelial-to-mesenchymal transition via ERK suppression in human breast cancer cells. Biosci Rep 2021; 40:222308. [PMID: 32141512 PMCID: PMC7087330 DOI: 10.1042/bsr20200164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/22/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 fatty acid abundant in fish oils. It is known to have an inhibitory effect on various diseases such as inflammation, diabetes, and cancer. Epithelial-to-mesenchymal transition (EMT) is a process that epithelial cells gain migratory property to become mesenchymal cells involved in wound healing, organ fibrosis, and cancer progression. Gremlin-1 (GREM1) is a bone morphogenetic protein antagonist known to play a role in EMT. However, the role of GREM1 in the induction of EMT in human breast cancer cells and the effect of DHA on GREM1-induced EMT remain unclear. Establishment of GREM1 knockdown cell lines was performed using lentiviral shRNAs. Expression of EMT markers was determined by qRT-PCR and Western blotting. Effect of GREM1 and/or DHA on cell migration was investigated using wound healing assay. The level of GREM1 expression in human breast cancer tissues was determined by Oncomine database mining. GREM1 induced the expression of genes including N-cadherin, vimentin, and Slug. GREM1 promoted the migration of human breast cancer cells. GREM1 enhanced the expression of phosphorylated extracellular signal-regulated kinase (p-ERK) and the ERK activation was involved in EMT. Interestingly, DHA reduced the expression of GREM1. DHA also inhibited the expression of mesenchymal cell-associated genes and cell migration induced by GREM1. Furthermore, DHA suppressed the expression of p-ERK induced by GREM1. These results indicate that GREM1–ERK axis plays a role in EMT in human breast cancer cells and DHA is a putative compound that can inhibit EMT by inhibiting GREM1 signal transduction.
Collapse
|
28
|
Bustamante-Marin XM, Merlino JL, Devericks E, Carson MS, Hursting SD, Stewart DA. Mechanistic Targets and Nutritionally Relevant Intervention Strategies to Break Obesity-Breast Cancer Links. Front Endocrinol (Lausanne) 2021; 12:632284. [PMID: 33815289 PMCID: PMC8011316 DOI: 10.3389/fendo.2021.632284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
The worldwide prevalence of overweight and obesity has tripled since 1975. In the United States, the percentage of adults who are obese exceeds 42.5%. Individuals with obesity often display multiple metabolic perturbations, such as insulin resistance and persistent inflammation, which can suppress the immune system. These alterations in homeostatic mechanisms underlie the clinical parameters of metabolic syndrome, an established risk factor for many cancers, including breast cancer. Within the growth-promoting, proinflammatory milieu of the obese state, crosstalk between adipocytes, immune cells and breast epithelial cells occurs via obesity-associated hormones, angiogenic factors, cytokines, and other mediators that can enhance breast cancer risk and/or progression. This review synthesizes evidence on the biological mechanisms underlying obesity-breast cancer links, with emphasis on emerging mechanism-based interventions in the context of nutrition, using modifiable elements of diet alone or paired with physical activity, to reduce the burden of obesity on breast cancer.
Collapse
Affiliation(s)
| | - Jenna L. Merlino
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Emily Devericks
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Meredith S. Carson
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| | - Delisha A. Stewart
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| |
Collapse
|
29
|
Jin H, Kim HS, Yu ST, Shin SR, Lee SH, Seo GS. Synergistic anticancer effect of docosahexaenoic acid and isoliquiritigenin on human colorectal cancer cells through ROS-mediated regulation of the JNK and cytochrome c release. Mol Biol Rep 2021; 48:1171-1180. [PMID: 33502699 DOI: 10.1007/s11033-021-06159-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022]
Abstract
A large body of research has demonstrated a synergistic anticancer effect between docosahexaenoic acid (DHA) and standard chemotherapy regimens against colorectal cancer (CRC). In this study, we investigated the chemotherapeutic potential of cotreatment with DHA and isoliquiritigenin (ISL) against CRC HCT-116 cells. Apoptosis was confirmed by Annexin V/PI staining and expression of apoptosis-associated proteins. The synergistic effect of DHA and ISL combination on apoptosis was detected using combination index approaches. Flow cytometry was carried out using fluorescent probes to measure the production of reactive oxygen species (ROS). DHA and ISL in combination synergistically enhanced the decrease in cell viability versus the compounds used alone. Moreover, we demonstrated that the synergistic anti-CRC activity of cotreatment with these two compounds was achieved by inducing the apoptosis caspase-dependently mediated through augmented ROS generation followed by increased Fas ligand mRNA expression and cytochrome c release. Our data also demonstrated that cotreating with DHA and ISL strongly upregulated the phosphorylation of ERK and JNK, which are functionally associated with ROS induced by the two compounds in combination. Interestingly, further study revealed that inhibiting ERK phosphorylation strongly enhanced Fas ligand mRNA expression and the combination of the two compounds induced stronger cytotoxicity, whereas inhibiting JNK phosphorylation significantly reduced the apoptotic signals mediated by cotreatment with these two compounds. Excessive ROS-induced JNK activation and cytochrome c release from mitochondria played a key role in the synergistic anticancer activity of CRC cells by cotreating with DHA and ISL.
Collapse
Affiliation(s)
- Hao Jin
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Hak Sung Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Seung Taek Yu
- Department of Pediatrics, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Sae Ron Shin
- Department of Family Medicine, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Sung Hee Lee
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| | - Geom Seog Seo
- Department of Internal Medicine, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
30
|
Lian S, Li S, Sah DK, Kim NH, Lakshmanan VK, Jung YD. Suppression of Urokinase-Type Plasminogen Activator Receptor by Docosahexaenoic Acid Mediated by Heme Oxygenase-1 in 12- O-Tetradecanoylphorbol-13-Acetate-Induced Human Endothelial Cells. Front Pharmacol 2021; 11:577302. [PMID: 33381031 PMCID: PMC7768974 DOI: 10.3389/fphar.2020.577302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/15/2020] [Indexed: 11/28/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) plays a crucial role in inflammation and tumor metastasis. Docosahexaenoic acid (DHA), a representative omega-3 polyunsaturated fatty acid, has been shown to exhibit anti-inflammatory and anti-tumor properties. However, the mechanism by which DHA negatively regulates uPAR expression is not yet understood. The aim of this study was to investigate the effect of DHA on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced uPAR expression and potential role of heme oxygenase-1 (HO-1) in DHA-induced inhibition of uPAR in human endothelial ECV304 cells. Results showed that TPA induced uPAR expression in a time dependent manner, while DHA inhibited uPAR expression in a concentration-dependent manner. Moreover, treatment with DHA induced HO-1 expression in a time- and concentration-dependent manner. In addition, DHA-induced inhibition of uPAR expression and cell invasion in TPA-stimulated cells was reversed by si-HO-1 RNA. Induction of HO-1 by ferric protoporphyrin IX (FePP) inhibited TPA-induced uPAR expression, and this effect was abolished by treatment with the HO-1 inhibitor tin protoporphyrin IX (SnPP). Additionally, carbon monoxide, an HO-1 product, attenuated TPA-induced uPAR expression and cell invasion. Collectively, these data suggest a novel role of DHA-induced HO-1 in reducing uPAR expression and cell invasion in human endothelial ECV304 cells.
Collapse
Affiliation(s)
- Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China
| | - Shinan Li
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Dhiraj Kumar Sah
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Nam Ho Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Vinoth-Kumar Lakshmanan
- Centre for Preclinical and Translational Medical Research (CPTMR), Central Research Facility (CRF), Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.,Thumbay Research Institute for Precision Medicine and Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
31
|
Oxidative stress and cancer: Role of n-3 PUFAs. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
DHA induces Jurkat T-cell arrest in G2/M phase of cell cycle and modulates the plasma membrane expression of TRPC3/6 channels. Biochimie 2020; 181:169-175. [PMID: 33333171 DOI: 10.1016/j.biochi.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/28/2020] [Accepted: 12/12/2020] [Indexed: 12/23/2022]
Abstract
We investigated whether docosahexaenoic acid (DHA), a dietary n-3 fatty acid, modulates calcium (Ca2+) signaling and cell cycle progression in human Jurkat T-cells. Our study demonstrates that DHA inhibited Jurkat T-cell cycle progression by blocking their passage from S phase to G2/M phase. In addition, DHA decreased the plasma membrane expression of TRPC3 and TRPC6 calcium channels during T-cell proliferation. Interestingly, this fatty acid increased plasma membrane expression of TRPC6 after 24 h of mitogenic stimulation by phorbol-13-myristate-12-acetate (PMA) and ionomycin. These variations in the membrane expression of TRPC3 and TRPC6 channels were not directly correlated with the mRNA expression, indicating that it was a post-translational phenomenon. DHA increased free intracellular calcium concentrations, [Ca2+]i, via opening TRPC3 and TRPC6 channels. We conclude that the anti-proliferative effect of DHA might involve the modulation of TRPC3 and TRPC6 channels in human T-cells.
Collapse
|
33
|
Chen YL, Shirakawa H, Lu NS, Peng HC, Xiao Q, Yang SC. Impacts of fish oil on the gut microbiota of rats with alcoholic liver damage. J Nutr Biochem 2020; 86:108491. [DOI: 10.1016/j.jnutbio.2020.108491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/03/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
|
34
|
West L, Yin Y, Pierce SR, Fang Z, Fan Y, Sun W, Tucker K, Staley A, Zhou C, Bae-Jump V. Docosahexaenoic acid (DHA), an omega-3 fatty acid, inhibits tumor growth and metastatic potential of ovarian cancer. Am J Cancer Res 2020; 10:4450-4463. [PMID: 33415010 PMCID: PMC7783742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs), such as those found in fish oil, are thought to have anti-tumorigenic effects and may help to treat and prevent cancer, including ovarian cancer. Thus, we aimed to evaluate the potential of docosahexaenoic acid (DHA), an omega-3 PUFA, as a therapeutic agent in ovarian cancer cell lines and a transgenic mouse model of ovarian cancer. DHA significantly inhibited cellular proliferation, induced cell cycle arrest and caused apoptosis in Hey and IGROV-1 cells. Pre-treatment with the anti-oxidant, N-acetylcysteine (NAC), reversed DHA-induced caspase 3 activity and prevented DHA-reduced cell proliferation. DHA also induced cellular reactive oxygen species (ROS) and inhibited adhesion and invasion in IGROV-1 and Hey cells. Furthermore, treatment with DHA demonstrated anti-tumorigenic and anti-invasive activity in a K18-gT121 +/-; p53fl/fl; Brca1fl/fl mouse model of ovarian cancer including downregulation of Ki67 and VEGF expression. The data provide a preclinical rationale for applying DHA for dietary intervention and therapeutic adjunct in patients with ovarian cancer.
Collapse
Affiliation(s)
- Lindsay West
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Yajie Yin
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Stuart R Pierce
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Ziwei Fang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Yali Fan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Wenchuan Sun
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Katherine Tucker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Allison Staley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel Hill, NC, USA
| |
Collapse
|
35
|
Cortés Fuentes IA, Burotto M, Retamal MA, Frelinghuysen M, Caglevic C, Gormaz JG. Potential use of n-3 PUFAs to prevent oxidative stress-derived ototoxicity caused by platinum-based chemotherapy. Free Radic Biol Med 2020; 160:263-276. [PMID: 32827639 DOI: 10.1016/j.freeradbiomed.2020.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Platinum-based compounds are widely used for the treatment of different malignancies due to their high effectiveness. Unfortunately, platinum-based treatment may lead to ototoxicity, an often-irreversible side effect without a known effective treatment and prevention plan. Platinum-based compound-related ototoxicity results mainly from the production of toxic levels of reactive oxygen species (ROS) rather than DNA-adduct formation, which has led to test strategies based on direct ROS scavengers to ameliorate hearing loss. However, favorable clinical results have been associated with several complications, including potential interactions with chemotherapy efficacy. To understand the contribution of the different cytotoxic mechanisms of platinum analogues on malignant cells and auditory cells, the particular susceptibility and response of both kinds of cells to molecules that potentially interfere with these mechanisms, is fundamental to develop innovative strategies to prevent ototoxicity without affecting antineoplastic effects. The n-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) have been tried in different clinical settings, including with cancer patients. Nevertheless, their use to decrease cisplatin-induced ototoxicity has not been explored to date. In this hypothesis paper, we address the mechanisms of platinum compounds-derived ototoxicity, focusing on the differences between the effects of these compounds in neoplastic versus auditory cells. We discuss the basis for a strategic use of n-3 PUFAs to potentially protect auditory cells from platinum-derived injury without affecting neoplastic cells and chemotherapy efficacy.
Collapse
Affiliation(s)
- Ignacio A Cortés Fuentes
- Otorhinolaryngology Service, Hospital Barros Luco-Trudeau, San Miguel, Santiago, Chile; Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mauricio Burotto
- Oncology Department, Clínica Universidad de Los Andes, Santiago, Chile; Bradford Hill, Clinical Research Center, Santiago, Chile
| | - Mauricio A Retamal
- Universidad Del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago, Chile.
| | | | - Christian Caglevic
- Cancer Research Department, Fundación Arturo López Pérez, Santiago, Chile
| | - Juan G Gormaz
- Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
36
|
Diclofenac Enhances Docosahexaenoic Acid-Induced Apoptosis in Vitro in Lung Cancer Cells. Cancers (Basel) 2020; 12:cancers12092683. [PMID: 32962236 PMCID: PMC7564004 DOI: 10.3390/cancers12092683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Polyunsaturated fatty acids (PUFAs) and non-steroidal anti-inflammatory drugs (NSAIDs) have limited anticancer capacities when used alone. We examined whether combining NSAIDs with docosahexaenoic (DHA) would increase their anticancer activity on lung cancer cell lines. Our results indicate that combining DHA and NSAIDs increased their anticancer activities by altering the expression of critical proteins in the RAS/MEK/ERK and PI3K/Akt pathways. The data suggest that DHA combined with low dose diclofenac provides more significant anticancer potential, which can be further developed for chemoprevention and adjunct therapy in lung cancer. Abstract Polyunsaturated fatty acids (PUFAs) and non-steroidal anti-inflammatory drugs (NSAIDs) show anticancer activities through diverse molecular mechanisms. However, the anticancer capacities of either PUFAs or NSAIDs alone is limited. We examined whether combining NSAIDs with docosahexaenoic (DHA), commonly derived from fish oils, would possibly synergize their anticancer activity. We determined the viability of lung cancer cell lines (NCI-H1573, A549, NCI-H1299, and NCI-H1975) after exposure to DHA and various NSAIDs. We further conducted cell apoptosis assays and analyzed apoptosis-associated proteins and some key proteins in the RAS/MEK/ERK and PI3K/Akt pathways using western blot analysis. We also determined the impact of the treatment on the expression of inducible cancer-related genes using nCounter PanCancer Pathways gene expression analysis. The results showed that the combination of DHA and NSAIDs increased suppression of cell viability in all the lung cancer cell lines tested compared to each of the compounds used alone, with diclofenac being the most potent NSAID tested. This synergistic effect is especially significant in A549 and NCI-H1573 cells. The combination treatment was more effective at inhibiting clonogenic cell growth and anchorage-independent growth in soft agar, inducing caspase-dependent apoptosis, and altering expression of critical proteins in the RAS/MEK/ERK and PI3K/Akt pathways. The data from this study demonstrate that DHA combined with low dose diclofenac provides greater anticancer potential, which can be further developed for chemoprevention and adjunct therapy in lung cancer.
Collapse
|
37
|
Başyiğit B, Sağlam H, Köroğlu K, Karaaslan M. Compositional analysis, biological activity, and food protecting ability of ethanolic extract of
Quercus infectoria
gall. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bülent Başyiğit
- Engineering Faculty, Food Engineering Department Harran University Şanlıurfa Turkey
| | - Hidayet Sağlam
- Engineering‐Architecture Faculty, Food Engineering Department Kilis 7 Aralık University Kilis Turkey
| | - Kübra Köroğlu
- Engineering Faculty, Food Engineering Department Harran University Şanlıurfa Turkey
| | - Mehmet Karaaslan
- Engineering Faculty, Food Engineering Department Harran University Şanlıurfa Turkey
| |
Collapse
|
38
|
Newell M, Patel D, Goruk S, Field CJ. Docosahexaenoic Acid Incorporation Is Not Affected by Doxorubicin Chemotherapy in either Whole Cell or Lipid Raft Phospholipids of Breast Cancer Cells in vitro and Tumor Phospholipids in vivo. Lipids 2020; 55:549-565. [PMID: 32588470 DOI: 10.1002/lipd.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/07/2022]
Abstract
To better understand how docosahexaenoic acid (DHA) improves the effects of doxorubicin (DOX), we examined DHA ± DOX on changes in whole cell and lipid raft phospholipids (PL) of MDA-MB-231 and MCF-7 breast cancer cells. We sought to confirm whether the relative changes in PL DHA content of MDA-MB-231 cells could be extended to PL from MDA-MB-231 tumors grown in mice fed a DHA supplemented diet ±DOX. Treatment with DHA did not change PL composition yet DOX increased the proportion of phosphatidylserine in MCF-7 cell lipid rafts by two-fold (p < 0.001). Regardless of DOX, the relative percent incorporation of DHA was higher in MDA-MB-231 cells compared to MCF-7 cells in phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (whole cell and lipid rafts); and higher in phosphatidylethanolamine vs. phosphatidylcholine (4.4-fold in MCF-7 and 6-fold in MDA-MB-231 cells respectively). DHA treatment increased eicosapentaenoic acid and docosapentaenoic acid in MDA-MB-231 cells but not MCF-7 cells. Increased DHA content in MDA-MB-231 cells, MCF-7 cells, and MDA-MB-231 tumors in all PL moieties (except sphingomyelin) corresponded with reduced arachidonic acid (p < 0.05). Feeding mice 2.8% (w/w of fat) DHA ± DOX increased tumor necrotic regions (p < 0.05). This study established differential incorporation of DHA into whole cell and lipid rafts between human breast cancer cell lines. However, within each cell line, this incorporation was not altered by DOX confirming that DOX does not change membrane lipid composition. Furthermore, our findings indicate that membrane changes observed in vitro are translatable to in vivo changes and that DHA + DOX could contribute to the anticancer effects through increased necrosis.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Dhruvesh Patel
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
39
|
Ma Y, Wang J, Li Q, Cao B. The Effect of Omega-3 Polyunsaturated Fatty Acid Supplementations on anti-Tumor Drugs in Triple Negative Breast Cancer. Nutr Cancer 2020; 73:196-205. [PMID: 32223441 DOI: 10.1080/01635581.2020.1743873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) comprises about 10-20% of all diagnosed breast cancers. Increasing evidence shows that the omega-3 polyunsaturated fatty acids (ω-3PUFAs), docosahexaenoic acid and eicosapentaenoic acid, can influence the development, progression, and prognosis of TNBC In Vivo and In Vitro; however, clinical evidence supporting the effect of ω-3PUFAs on TNBC is lacking. Research has demonstrated that ω-3PUFAs can induce apoptosis in breast cancer cells by inhibiting the PI3K/AKT signal transduction pathway, and that ω-3PUFAs can improve the effectiveness of chemotherapy drugs. Using ω-3PUFA supplementation in addition to pharmacotherapy in the treatment of breast cancer may result in enhanced anti-tumor effects that will be particularly applicable to difficult to treat phenotypes such as TNBC. The aim of the current review was to summarize the evidence-base supporting the antitumor effects of omega-3 PUFAs in TNBC.
Collapse
Affiliation(s)
- Yingjie Ma
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Jing Wang
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Qin Li
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Bangwei Cao
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
40
|
Omega-3 fatty acids as adjunctive therapeutics: prospective of nanoparticles in its formulation development. Ther Deliv 2020; 11:851-868. [DOI: 10.4155/tde-2019-0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3-PUFAs) are dietary components that have been extensively recognized for their therapeutic value and have shown diverse therapeutic effects including anti-inflammatory, antiarrhythmic, antithrombotic, immunomodulatory and antineoplastic activities. Most of the ω-3-PUFAs are obtained through diet or supplements because the body does not synthesize them. The high instability of ω-3-PUFAs to oxidative deterioration, lower bioavailability at the target tissues and reduced bioactivity of ω-3-PUFAs is an impediment for achieving their therapeutic potential. The present review provides an overview of potential therapeutic activities of ω-3-PUFAs and different novel technical approaches based on nanotechnology, which have been emphasized to overcome instability problems as well as enhance the bioactivity of ω-3-PUFAs. Future prospects related to this area of research are also provided.
Collapse
|
41
|
Ding Y, Yang J, Ma Y, Yao T, Chen X, Ge S, Wang L, Fan X. MYCN and PRC1 cooperatively repress docosahexaenoic acid synthesis in neuroblastoma via ELOVL2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:498. [PMID: 31856871 PMCID: PMC6923955 DOI: 10.1186/s13046-019-1492-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
Abstract
Background The MYCN amplification is a defining hallmark of high-risk neuroblastoma. Due to irregular oncogenes orchestration, tumor cells exhibit distinct fatty acid metabolic features from non-tumor cells. However, the function of MYCN in neuroblastoma fatty acid metabolism reprogramming remains unknown. Methods Gas Chromatography-Mass Spectrometer (GC-MS) was used to find the potential target fatty acid metabolites of MYCN. Real-time PCR (RT-PCR) and clinical bioinformatics analysis was used to find the related target genes. The function of the identified target gene ELOVL2 on cell growth was detected through CCK-8 assay, Soft agar colony formation assay, flow Cytometry assay and mouse xenograft. Chromatin immunoprecipitation (ChIP) and Immunoprecipitation-Mass Spectrometer (IP-MS) further identified the target gene and the co-repressor of MYCN. Results The fatty acid profile of MYCN-depleted neuroblastoma cells identified docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid with anti-tumor activity, significantly increased after MYCN depletion. Compared with MYCN single-copy neuroblastoma cells, DHA level was significantly lower in MYCN-amplified neuroblastoma cells. RT-PCR and clinical bioinformatics analysis discovered that MYCN interfered DHA accumulation via ELOVL fatty acid elongase 2 (ELOVL2) which is a rate-limiting enzyme of cellular DHA synthesis. Enforced ELOVL2 expression in MYCN-amplified neuroblastoma cells led to decreased cell growth and counteracted the growth-promoting effect of MYCN overexpression both in vitro and vivo. ELOVL2 Knockdown showed the opposite effect in MYCN single-copy neuroblastoma cells. In primary neuroblastoma, high ELOVL2 transcription correlated with favorable clinical tumor biology and patient survival. The mechanism of MYCN-mediated ELOVL2 inhibition contributed to epigenetic regulation. MYCN recruited PRC1 (Polycomb repressive complex 1), catalysed H2AK119ub (histone 2A lysine 119 monoubiquitination) and inhibited subsequent ELOVL2 transcription. Conclusions The tumor suppressive properties of DHA and ELOVL2 are repressed by the MYCN and PRC1 jointly, which suggests a new epigenetic mechanism of MYCN-mediated fatty acid regulation and indicates PRC1 inhibition as a potential novel strategy to activate ELOVL2 suppressive functions.
Collapse
Affiliation(s)
- Yi Ding
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yawen Ma
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Lihua Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
42
|
Devanadera MKP, Bennett RM, Watanabe K, Santiago MR, Ramos MC, Aki T, Dedeles GR. Marine Oomycetes (Halophytophthora and Salispina): A Potential Source of Fatty Acids with Cytotoxic Activity Against Breast Adenocarcinoma Cells (MCF7). J Oleo Sci 2019; 68:1163-1174. [PMID: 31735746 DOI: 10.5650/jos.ess19033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Marine oomycetes are ubiquitous, fungus-like eukaryotes known to produce fatty acids with potential anticancer activity. The long chain omega-3 and omega-6 fatty acids are currently popular and considered as safe when used as nutraceuticals in cancer treatment. In this study, crude fatty acids from three marine oomycetes, Halophytophthora spp. (T12GP1 and T12YBP2) and Salispina hoi (USTCMS 1611), were explored for their cytotoxic and apoptotic potentials against human breast adenocarcinoma cells (MCF7) and normal human dermal fibroblasts (HDFn). Extracts from mycelia mats consisted of diverse saturated, monounsaturated, and polyunsaturated fatty acids such as linoleic, α-linolenic, γ-linolenic, eicosatrienoic and eicosapentaenoic acids. The crude fatty acids from all three oomycetes in in vitro assays for cytotoxicity showed no toxicity (30% toxicity values) on HDFn cells. On MCF7 cells, however, IC50 values of 23.44, 15.63, and 26.15 µg/mL were obtained with extracts from Halophytophthora T12GP1 and T12YBP2 and S. hoi, respectively. Treated MCF7 cells exhibited deformed cell membrane in MTT assay and also aggregation of DNA and disruption of nuclear membrane aggregation in nuclear staining; further, green signals indicative of apoptosis was recorded in caspase 3/7 assay.
Collapse
Affiliation(s)
- Mark Kevin P Devanadera
- The Graduate School, University of Santo Tomas.,Laboratory of Pure and Applied Microbiology, Research Center for the Natural and Applied Sciences, Thomas Aquinas Research Complex, University of Santo Tomas.,Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas.,Mammalian Tissue Culture Laboratory, Research Center for the Natural and Applied Sciences, Thomas Aquinas Research Complex, University of Santo Tomas
| | - Reuel M Bennett
- Department of Biological Sciences, College of Science, University of Santo Tomas
| | - Kenshi Watanabe
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Myla R Santiago
- The Graduate School, University of Santo Tomas.,Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas.,Mammalian Tissue Culture Laboratory, Research Center for the Natural and Applied Sciences, Thomas Aquinas Research Complex, University of Santo Tomas
| | - Maria Cristina Ramos
- The Graduate School, University of Santo Tomas.,Department of Chemistry, College of Science, University of Santo Tomas
| | - Tsunehiro Aki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Gina R Dedeles
- The Graduate School, University of Santo Tomas.,Laboratory of Pure and Applied Microbiology, Research Center for the Natural and Applied Sciences, Thomas Aquinas Research Complex, University of Santo Tomas.,Department of Biological Sciences, College of Science, University of Santo Tomas
| |
Collapse
|
43
|
Ashfaq W, Rehman K, Siddique MI, Khan QAA. Eicosapentaenoic Acid and Docosahexaenoic Acid from Fish Oil and Their Role in Cancer Research. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1686761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wardah Ashfaq
- Department of Medicine, Ameer ud Din Medical College, Lahore, Pakistan
| | - Khurram Rehman
- Department of Pharmacy, Forman Christan College (A Chartered University), Lahore, Pakistan
| | - Muhammad Irfan Siddique
- Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Qurrat-Al-Ain Khan
- Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| |
Collapse
|
44
|
Camargo CQ, Brunetta HS, Nunes EA. Effects of cotreatment with omega-3 polyunsaturated fatty acids and anticancer agents on oxidative stress parameters: a systematic review of in vitro, animal, and human studies. Nutr Rev 2019; 76:765-777. [PMID: 30010957 DOI: 10.1093/nutrit/nuy029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Context Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid and eicosapentaenoic acid, demonstrate possible beneficial effects as adjuvants in cancer treatment. One mechanism seems to be related to alterations in the redox status of cancer cells. Such alterations are thought to act in synergy with conventional anticancer agents. Objective This review examines published data on the effects of cotreatment with anticancer agents and n-3 PUFAS on oxidative stress parameters to determine whether any patterns of oxidative stress alterations can be identified. Data Sources A systematic search of MEDLINE (via PubMed) was conducted to identify articles published in English, Spanish, or Portuguese until November 2017. Study Selection The following inclusion criteria were applied: (1) individuals or animals with cancer or malignant cell lines supplemented with some source of n-3 PUFAs; (2) concomitant use of anticancer treatment; and (3) evaluation of oxidative stress-related variables. Data Extraction A standardized outline was used to extract the following data: study type, supplement used, type of cells, tumor or patient characteristics, study design, anticancer treatment used, and oxidative stress-related outcomes. Results After the literature search and screening of 1563 citations, 28 studies were included for data extraction and evaluation: 16 in vitro studies (2 of which also used in vivo studies), 8 animal studies, and 4 human studies (3 clinical trials and 1 case series). In most in vitro and animal studies, intervention groups receiving cotreatment with n-3 PUFAs showed enhanced lipid peroxidation and cytotoxicity compared with groups receiving anticancer treatment alone. Eleven of the 12 studies that investigated the effect of vitamin E on the sensitivity of cancer cells to the oxidative stress caused by n-3 PUFAs showed that vitamin E abolished the positive effects of cotreatment. Conclusions Alterations in oxidative stress caused by cotreatment with anticancer agents and n-3 PUFAs can exert positive effects on the efficacy of conventional treatment. This seems to occur in most cells and tumors tested thus far, but not all. Identifying tumors that are sensitive to these oxidative effects may provide support for the rational use of n-3 PUFAs as an adjuvant treatment in specific types of cancer.
Collapse
Affiliation(s)
- Carolina Q Camargo
- Physiological Sciences Department, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Postgraduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Henver S Brunetta
- Physiological Sciences Department, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Everson A Nunes
- Physiological Sciences Department, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Postgraduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
45
|
Tan X, Zou L, Qin J, Xia D, Zhou Y, Jin G, Jiang Z, Li H. SQSTM1/p62 is involved in docosahexaenoic acid-induced cellular autophagy in glioblastoma cell lines. In Vitro Cell Dev Biol Anim 2019; 55:703-712. [PMID: 31429038 DOI: 10.1007/s11626-019-00387-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023]
Abstract
Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the human brain and works as an anticancer agent to induce cell cycle arrest and apoptosis in glioblastoma multiforme (GBM) cell lines. However, little is known about the connection between DHA and autophagy in GBM cells. We found that high-dose DHA caused cellular autophagy in cultured U251 and U118 GBM cell lines, but there was no effect with a low dose. Moreover, after treatment with a high dose of DHA at 12, 24, and 48 h, the protein expression of SQSTM1/p62 decreased in DHA-treated U251 cells at 12 and 24 h, but increased at 48 h, while in DHA-treated U118 cells, the protein expression increased at all time points. Interestingly, the level of SQSTM1/p62 mRNA was elevated in both DHA-treated U251 and U118 cells at all time points, indicating that DHA activated SQSTM1/p62 transcription in both cell lines. Furthermore, downregulation of SQSTM1/p62 by siRNA attenuated DHA-induced cellular autophagy in both cell lines. This report confirms that high-dose DHA induces cellular autophagy in GBM cells, and demonstrates that SQSTM1/p62 acts as a regulator and participates in DHA-induced autophagy.
Collapse
Affiliation(s)
- Xuefeng Tan
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
| | - Linqing Zou
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
| | - Jianbing Qin
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
| | - Donglin Xia
- Public Health School of Nantong University, Nantong, 226001, China
| | - Youlang Zhou
- Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Guohua Jin
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
| | - Zhuang Jiang
- Clinical Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Haoming Li
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
46
|
Sharma T, Sharma A, Maheshwari R, Pachori G, Kumari P, Mandal CC. Docosahexaenoic Acid (DHA) Inhibits Bone Morphogenetic Protein-2 (BMP-2) Elevated Osteoblast Potential of Metastatic Breast Cancer (MDA-MB-231) Cells in Mammary Microcalcification. Nutr Cancer 2019; 72:873-883. [DOI: 10.1080/01635581.2019.1651879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Ankit Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Rekha Maheshwari
- Department of General Surgery, JLN Medical College, Ajmer, India
| | - Geeta Pachori
- Department of Pathology, JLN Medical College, Ajmer, India
| | - Poonam Kumari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Chandi C. Mandal
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
47
|
Pizato N, Kiffer LFMV, Luzete BC, Assumpção JAF, Correa LH, Melo HABD, Sant'Ana LPD, Ito MK, Magalhães KG. Omega 3-DHA and Delta-Tocotrienol Modulate Lipid Droplet Biogenesis and Lipophagy in Breast Cancer Cells: the Impact in Cancer Aggressiveness. Nutrients 2019; 11:E1199. [PMID: 31141912 PMCID: PMC6627337 DOI: 10.3390/nu11061199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Omega 3-docosahexaenoic acid (DHA) and vitamin E Delta-tocotrienol (Delta-T3) are extensively studied as protective nutrients against cancer development. Little is known about the biological mechanisms targeted by these bioactive molecules on lipid droplet (LD) biogenesis, an important breast cancer aggressiveness marker, and the occurrence of lipophagy in breast cancer cells. The aim of this study was to investigate the effect of DHA, Delta-T3 and DHA plus Delta-T3 co-treatment in LD biogenesis and lipophagy process in triple negative breast cancer cell line MDA-MB-231. Cells were treated with 50 μM DHA and/or 5 μM Delta-T3. Our results demonstrated that DHA can trigger an increase in LD biogenesis and co-treatment with Delta-T3 was able to reduce this LD biogenesis. In addition, we showed that a higher cytoplasmic LD content is associated with a higher breast cancer cells malignance and proliferation. Reduction of cytoplasmic LD content by silencing ADRP (adipose differentiation-related protein), a structural LD protein, also decreased cell proliferation in MDA-MB-231 cells. Treatment with DHA and Delta-T3 alone or co-treatment did not reduce cell viability. Moreover, we showed here that DHA can trigger lipophagy in MDA-MB-231 cells and DHA plus Delta-T3 co-treatment was able to enhance this lipophagy process. Our findings demonstrated that co-treatment with DHA plus Delta-T3 in MDA-MB-231 cells could reduce LD biogenesis and potentiate lipophagy in these cells, possibly having a positive impact to inhibit breast cancer malignancy. Therefore, suitable doses of DHA and Delta-T3 vitamin E isoform supplementation can be a prominent tool in therapeutic treatments against breast cancer.
Collapse
Affiliation(s)
- Nathalia Pizato
- Department of Nutrition, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| | - Larissa Fernanda Melo Vasconcelos Kiffer
- Department of Nutrition, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| | - Beatriz Christina Luzete
- Department of Nutrition, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| | - José Antonio Fagundes Assumpção
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| | - Luis Henrique Correa
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| | - Heloisa Antoniella Braz de Melo
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| | - Lívia Pimentel de Sant'Ana
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| | - Marina Kiyomi Ito
- Department of Nutrition, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| |
Collapse
|
48
|
Rizzieri D, Paul B, Kang Y. Metabolic alterations and the potential for targeting metabolic pathways in the treatment of multiple myeloma. ACTA ACUST UNITED AC 2019; 5. [PMID: 31020046 PMCID: PMC6476731 DOI: 10.20517/2394-4722.2019.05] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metabolism is defined as the collection of complex biochemical processes that living cells use to generate energy and maintain their growth and survival. Metabolism encompasses the synthesis and breakdown of glucose, fatty acids, and amino acids; the generation of energy (ATP); and oxidative phosphorylation. In cancer cells, metabolism can be commandeered to promote tumor growth and cellular proliferation. These alterations in metabolism have emerged as an additional hallmark of various cancers. In this review we focus on metabolic alterations in multiple myeloma (MM) - a malignancy of plasma cells - including derangements in glycolysis, gluconeogenesis, the tricarboxylic acid cycle, oxidative phosphorylation, and fatty acid/amino acid synthesis and degradation. Particular focus is given to metabolic alterations that contribute to myeloma cell growth, proliferation and drug resistance. Finally, novel approaches that target metabolic pathways for the treatment of MM are discussed.
Collapse
Affiliation(s)
- Dustin Rizzieri
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC 27710, USA
| | - Barry Paul
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC 27710, USA
| | - Yubin Kang
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
49
|
Camargo CDQ, Mocellin MC, Brunetta HS, Chagas TR, Fabre MEDS, Trindade EBSDM, Silva ELD, Nunes EA. Fish oil decreases the severity of treatment-related adverse events in gastrointestinal cancer patients undergoing chemotherapy: A randomized, placebo-controlled, triple-blind clinical trial. Clin Nutr ESPEN 2019; 31:61-70. [PMID: 31060836 DOI: 10.1016/j.clnesp.2019.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 02/28/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Due to its high peroxidizable characteristics, n-3 fatty acids, present in fish oil, could increase tumor cells sensitivity to conventional cancer treatment while non-neoplastic cells remain unaffected, this may lead to an increase in cancer treatment response with no increase on adverse effects. The aim of this study was to evaluate anti-cancer treatment response, performance status and adverse events in gastrointestinal cancer patients supplemented with fish oil. Oxidative stress parameters were investigated in blood non-neoplastic cells as an indicator of cytotoxicity. METHODS This is a randomized, triple-blind, placebo-controlled clinical trial. Fish oil group (FOG) received two capsules of fish oil containing 1.55 g of EPA + DHA a day for nine weeks, placebo group (PG) received two capsules containing olive oil. Baseline was set right before the administration of the first chemotherapy, oxidative stress parameters, adverse events presence and grading and performance status were assessed at baseline and after nine weeks of supplementation. Tumor markers, response to treatment and survival were evaluated at baseline and after one year of study inclusion. RESULTS 76 patients were considered eligible, 56 were randomized, and 51 remained for analysis. After nine weeks, although there were no differences between groups for treatment response and presence of adverse events, PG patients were graded with more severe diarrhea than FOG patients (p = 0.03) and with higher (worse) performance status score (p = 0.02). No differences in lipid peroxidation and activity of antioxidant enzymes were observed between groups. CONCLUSIONS Fish oil may lead to a better performance status for gastrointestinal cancer patients undergoing chemotherapy while does not seem to increase treatment-related toxicity. Registered under ClinicalTrials.gov Identifier no. NCT02699047, www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Carolina de Quadros Camargo
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Nutrition Graduation Program, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Michel Carlos Mocellin
- Nutrition Graduation Program, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Henver Simionato Brunetta
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Multicenter Graduation Program in Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Thayz Rodrigues Chagas
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Nutrition Graduation Program, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | - Edson Luiz da Silva
- Nutrition Graduation Program, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Everson Araújo Nunes
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Nutrition Graduation Program, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Multicenter Graduation Program in Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
50
|
Murad LB, da Silva Nogueira P, de Araújo WM, Sousa-Squiavinato ACM, Rocha MR, de Souza WF, de-Freitas-Junior J, Barcellos-de-Souza P, Bastos LG, Morgado-Díaz JA. Docosahexaenoic acid promotes cell cycle arrest and decreases proliferation through WNT/β-catenin modulation in colorectal cancer cells exposed to γ-radiation. Biofactors 2019; 45:24-34. [PMID: 30521071 DOI: 10.1002/biof.1455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/21/2023]
Abstract
The effects of radiation are known to be potentiated by N-3 polyunsaturated fatty acids, which modulate several signaling pathways, but the molecular mechanisms through which these fatty acids enhance the anticancer effects of irradiation in colorectal cancer (CRC) treatment remain poorly elucidated. Here, we aimed to ascertain whether the fatty acid docosahexaenoic acid (DHA) exerts a modulating effect on the response elicited by radiation treatment (RT). Two CRC cell lines, Caco-2 and HT-29, were exposed to RT, DHA, or both (DHA + RT) for various times, and then cell viability, proliferation, and clonogenicity were assessed. Moreover, cell cycle, apoptosis, and necrosis were analyzed using flow cytometry, and the involvement of WNT/β-catenin signaling was investigated by immunofluorescence to determine nuclear β-catenin, GSK3β phosphorylation status, and TCF/LEF-activity reporter. DHA and RT applied separately diminished the viability of both HT-29 and Caco-2 cells, and DHA + RT caused a further reduction in proliferation mainly in HT-29 cells, particularly in terms of colony formation. Concomitantly, our results verified cell cycle arrest in G0/G1 phase, a reduction of cyclin D1 expression, and a decrease in GSK3β phosphorylation after the combined treatment. Furthermore, immunofluorescence quantification revealed that nuclear β-catenin was increased in RT-exposed cells, but this effect was abrogated in cells exposed to DHA + RT, and the results of TCF/LEF-activity assays confirmed that DHA attenuated the increase in nuclear β-catenin activity induced by irradiation. Our finding shows that DHA applied in combination with RT enhanced the antitumor effects of irradiation on CRC cells, and that the underlying mechanism involved the WNT/β-catenin pathway. © 2018 BioFactors, 45(1):24-34, 2019.
Collapse
Affiliation(s)
- Leonardo Borges Murad
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Perôny da Silva Nogueira
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Wallace Martins de Araújo
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | | | - Murilo Ramos Rocha
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | | | - Júlio de-Freitas-Junior
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Pedro Barcellos-de-Souza
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Lilian Gonçalves Bastos
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Jose Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| |
Collapse
|