1
|
Schiavone ML, Crisafulli L, Camisaschi C, De Simone G, Liberati FR, Palagano E, Rucci N, Ficara F, Sobacchi C. Rankl genetic deficiency and functional blockade undermine skeletal stem and progenitor cell differentiation. Stem Cell Res Ther 2024; 15:203. [PMID: 38971808 PMCID: PMC11227705 DOI: 10.1186/s13287-024-03803-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Skeletal Stem Cells (SSCs) are required for skeletal development, homeostasis, and repair. The perspective of their wide application in regenerative medicine approaches has supported research in this field, even though so far results in the clinic have not reached expectations, possibly due also to partial knowledge of intrinsic, potentially actionable SSC regulatory factors. Among them, the pleiotropic cytokine RANKL, with essential roles also in bone biology, is a candidate deserving deep investigation. METHODS To dissect the role of the RANKL cytokine in SSC biology, we performed ex vivo characterization of SSCs and downstream progenitors (SSPCs) in mice lacking Rankl (Rankl-/-) by means of cytofluorimetric sorting and analysis of SSC populations from different skeletal compartments, gene expression analysis, and in vitro osteogenic differentiation. In addition, we assessed the effect of the pharmacological treatment with the anti-RANKL blocking antibody Denosumab (approved for therapy in patients with pathological bone loss) on the osteogenic potential of bone marrow-derived stromal cells from human healthy subjects (hBMSCs). RESULTS We found that, regardless of the ossification type of bone, osteochondral SSCs had a higher frequency and impaired differentiation along the osteochondrogenic lineage in Rankl-/- mice as compared to wild-type. Rankl-/- mice also had increased frequency of committed osteochondrogenic and adipogenic progenitor cells deriving from perivascular SSCs. These changes were not due to the peculiar bone phenotype of increased density caused by lack of osteoclast resorption (defined osteopetrosis); indeed, they were not found in another osteopetrotic mouse model, i.e., the oc/oc mouse, and were therefore not due to osteopetrosis per se. In addition, Rankl-/- SSCs and primary osteoblasts showed reduced mineralization capacity. Of note, hBMSCs treated in vitro with Denosumab had reduced osteogenic capacity compared to control cultures. CONCLUSIONS We provide for the first time the characterization of SSPCs from mouse models of severe recessive osteopetrosis. We demonstrate that Rankl genetic deficiency in murine SSCs and functional blockade in hBMSCs reduce their osteogenic potential. Therefore, we propose that RANKL is an important regulatory factor of SSC features with translational relevance.
Collapse
Affiliation(s)
- M L Schiavone
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - L Crisafulli
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
- Institute for Genetic and Biomedical Research, Milan Unit, CNR, via Fantoli 16/15, Milan, 20138, Italy
| | - C Camisaschi
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - G De Simone
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - F R Liberati
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - E Palagano
- Institute of Biosciences and Bioresources, CNR, via Madonna Del Piano 10, Sesto Fiorentino, 50019, FI, Italy
| | - N Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio - Coppito 2, L'Aquila, 67100, Italy
| | - F Ficara
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
- Institute for Genetic and Biomedical Research, Milan Unit, CNR, via Fantoli 16/15, Milan, 20138, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy.
- Institute for Genetic and Biomedical Research, Milan Unit, CNR, via Fantoli 16/15, Milan, 20138, Italy.
| |
Collapse
|
2
|
Blair HC, Larrouture QC, Tourkova IL, Nelson DJ, Dobrowolski SF, Schlesinger PH. Epithelial-like transport of mineral distinguishes bone formation from other connective tissues. J Cell Biochem 2023; 124:1889-1899. [PMID: 37991446 PMCID: PMC10880123 DOI: 10.1002/jcb.30494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
We review unique properties of bone formation including current understanding of mechanisms of bone mineral transport. We focus on formation only; mechanism of bone degradation is a separate topic not considered. Bone matrix is compared to other connective tissues composed mainly of the same proteins, but without the specialized mechanism for continuous transport and deposition of mineral. Indeed other connective tissues add mechanisms to prevent mineral formation. We start with the epithelial-like surfaces that mediate transport of phosphate to be incorporated into hydroxyapatite in bone, or in its ancestral tissue, the tooth. These include several phosphate producing or phosphate transport-related proteins with special expression in large quantities in bone, particularly in the bone-surface osteoblasts. In all connective tissues including bone, the proteins that constitute the protein matrix are mainly type I collagen and γ-carboxylate-containing small proteins in similar molar quantities to collagen. Specialized proteins that regulate connective tissue structure and formation are surprisingly similar in mineralized and non-mineralized tissues. While serum calcium and phosphate are adequate to precipitate mineral, specialized mechanisms normally prevent mineral formation except in bone, where continuous transport and deposition of mineral occurs.
Collapse
Affiliation(s)
- Harry C Blair
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Irina L. Tourkova
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Deborah J Nelson
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago IL
| | | | | |
Collapse
|
3
|
Maurizi A. Experimental therapies for osteopetrosis. Bone 2022; 165:116567. [PMID: 36152941 DOI: 10.1016/j.bone.2022.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
The medical treatment of osteopetrosis is an ongoing clinical problem. There are no effective and safer therapeutic approaches for all its forms. However, recent discoveries concerning the etiology and the pathogenesis of osteopetrosis, the development of dedicated cellular and animal models, and the advent of new technologies are paving the way for the development of targeted and safer therapies for both lethal and milder osteopetrosis. This review summarizes the huge effort and successes made by researchers to identify and develop new experimental approaches with this objective, such as the use of non-genotoxic myeloablation, gene correction of inducible Pluripotent Stem Cells (iPSCs), lentiviral-based gene therapy, protein replacement, prenatal treatment, osteoclast precursors transplantation and RNA Interference.
Collapse
Affiliation(s)
- Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
4
|
Abstract
Osteopetrosis (OPT) is a rare inherited bone disease characterized by a bone resorption defect, due to osteoclast malfunction (in osteoclast-rich, oc-rich, OPT forms) or absence (in oc-poor OPT forms). This causes severe clinical abnormalities, including increased bone density, lack of bone marrow cavity, stunted growth, macrocephaly, progressive deafness, blindness, hepatosplenomegaly, and severe anemia. The oc-poor subtype of OPT is ultra-rare in humans. It is caused by mutations in either the tumor necrosis factor ligand superfamily member 11 (TNFSF11) gene, encoding RANKL (Receptor Activator of Nuclear factor-kappa B [NF-κB] Ligand) which is expressed on cells of mesenchymal origin and lymphocytes, or the TNFRSF member 11A (TNFRSF11A) gene, encoding the RANKL functional receptor RANK which is expressed on cells of myeloid lineage including osteoclasts. Clinical presentation is usually severe with onset in early infancy or in fetal life, although as more patients are reported, expressivity is variable. Phenotypic variability of RANK-deficient OPT sometimes includes hypogammaglobulinemia or radiological features of dysosteosclerosis. Disease progression is somewhat slower in RANKL-deficient OPT than in other 'malignant' subtypes of OPT. While both RANKL and RANK are essential for normal bone turnover, hematopoietic stem cell transplantation (HSCT) is the treatment of choice only for patients with the RANK-deficient form of oc-poor OPT. So far, there is no cure for RANKL-deficient OPT.
Collapse
Affiliation(s)
- Cristina Sobacchi
- CNR-IRGB, Milan Unit, via Fantoli 16/15, 20138 Milan, Italy; Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, MI, Italy.
| | - Mario Abinun
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
5
|
Li H, Li Y, Zou J, Yang Y, Han R, Zhang J. Sinomenine Inhibits Orthodontic Tooth Movement and Root Resorption in Rats and Enhances Osteogenic Differentiation of PDLSCs. Drug Des Devel Ther 2022; 16:2949-2965. [PMID: 36090955 PMCID: PMC9462521 DOI: 10.2147/dddt.s379468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the effects of sinomenine on orthodontic tooth movement and root resorption in rats, as well as the effect of sinomenine on the osteogenesis of periodontal ligament stem cells (PDLSCs). Methods Fifty-four male Wistar rats were randomly divided into 3 groups: control group, 20 mg/kg sinomenine group and 40 mg/kg sinomenine group. Fifty-gram orthodontic force was applied to all groups. Each group was injected intraperitoneally with corresponding concentration of sinomenine every day. After 14 days, all rats were sacrificed. Micro-computed tomography (micro-CT) scan was used to analyze tooth movement, root resorption and alveolar bone changes. The effect on periodontal tissue was analyzed by Masson, tartrate-resistant acid phosphatase (TRAP) and immunohistochemical staining. In vitro, PDLSCs were extracted and identified. The effect of sinomenine on proliferation was determined by cell-counting kit-8. The effect of sinomenine on osteogenesis was investigated by alkaline phosphatase (ALP) activity and alizarin red staining. qPCR and Western blotting were performed to explore the effects of sinomenine on the expression levels of ALP, runt-related transcription factor 2 (RUNX2), receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG). Results The tooth movement and root resorption of sinomenine groups were reduced. Sinomenine decreased trabecular spacing on compression side and increased alveolar bone volume and trabecular thickness on tension side. TRAP-positive cells in sinomenine groups decreased significantly. The expressions of TNF-α and RANKL were decreased, while the expressions of OPG, RUNX2 and osteocalcin were up-regulated. In vitro, 0.1 M and 0.5 M sinomenine enhanced ALP activity, mineral deposition and the expression of ALP, RUNX2 and OPG, and reduced the expression of RANKL. Conclusion Sinomenine could inhibit tooth movement, reduce root resorption, and exert a positive effect on bone formation in rats. Moreover, sinomenine promoted the osteogenesis of PDLSCs.
Collapse
Affiliation(s)
- Hongkun Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yilin Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jinghua Zou
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yanran Yang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Ruiqi Han
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jun Zhang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Correspondence: Jun Zhang, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1 Wenhua Road West, Jinan, 250012, People’s Republic of China, Tel +86 139 5310 9816, Email
| |
Collapse
|
6
|
Sabir A, Irving M. Clinical trials in skeletal dysplasia: a paradigm for treating rare diseases. Br Med Bull 2021; 139:16-35. [PMID: 34453435 DOI: 10.1093/bmb/ldab017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Genetic skeletal dysplasia conditions (GSDs) account for 5% of all birth defects. Until recently, targeted treatments were only available for select few conditions; 1 however, opportunities arising from developments in molecular diagnostic technologies are now leading to unparalleled therapeutic advances. This review explores current GSD clinical trials, their challenges and the hopes for the future. SOURCES OF DATA A systematic literature search of relevant original articles, reviews and meta-analyses restricted to English was conducted using PubMed up to February 2020 regarding emerging GSD therapies. AREAS OF AGREEMENT We discuss current clinical trials for in achondroplasia, osteopetrosis, osteogenesis imperfecta, hypophosphataemic rickets, hypophosphatasia and fibrous ossificans progressiva. AREAS OF CONTROVERSY We explore challenges in GSD drug development from clinician input, cost-effectiveness and evidenced-based practice. GROWING POINTS We explore opportunities brought by earlier diagnosis, its treatment impact and the challenges of gene editing. AREAS TIMELY FOR DEVELOPING RESEARCH We horizon scan for future clinical trials.
Collapse
Affiliation(s)
- Ataf Sabir
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.,Department of Clinical Genetics, Birmingham Women's and Children's Hospital, Mindelsohn Way, Birmingham B15 2TG, UK and University of Birmingham and Birmingham Health Partners, Edgbaston, Birmingham B152TT, UK
| | - Melita Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.,Department of Medical and Molecular Genetics, Faculty of Life Sciences, King's College London, Strand London WC2R 2LS, UK
| |
Collapse
|
7
|
Association of NFKB1, NKX2-5, GATA4 and RANKL Gene Polymorphisms with Sporadic Congenital Heart Disease in Greek Patients. Balkan J Med Genet 2021; 24:15-20. [PMID: 34447654 PMCID: PMC8366470 DOI: 10.2478/bjmg-2021-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) is a group of structural defects of the heart and the great vessels, and one of the leading causes of death among infants and young adults. Several gene variants are involved in diverse mechanisms of cardiac and vessel development and could thus be considered candidate mutated genes for a congenital heart defect or a specific variant could predispose a person to CHD. In the present study, variants in four such genes are investigated for the first time in a group of young Greek CHD patients: the NFKB1 gene polymorphism (-94ins/ delATTG), rs28362491, NKX2-5 gene polymorphism rs2277923, GATA4 gene polymorphism rs11785481 and RANKL gene polymorphism rs4531631. A total of 43 CHD patients and 100 healthy adults were included in the study. The polymerase chain reaction-restriction fragment length polymorphism (PRC-RFLP) method was used to genotype the aforementioned polymorphisms of NFKB1, NKX2-5, GATA4 and RANKL. The association analysis identified that there was a protective association between CHD and the A allele of rs2277923 polymorphism (p = 0.004). The D allele of the rs28362491 polymorphism is also a likely risk factor for causing CHD (p = 0.006). The differences of the rs4531631 and rs11785481 variant contribution had no statistical significance between the groups (p >0.05). In conclusion, our results revealed that the rs28362491 and rs2277923 gene polymorphisms, but not the rs4531631 and rs11785481 polymorphisms, may contribute to CHD risk in a cohort of Greek CHD patients.
Collapse
|
8
|
Lertwilaiwittaya P, Suktitipat B, Khongthon P, Pongsapich W, Limwongse C, Pithukpakorn M. Identification of novel mutation in RANKL by whole-exome sequencing in a Thai family with osteopetrosis; a case report and review of RANKL osteopetrosis. Mol Genet Genomic Med 2021; 9:e1727. [PMID: 34056870 PMCID: PMC8372087 DOI: 10.1002/mgg3.1727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Background Osteopetrosis is a rare form of skeletal dysplasia characterized by increased bone density that leads to bone marrow failure, compressive neuropathy, and skeletal dysmorphism. Molecular diagnosis is essential as it guides treatment and prognosis. We report Thai siblings with an ultra‐rare form of osteopetrosis. Methods The older brother and the younger sister presented with chronic mandibular osteomyelitis in their 20s. Since childhood, they had visual impairment, pathological fracture, and skeletal dysmorphism. Quadruplet whole‐exome sequencing was performed and confirmed with Sanger sequencing. Novel mutation in TNFSF11 (RANKL) c.842T>G, p.Phe281Cys was identified in a homozygous state in both siblings. Results Surgical debridement, antibiotic, and hyperbaric oxygen therapy were used and discontinued over a 6‐month period with normalization of C‐reactive protein. Hematopoietic stem cell transplantation candidacy was excluded by molecular diagnosis. Conclusion We report a novel mutation in an ultra‐rare form of osteopetrosis. Our siblings manifested with a milder phenotype in comparison with nine cases previously published.
Collapse
Affiliation(s)
| | - Bhoom Suktitipat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Integrative Computational BioScience Center, Mahidol University, Bangkok, Thailand
| | - Phongphak Khongthon
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Warut Pongsapich
- Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanin Limwongse
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Manop Pithukpakorn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence in Precision Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Penna S, Villa A, Capo V. Autosomal recessive osteopetrosis: mechanisms and treatments. Dis Model Mech 2021; 14:261835. [PMID: 33970241 PMCID: PMC8188884 DOI: 10.1242/dmm.048940] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autosomal recessive osteopetrosis (ARO) is a severe inherited bone disease characterized by defective osteoclast resorption or differentiation. Clinical manifestations include dense and brittle bones, anemia and progressive nerve compression, which hamper the quality of patients' lives and cause death in the first 10 years of age. This Review describes the pathogenesis of ARO and highlights the strengths and weaknesses of the current standard of care, namely hematopoietic stem cell transplantation (HSCT). Despite an improvement in the overall survival and outcomes of HSCT, transplant-related morbidity and the pre-existence of neurological symptoms significantly limit the success of HSCT, while the availability of human leukocyte antigen (HLA)-matched donors still remains an open issue. Novel therapeutic approaches are needed for ARO patients, especially for those that cannot benefit from HSCT. Here, we review preclinical and proof-of-concept studies, such as gene therapy, systematic administration of deficient protein, in utero HSCT and gene editing. Summary: Autosomal recessive osteopetrosis is a heterogeneous and rare bone disease for which effective treatments are still lacking for many patients. Here, we review the literature on clinical, preclinical and proof-of-concept studies.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan 20090, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan 20090, Italy
| |
Collapse
|
10
|
Xue JY, Ikegawa S, Guo L. Genetic disorders associated with the RANKL/OPG/RANK pathway. J Bone Miner Metab 2021; 39:45-53. [PMID: 32940787 DOI: 10.1007/s00774-020-01148-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
The RANKL/OPG/RANK signalling pathway is a major regulatory system for osteoclast formation and activity. Mutations in TNFSF11, TNFRSF11B and TNFRSF11A cause defects in bone metabolism and development, thereby leading to skeletal disorders with changes in bone density and/or morphology. To date, nine kinds of monogenic skeletal diseases have been found to be causally associated with TNFSF11, TNFRSF11B and TNFRSF11A mutations. These diseases can be divided into two types according to the mutation effects and the resultant pathogenesis. One is caused by the mutations inducing constitutional RANK activation or OPG deficiency, which increase osteoclastogenesis and accelerate bone turnover, resulting in juvenile Paget's disease 2, Paget disease of bone 2, familial expansile osteolysis, expansile skeletal hyperphosphatasia, panostotic expansile bone disease, and Paget disease of bone 5. The other is caused by the de-activating mutations in TNFRSF11A or TNFSF11, which decrease osteoclastogenesis and elevate bone density, resulting in osteopetrosis, autosomal recessive 2 and 7, and dysosteosclerosis. Here we reviewed the current knowledge about these genetic disorders with paying particular attention to the updating genotype-phenotype association in the TNFRSF11A-caused diseases.
Collapse
Affiliation(s)
- Jing-Yi Xue
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, 4-6-1 Minato-ku, Tokyo, 108-8639, Japan
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, 4-6-1 Minato-ku, Tokyo, 108-8639, Japan.
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, 4-6-1 Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
11
|
Sabir AH, Cole T. The evolving therapeutic landscape of genetic skeletal disorders. Orphanet J Rare Dis 2019; 14:300. [PMID: 31888683 PMCID: PMC6937740 DOI: 10.1186/s13023-019-1222-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Rare bone diseases account for 5% of all birth defects yet very few have personalised treatments. Developments in genetic diagnosis, molecular techniques and treatment technologies however, are leading to unparalleled therapeutic advance. This review explores the evolving therapeutic landscape of genetic skeletal disorders (GSDs); the key conditions and there key differentials. METHODS A retrospective literature based review was conducted in December 2018 using a systematic search strategy for relevant articles and trials in Pubmed and clinicaltrials.gov respectively. Over 140 articles and 80 trials were generated for review. RESULTS Over 20 personalised therapies are discussed in addition to several novel disease modifying treatments in over 25 GSDs. Treatments discussed are at different stages from preclinical studies to clinical trials and approved drugs, including; Burosumab for X-linked hypophosphatemia, Palovarotene for Hereditary Multiple Exostoses, Carbamazepine for Metaphyseal Chondrodysplasia (Schmid type), Lithium carbonate and anti-sclerostin therapy for Osteoporosis Pseudoglioma syndrome and novel therapies for Osteopetrosis. We also discuss therapeutic advances in Achondroplasia, Osteogenesis Imperfecta (OI), Hypophosphotasia (HPP), Fibrodysplasia Ossificans Progressiva, and RNA silencing therapies in preclinical studies for OI and HPP. DISCUSSION It is an exciting time for GSD therapies despite the challenges of drug development in rare diseases. In discussing emerging therapies, we explore novel approaches to drug development from drug repurposing to in-utero stem cell transplants. We highlight the improved understanding of bone pathophysiology, genetic pathways and challenges of developing gene therapies for GSDs.
Collapse
Affiliation(s)
- Ataf Hussain Sabir
- West Midlands Clinical Genetics Unit, Birmingham Women's and Children's NHS FT and Birmingham Health Partners, Birmingham, UK.
| | - Trevor Cole
- West Midlands Clinical Genetics Unit, Birmingham Women's and Children's NHS FT and Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
12
|
Penna S, Capo V, Palagano E, Sobacchi C, Villa A. One Disease, Many Genes: Implications for the Treatment of Osteopetroses. Front Endocrinol (Lausanne) 2019; 10:85. [PMID: 30837952 PMCID: PMC6389615 DOI: 10.3389/fendo.2019.00085] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 11/23/2022] Open
Abstract
Osteopetrosis is a condition characterized by increased bone mass due to defects in osteoclast function or formation. In the last decades, the molecular dissection of osteopetrosis has unveiled a plethora of molecular players responsible for different forms of the disease, some of which present also primary neurodegeneration that severely limits the therapy. Hematopoietic stem cell transplantation can cure the majority of them when performed in the first months of life, highlighting the relevance of an early molecular diagnosis. However, clinical management of these patients is constrained by the severity of the disease and lack of a bone marrow niche that may delay immune reconstitution. Based on osteopetrosis genetic heterogeneity and disease severity, personalized therapies are required for patients that are not candidate to bone marrow transplantation. This review briefly describes the genetics of osteopetrosis, its clinical heterogeneity, current therapy and innovative approaches undergoing preclinical evaluation.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, Milan, Italy
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, Milan, Italy
| | - Eleonora Palagano
- The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit, Milan, Italy
- Humanitas Research Hospital, Rozzano, Italy
| | - Cristina Sobacchi
- The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit, Milan, Italy
- Humanitas Research Hospital, Rozzano, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, Milan, Italy
- The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit, Milan, Italy
- *Correspondence: Anna Villa
| |
Collapse
|
13
|
Proulx ESC, Mashiko S, Maari C, Bolduc C, Nigen S, Sarfati M, Bissonnette R. Ultraviolet B-induced immunosuppression is not associated with receptor activator of nuclear factor kappa B ligand upregulation in human skin. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 35:47-50. [PMID: 30230620 DOI: 10.1111/phpp.12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 11/27/2022]
Affiliation(s)
| | - Shunya Mashiko
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | | | | | - Simon Nigen
- Innovaderm Research Inc, Montreal, Quebec, Canada
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | | |
Collapse
|
14
|
Menale C, Campodoni E, Palagano E, Mantero S, Erreni M, Inforzato A, Fontana E, Schena F, Van't Hof R, Sandri M, Tampieri A, Villa A, Sobacchi C. Mesenchymal Stromal Cell-Seeded Biomimetic Scaffolds as a Factory of Soluble RANKL in Rankl-Deficient Osteopetrosis. Stem Cells Transl Med 2018; 8:22-34. [PMID: 30184340 PMCID: PMC6312453 DOI: 10.1002/sctm.18-0085] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/11/2018] [Indexed: 12/27/2022] Open
Abstract
Biomimetic scaffolds are extremely versatile in terms of chemical composition and physical properties, which can be defined to accomplish specific applications. One property that can be added is the production/release of bioactive soluble factors, either directly from the biomaterial, or from cells embedded within the biomaterial. We reasoned that pursuing this strategy would be appropriate to setup a cell‐based therapy for RANKL‐deficient autosomal recessive osteopetrosis, a very rare skeletal genetic disease in which lack of the essential osteoclastogenic factor RANKL impedes osteoclast formation. The exogenously administered RANKL cytokine is effective in achieving osteoclast formation and function in vitro and in vivo, thus, we produced murine Rankl−/− mesenchymal stromal cells (MSCs) overexpressing human soluble RANKL (hsRL) following lentiviral transduction (LVhsRL). Here, we described a three‐dimensional (3D) culture system based on a magnesium‐doped hydroxyapatite/collagen I (MgHA/Col) biocompatible scaffold closely reproducing bone physicochemical properties. MgHA/Col‐seeded murine MSCs showed improved properties, as compared to two‐dimensional (2D) culture, in terms of proliferation and hsRL production, with respect to LVhsRL‐transduced cells. When implanted subcutaneously in Rankl−/− mice, these cell constructs were well tolerated, colonized by host cells, and intensely vascularized. Of note, in the bone of Rankl−/− mice that carried scaffolds with either WT or LVhsRL‐transduced Rankl−/− MSCs, we specifically observed formation of TRAP+ cells, likely due to sRL released from the scaffolds into circulation. Thus, our strategy proved to have the potential to elicit an effect on the bone; further work is required to maximize these benefits and achieve improvements of the skeletal pathology in the treated Rankl−/− mice. Stem Cells Translational Medicine2019;8:22–34
Collapse
Affiliation(s)
- Ciro Menale
- CNR-IRGB, Milan Unit, Milan, Italy.,Humanitas Clinical and Research Institute, Rozzano, Italy
| | | | - Eleonora Palagano
- Humanitas Clinical and Research Institute, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Stefano Mantero
- CNR-IRGB, Milan Unit, Milan, Italy.,Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Marco Erreni
- Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Antonio Inforzato
- Humanitas Clinical and Research Institute, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Fontana
- CNR-IRGB, Milan Unit, Milan, Italy.,Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Francesca Schena
- Clinica Pediatrica e Reumatologia, UOSD Centro Malattie Autoinfiammatorie e Immunodeficienze, Genoa, Italy
| | - Rob Van't Hof
- Bone Research Group, Institute of Ageing & Chronic Disease, University of Liverpool, Liverpool, UK
| | | | | | - Anna Villa
- CNR-IRGB, Milan Unit, Milan, Italy.,Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Cristina Sobacchi
- CNR-IRGB, Milan Unit, Milan, Italy.,Humanitas Clinical and Research Institute, Rozzano, Italy
| |
Collapse
|
15
|
Cellular and Molecular Mediators of Bone Metastatic Lesions. Int J Mol Sci 2018; 19:ijms19061709. [PMID: 29890702 PMCID: PMC6032429 DOI: 10.3390/ijms19061709] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Bone is the preferential site of metastasis for breast and prostate tumor. Cancer cells establish a tight relationship with the host tissue, secreting factors that stimulate or inhibit bone cells, receiving signals generated from the bone remodeling activity, and displaying some features of bone cells. This interplay between tumor and bone cells alters the physiological bone remodeling, leading to the generation of a vicious cycle that promotes bone metastasis growth. To prevent the skeletal-related events (SRE) associated with bone metastasis, approaches to inhibit osteoclast bone resorption are reported. The bisphosphonates and Denosumab are currently used in the treatment of patients affected by bone lesions. They act to prevent or counteract the SRE, including pathologic fractures, spinal cord compression, and pain associated with bone metastasis. However, their primary effects on tumor cells still remain controversial. In this review, a description of the mechanisms leading to the onset of bone metastasis and clinical approaches to treat them are described.
Collapse
|
16
|
Pal China S, Pal S, Chattopadhyay S, Porwal K, Mittal M, Sanyal S, Chattopadhyay N. The wakefulness promoting drug Modafinil causes adenosine receptor-mediated upregulation of receptor activator of nuclear factor κB ligand in osteoblasts: Negative impact of the drug on peak bone accrual in rats. Toxicol Appl Pharmacol 2018; 348:22-31. [PMID: 29649498 DOI: 10.1016/j.taap.2018.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
Modafinil is primarily prescribed for treatment of narcolepsy and other sleep-associated disorders. However, its off-prescription use as a cognition enhancer increased considerably, specially among youths. Given its increasing use in young adults the effect of modafinil on peak bone accrual is an important issue but has never been investigated. Modafinil treatment to young male rats caused trabecular and cortical bone loss in tibia and femur, and reduction in biomechanical strength. Co-treatment of modafinil with alendronate (a drug that suppresses bone resorption) reversed the trabecular bone loss but failed to prevent cortical loss. Modafinil increased serum type 1 pro-collagen N-terminal protein (P1NP) and collagen type 1 cross-linked C-telopeptide (CTX-1) indicating a high turnover bone loss. The drug also increased receptor activator of nuclear factor κB ligand (RANKL) to osteoprotegerin (OPG) ratio in serum which likely resulted in increased osteoclast number per bone surface. Furthermore, conditioned medium from modafinil treated osteoblasts increased the expression of osteoclastogenic genes in bone marrow-derived macrophages and the effect was blocked by RANKL neutralizing antibody. In primary osteoblasts, modafinil stimulated cAMP production and using pharmacological approach, we showed that modafinil signalled via adenosine receptors (A2AR and A2BR) which resulted in increased RANKL expression. ZM-241,385 (an A2AR inhibitor) and MRS 1754 (an A2BR inhibitor) suppressed modafinil-induced upregulation of RANKL/OPG ratio in the calvarium of new born rat pups. Our data suggests that by activating osteoblast adenosine receptors modafinil increases the production of osteoclastogenic cytokine, RANKL that in turn results in high turnover bone loss in young rats.
Collapse
Affiliation(s)
- Shyamsundar Pal China
- Division of Endocrinology, Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India
| | - Subhashis Pal
- Division of Endocrinology, Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Sourav Chattopadhyay
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India; Division of Biochemistry, CSIR-CDRI, Lucknow 226031, India
| | - Konica Porwal
- Division of Endocrinology, Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Monika Mittal
- Division of Endocrinology, Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India
| | - Sabyasachi Sanyal
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India; Division of Biochemistry, CSIR-CDRI, Lucknow 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The term osteopetrosis refers to a group of rare skeletal diseases sharing the hallmark of a generalized increase in bone density owing to a defect in bone resorption. Osteopetrosis is clinically and genetically heterogeneous, and a precise molecular classification is relevant for prognosis and treatment. Here, we review recent data on the pathogenesis of this disorder. RECENT FINDINGS Novel mutations in known genes as well as defects in new genes have been recently reported, further expanding the spectrum of molecular defects leading to osteopetrosis. Exploitation of next-generation sequencing tools is ever spreading, facilitating differential diagnosis. Some complex phenotypes in which osteopetrosis is accompanied by additional clinical features have received a molecular classification, also involving new genes. Moreover, novel types of mutations have been recognized, which for their nature or genomic location are at high risk being neglected. Yet, the causative mutation is unknown in some patients, indicating that the genetics of osteopetrosis still deserves intense research efforts.
Collapse
Affiliation(s)
- Eleonora Palagano
- Humanitas Clinical and Research Institute, via Manzoni 113, 20089, Rozzano, MI, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Ciro Menale
- Humanitas Clinical and Research Institute, via Manzoni 113, 20089, Rozzano, MI, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Cristina Sobacchi
- Humanitas Clinical and Research Institute, via Manzoni 113, 20089, Rozzano, MI, Italy.
- Milan Unit, CNR-IRGB, Milan, Italy.
| | - Anna Villa
- Humanitas Clinical and Research Institute, via Manzoni 113, 20089, Rozzano, MI, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| |
Collapse
|
18
|
Shiu HT, Leung PC, Ko CH. The roles of cellular and molecular components of a hematoma at early stage of bone healing. J Tissue Eng Regen Med 2018; 12:e1911-e1925. [PMID: 29207216 DOI: 10.1002/term.2622] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 10/23/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
Abstract
Bone healing is a complex repair process that commences with the formation of a blood clot at the injured bone, termed hematoma. It has evidenced that a lack of a stable hematoma causes delayed bone healing or non-union. The hematoma at the injured bone constitutes the early healing microenvironment. It appears to dictate healing pathways that ends in a regenerative bone. However, the hematoma is often clinically removed from the damaged site. Conversely, blood-derived products have been used in bone tissue engineering for treating critical sized defects, including fibrin gels and platelet-rich plasma. A second generation of platelet concentrate that is based on leukocyte and fibrin content has also been developed and introduced in market. Conflicting effect of these products in bone repair are reported. We propose that the bone healing response becomes dysregulated if the blood response and subsequent formation and properties of a hematoma are altered. This review focuses on the central structural, cellular, and molecular components of a fracture hematoma, with a major emphasis on their roles in regulating bone healing mechanism, and their interactions with mesenchymal stem cells. New angles towards a better understanding of these factors and relevant mechanisms involved at the beginning of bone healing may help to clarify limited or adverse effects of blood-derived products on bone repair. We emphasize that the recreation of an early hematoma niche with critical compositions might emerge as a viable therapeutic strategy for enhanced skeletal tissue engineering.
Collapse
Affiliation(s)
- Hoi Ting Shiu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Phytochemistry & Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Phytochemistry & Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chun Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Phytochemistry & Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
19
|
Schena F, Menale C, Caci E, Diomede L, Palagano E, Recordati C, Sandri M, Tampieri A, Bortolomai I, Capo V, Pastorino C, Bertoni A, Gattorno M, Martini A, Villa A, Traggiai E, Sobacchi C. Murine Rankl -/- Mesenchymal Stromal Cells Display an Osteogenic Differentiation Defect Improved by a RANKL-Expressing Lentiviral Vector. Stem Cells 2017; 35:1365-1377. [PMID: 28100034 DOI: 10.1002/stem.2574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 12/02/2016] [Accepted: 12/26/2016] [Indexed: 01/08/2023]
Abstract
Autosomal recessive osteopetrosis (ARO) is a severe bone disease characterized by increased bone density due to impairment in osteoclast resorptive function or differentiation. Hematopoietic stem cell transplantation is the only available treatment; however, this therapy is not effective in RANKL-dependent ARO, since in bone this gene is mainly expressed by cells of mesenchymal origin. Of note, whether lack of RANKL production might cause a defect also in the bone marrow (BM) stromal compartment, possibly contributing to the pathology, is unknown. To verify this possibility, we generated and characterized BM mesenchymal stromal cell (BM-MSC) lines from wild type and Rankl-/- mice, and found that Rankl-/- BM-MSCs displayed reduced clonogenicity and osteogenic capacity. The differentiation defect was significantly improved by lentiviral transduction of Rankl-/- BM-MSCs with a vector stably expressing human soluble RANKL (hsRANKL). Expression of Rankl receptor, Rank, on the cytoplasmic membrane of BM-MSCs pointed to the existence of an autocrine loop possibly activated by the secreted cytokine. Based on the close resemblance of RANKL-defective osteopetrosis in humans and mice, we expect that our results are also relevant for RANKL-dependent ARO patients. Data obtained in vitro after transduction with a lentiviral vector expressing hsRANKL would suggest that restoration of RANKL production might not only rescue the defective osteoclastogenesis of this ARO form, but also improve a less obvious defect in the osteoblast lineage, thus possibly achieving higher benefit for the patients, when the approach is translated to clinics. Stem Cells 2017;35:1365-1377.
Collapse
Affiliation(s)
- Francesca Schena
- Laboratory of Immunology and Rheumatic Diseases, Pediatrics II, Genova, Italy
| | - Ciro Menale
- Milan Unit, CNR-IRGB, Milan, Italy.,Laboratory of Human Genome, Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Emanuela Caci
- Molecular Genetics Laboratory G. Gaslini Children's Hospital, Genova, Italy
| | - Lorenzo Diomede
- Milan Unit, CNR-IRGB, Milan, Italy.,Laboratory of Human Genome, Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Eleonora Palagano
- Laboratory of Human Genome, Humanitas Clinical and Research Institute, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Camilla Recordati
- Mouse and Animal Pathology Laboratory, Fondazione Filarete, Milano, Italy
| | - Monica Sandri
- ISTEC-CNR, Institute of Science & Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Anna Tampieri
- ISTEC-CNR, Institute of Science & Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Ileana Bortolomai
- Milan Unit, CNR-IRGB, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Pastorino
- Laboratory of Immunology and Rheumatic Diseases, Pediatrics II, Genova, Italy
| | - Arinna Bertoni
- Laboratory of Immunology and Rheumatic Diseases, Pediatrics II, Genova, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Marco Gattorno
- Laboratory of Immunology and Rheumatic Diseases, Pediatrics II, Genova, Italy
| | - Alberto Martini
- Laboratory of Immunology and Rheumatic Diseases, Pediatrics II, Genova, Italy
| | - Anna Villa
- Milan Unit, CNR-IRGB, Milan, Italy.,Laboratory of Human Genome, Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Elisabetta Traggiai
- Laboratory of Immunology and Rheumatic Diseases, Pediatrics II, Genova, Italy.,Novartis Institute for Biomedical Research, Klybeckstrasse, Basel, Switzerland
| | - Cristina Sobacchi
- Milan Unit, CNR-IRGB, Milan, Italy.,Laboratory of Human Genome, Humanitas Clinical and Research Institute, Rozzano, Italy
| |
Collapse
|
20
|
Kim JI, Park TE, Maharjan S, Li HS, Lee HB, Kim IS, Piao D, Lee JY, Cho CS, Bok JD, Hong ZS, Kang SK, Choi YJ. Soluble RANKL expression in Lactococcus lactis and investigation of its potential as an oral vaccine adjuvant. BMC Immunol 2015; 16:71. [PMID: 26608025 PMCID: PMC4659156 DOI: 10.1186/s12865-015-0132-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND To initiate mucosal immune responses, antigens in the intestinal lumen must be transported into gut-associated lymphoid tissue through M cells. Recently, it has been increasingly recognized that receptor activator of NF-kB ligand (RANKL) controls M cell differentiation by interacting with RANK expressed on the sub-epithelium of Peyer's patches. In this study, we increased the number of M cells using soluble RANKL (sRANKL) as a potent mucosal adjuvant. RESULTS For efficient oral delivery of sRANKL, we constructed recombinant Lactococcus lactis (L. lactis) IL1403 secreting sRANKL (sRANKL-LAB). The biological activity of recombinant sRANKL was confirmed by observing RANK-RANKL signaling in vitro. M cell development in response to oral administration of recombinant L. lactis was determined by 1.51-fold higher immunohistochemical expression of M cell marker GP-2, compared to that of non-treatment group. In addition, an adjuvant effect of sRANKL was examined by immunization of mice with M-BmpB as a model antigen after treatment with sRANKL-LAB. Compared with the wild-type L. lactis group, the sRANKL-LAB group showed significantly increased systemic and mucosal immune responses specific to M-BmpB. CONCLUSIONS Our results show that the M cell development by sRANKL-LAB can increase the antigen transcytotic capability of follicle-associated epithelium, and thereby enhance the mucosal immune response, which implies that oral administration of sRANKL is a promising adjuvant strategy for efficient oral vaccination.
Collapse
Affiliation(s)
- Jeong-In Kim
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| | - Tae-Eun Park
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| | - Sushila Maharjan
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| | - Hui-Shan Li
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| | - Ho-Bin Lee
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| | - In-Seon Kim
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| | - Dachuan Piao
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| | - Jun-Yeong Lee
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| | - Jin-Duck Bok
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchanggun, Gangwondo, South Korea.
| | - Zhong-Shan Hong
- Department of Animal Science, Tianjin Agricultural University, Tianjin, China.
| | - Sang-Kee Kang
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchanggun, Gangwondo, South Korea.
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea. .,Department of Animal Science, Tianjin Agricultural University, Tianjin, China.
| |
Collapse
|
21
|
Yuan FL, Xu RS, Jiang DL, He XL, Su Q, Jin C, Li X. Leonurine hydrochloride inhibits osteoclastogenesis and prevents osteoporosis associated with estrogen deficiency by inhibiting the NF-κB and PI3K/Akt signaling pathways. Bone 2015; 75:128-37. [PMID: 25708053 DOI: 10.1016/j.bone.2015.02.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/11/2015] [Accepted: 02/14/2015] [Indexed: 12/24/2022]
Abstract
Osteoclasts, the primary bone resorbing cells, are responsible for destructive bone diseases such as postmenopausal osteoporosis, rheumatoid arthritis, and periodontitis. Many plant-derived traditional medicines that might suppress the formation and/or function of osteoclasts are promising treatments for osteoclast-related diseases. In this study, we investigated the effects of leonurine hydrochloride (LH) on receptor activator NF-κB ligand (RANKL)-induced osteoclastogenesis and ovariectomy-induced bone loss. LH is a synthetic chemical compound based on the structure of leonurine, which is found in motherwort and has been reported to exhibit phytoestrogenic activity. In RAW 264.7 cells and mouse bone marrow monocytes (BMMs), LH suppressed RANKL-induced osteoclastogenesis and actin ring formation in a dose-dependent manner. LH targeted RANKL-induced osteoclastogenesis and bone resorption at an early stage. Molecular analysis demonstrated that LH attenuated RANKL-induced NF-κB signaling by inhibiting the phosphorylation and degradation of IκBα and NF-κB p65 nuclear translocation. LH inhibited the RANK-TRAF6 association triggered by RANKL binding and the phosphatidylinositol 3-kinase (PI3K)/Akt axis, without significantly affecting the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and AP-1 signaling pathways. LH attenuated the RANKL-stimulated expression of osteoclast-related genes including NFATc1, tartrate resistant acid phosphatase (TRAP), cathepsin K, and osteoclast-associated receptor (OSCAR). Consistent with the in vitro results, LH administration attenuated osteoclast activity, thus preventing bone loss caused by estrogen deficiency in mice. In this study, LH suppressed RANKL-induced osteoclastogenesis via RANK-TRAF6, NF-κB, and PI3K/Akt signaling. These data provide the first evidence that LH might be a promising therapeutic compound to treat osteoclast-related diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Feng-Lai Yuan
- Department of Orthopaedics and Central Laboratory, The third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, China
| | - Rui-Sheng Xu
- Department of Orthopaedics and Central Laboratory, The third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, China
| | - Dong-Lin Jiang
- Department of Orthopaedics and Central Laboratory, The third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, China
| | - Xing-Long He
- Department of Orthopaedics and Central Laboratory, The third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, China
| | - Qiang Su
- Department of Orthopaedics and Central Laboratory, The third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, China
| | - Chen Jin
- Department of Orthopaedics and Central Laboratory, The third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, China
| | - Xia Li
- Department of Orthopaedics and Central Laboratory, The third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, China
| |
Collapse
|
22
|
Marrella V, Lo Iacono N, Fontana E, Sobacchi C, Sic H, Schena F, Sereni L, Castiello MC, Poliani PL, Vezzoni P, Cassani B, Traggiai E, Villa A. IL-10 Critically Modulates B Cell Responsiveness in Rankl−/− Mice. THE JOURNAL OF IMMUNOLOGY 2015; 194:4144-53. [DOI: 10.4049/jimmunol.1401977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/23/2015] [Indexed: 11/19/2022]
|
23
|
Coudert AE, de Vernejoul MC, Muraca M, Del Fattore A. Osteopetrosis and its relevance for the discovery of new functions associated with the skeleton. Int J Endocrinol 2015; 2015:372156. [PMID: 25873953 PMCID: PMC4385565 DOI: 10.1155/2015/372156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/16/2014] [Accepted: 10/30/2014] [Indexed: 01/29/2023] Open
Abstract
Osteopetrosis is a rare genetic disorder characterized by an increase of bone mass due to defective osteoclast function. Patients typically displayed spontaneous fractures, anemia, and in the most severe forms hepatosplenomegaly and compression of cranial facial nerves leading to deafness and blindness. Osteopetrosis comprises a heterogeneous group of diseases as several forms are known with different models of inheritance and severity from asymptomatic to lethal. This review summarizes the genetic and clinical features of osteopetrosis, emphasizing how recent studies of this disease have contributed to understanding the central role of the skeleton in the whole body physiology. In particular, the interplay of bone with the stomach, insulin metabolism, male fertility, the immune system, bone marrow, and fat is described.
Collapse
Affiliation(s)
- Amélie E. Coudert
- Institut National de la Santé et de la Recherche Médicale U1138, Centre de Recherche des Cordeliers, Paris, France
| | | | - Maurizio Muraca
- Regenerative Medicine Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Andrea Del Fattore
- Regenerative Medicine Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
- *Andrea Del Fattore:
| |
Collapse
|
24
|
Osteoprotegerin (OPG) and Matrix Gla protein (MGP) in rheumatoid arthritis patients: Relation to disease activity. THE EGYPTIAN RHEUMATOLOGIST 2014. [DOI: 10.1016/j.ejr.2014.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Rinotas V, Niti A, Dacquin R, Bonnet N, Stolina M, Han CY, Kostenuik P, Jurdic P, Ferrari S, Douni E. Novel genetic models of osteoporosis by overexpression of human RANKL in transgenic mice. J Bone Miner Res 2014; 29:1158-69. [PMID: 24127173 DOI: 10.1002/jbmr.2112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/10/2013] [Accepted: 09/30/2013] [Indexed: 11/10/2022]
Abstract
Receptor activator of NF-κB ligand (RANKL) plays a key role in osteoclast-induced bone resorption across a range of degenerative bone diseases, and its specific inhibition has been recently approved as a treatment for women with postmenopausal osteoporosis at high or increased risk of fracture in the United States and globally. In the present study, we generated transgenic mice (TghuRANKL) carrying the human RANKL (huRANKL) genomic region and achieved a physiologically relevant pattern of RANKL overexpression in order to establish novel genetic models for assessing skeletal and extraskeletal pathologies associated with excessive RANKL and for testing clinical therapeutic candidates that inhibit human RANKL. TghuRANKL mice of both sexes developed early-onset bone loss, and the levels of huRANKL expression were correlated with bone resorption and disease severity. Low copy Tg5516 mice expressing huRANKL at low levels displayed a mild osteoporotic phenotype as shown by trabecular bone loss and reduced biomechanical properties. Notably, overexpression of huRANKL, in the medium copy Tg5519 line, resulted in severe early-onset osteoporosis characterized by lack of trabecular bone, destruction of the growth plate, increased osteoclastogenesis, bone marrow adiposity, increased bone remodeling, and severe cortical bone porosity accompanied by decreased bone strength. An even more severe skeletal phenotype developed in the high copy Tg5520 founder with extensive soft tissue calcification. Model validation was further established by evidence that denosumab, an antibody that inhibits human but not murine RANKL, fully corrected the hyper-resorptive and osteoporotic phenotypes of Tg5519 mice. Furthermore, overexpression of huRANKL rescued osteopetrotic phenotypes of RANKL-defective mice. These novel huRANKL transgenic models of osteoporosis represent an important advance for understanding the pathogenesis and treatment of high-turnover bone diseases and other disease states caused by excessive RANKL.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece; Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Galeone A, Paparella D, Colucci S, Grano M, Brunetti G. The role of TNF-α and TNF superfamily members in the pathogenesis of calcific aortic valvular disease. ScientificWorldJournal 2013; 2013:875363. [PMID: 24307884 PMCID: PMC3836568 DOI: 10.1155/2013/875363] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/02/2013] [Indexed: 01/08/2023] Open
Abstract
Calcific aortic valve disease (CAVD) represents a slowly progressive pathologic process associated with major morbidity and mortality. The process is characterized by multiple steps: inflammation, fibrosis, and calcification. Numerous studies focalized on its physiopathology highlighting different "actors" for the multiple "acts." This paper focuses on the role of the tumor necrosis factor superfamily (TNFSF) members in the pathogenesis of CAVD. In particular, we discuss the clinical and experimental studies providing evidence of the involvement of tumor necrosis factor-alpha (TNF-α), receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL), its membrane receptor RANK and its decoy receptor osteoprotegerin (OPG), and TNF-related apoptosis-inducing ligand (TRAIL) in valvular calcification.
Collapse
Affiliation(s)
- Antonella Galeone
- Division of Cardiac Surgery, Department of Emergencies and Organ Transplantation (DETO), University of Bari “Aldo Moro”, Italy
| | - Domenico Paparella
- Division of Cardiac Surgery, Department of Emergencies and Organ Transplantation (DETO), University of Bari “Aldo Moro”, Italy
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Maria Grano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
27
|
Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 2013; 9:522-36. [PMID: 23877423 DOI: 10.1038/nrendo.2013.137] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteopetrosis is a genetic condition of increased bone mass, which is caused by defects in osteoclast formation and function. Both autosomal recessive and autosomal dominant forms exist, but this Review focuses on autosomal recessive osteopetrosis (ARO), also known as malignant infantile osteopetrosis. The genetic basis of this disease is now largely uncovered: mutations in TCIRG1, CLCN7, OSTM1, SNX10 and PLEKHM1 lead to osteoclast-rich ARO (in which osteoclasts are abundant but have severely impaired resorptive function), whereas mutations in TNFSF11 and TNFRSF11A lead to osteoclast-poor ARO. In osteoclast-rich ARO, impaired endosomal and lysosomal vesicle trafficking results in defective osteoclast ruffled-border formation and, hence, the inability to resorb bone and mineralized cartilage. ARO presents soon after birth and can be fatal if left untreated. However, the disease is heterogeneous in clinical presentation and often misdiagnosed. This article describes the genetics of ARO and discusses the diagnostic role of next-generation sequencing methods. The management of affected patients, including guidelines for the indication of haematopoietic stem cell transplantation (which can provide a cure for many types of ARO), are outlined. Finally, novel treatments, including preclinical data on in utero stem cell treatment, RANKL replacement therapy and denosumab therapy for hypercalcaemia are also discussed.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Unit Of Support/Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Italy
| | | | | | | | | |
Collapse
|