1
|
Li T, Zhang Y, Cheng X, Jia L, Tian Y, He J, He M, Chen L, Hao P, Xiao Y, Peng L, Chong W, Hai Y, You C, Fang F. Association between postoperative changes in natremia and outcomes in patients undergoing elective craniotomy. Neurosurg Rev 2024; 47:69. [PMID: 38270672 DOI: 10.1007/s10143-024-02287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
Postoperative dysnatremias, characterized by imbalances in serum sodium levels, have been linked to increased resource utilization and mortality in surgical and intensive care patients. The management of dysnatremias may involve medical interventions based on changes in sodium levels. In this study, we aimed to investigate the impact of postoperative changes in natremia on outcomes specifically in patients undergoing craniotomy.We conducted a retrospective analysis of patient records from the Department of Neurosurgery at West China Hospital, Sichuan University, covering the period from January 2011 to March 2021. We compared the highest and lowest sodium values in the first 14 postoperative days with the baseline values to define four categories for analysis: no change < 5 mmol/L; decrease > 5 mmol/L; increase > 5 mmol/L; both increase and decrease > 5 mmol/L. The primary outcome measure was 30-day mortality.A total of 12,713 patients were included in the study, and the overall postoperative mortality rate at 30 days was 2.1% (264 patients). The increase in sodium levels carried a particularly high risk, with a tenfold increase (OR 10.21; 95% CI 7.25-14.39) compared to patients with minimal or no change. Decreases in sodium levels were associated with an increase in mortality (OR 1.60; 95% CI 1.11-2.23).Moreover, the study revealed that postoperative sodium decrease was correlated with various complications, such as deep venous thrombosis, pneumonia, intracranial infection, urinary infection, seizures, myocardial infarction, and prolonged hospital length of stay. On the other hand, postoperative sodium increases were associated with acute kidney injury, deep venous thrombosis, pneumonia, intracranial infection, urinary infection, surgical site infection, seizures, myocardial infarction, and prolonged hospital length of stay.Changes in postoperative sodium levels were associated with increased complications, prolonged length of hospital stay, and 30-day mortality. Moreover, the severity of sodium change values correlated with higher mortality rates.
Collapse
Affiliation(s)
- Tiangui Li
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
- Department of Neurosurgery, The First People's Hospital of Longquanyi District Chengdu, Sichuan, China
| | - Yu Zhang
- Center for Evidence-Based Medical, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xin Cheng
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Lu Jia
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Yixing Tian
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Jialing He
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Miao He
- Department of Anesthesia, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Lvlin Chen
- Department of Critical Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Pengfei Hao
- Center for Evidence-Based Medical, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Yangchun Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Liyuan Peng
- Department of Critical Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Weelic Chong
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yang Hai
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Fang Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Du X, Zhai J, Li X, Zhang Y, Li N, Xie X. Hydrogel-Based Optical Ion Sensors: Principles and Challenges for Point-of-Care Testing and Environmental Monitoring. ACS Sens 2021; 6:1990-2001. [PMID: 34044533 DOI: 10.1021/acssensors.1c00756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogel is a unique family of biocompatible materials with growing applications in chemical and biological sensors. During the past few decades, various hydrogel-based optical ion sensors have been developed aiming at point-of-care testing and environmental monitoring. In this Perspective, we provide an overview of the research field including topics such as photonic crystals, DNAzyme cross-linked hydrogels, ionophore-based ion sensing hydrogels, and fluoroionophore-based optodes. As the different sensing principles are summarized, each strategy offers its advantages and limitations. In a nutshell, developing optical ion sensing hydrogels is still in the early stage with many opportunities lying ahead, especially with challenges in selectivity, assay time, detection limit, and usability.
Collapse
Affiliation(s)
- Xinfeng Du
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoang Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yupu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Niping Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Wiśniowska B, Bielecka ZM, Polak S. How circadian variability of the heart rate and plasma electrolytes concentration influence the cardiac electrophysiology - model-based case study. J Pharmacokinet Pharmacodyn 2021; 48:387-399. [PMID: 33666801 PMCID: PMC8144092 DOI: 10.1007/s10928-021-09744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
The circadian rhythm of cardiac electrophysiology is dependent on many physiological and biochemical factors. Provided, that models describing the circadian patterns of cardiac activity and/or electrophysiology which have been verified to the acceptable level, modeling and simulation can give answers to many of heart chronotherapy questions. The aim of the study was to assess the performance of the circadian models implemented in Cardiac Safety Simulator v 2.2 (Certara, Sheffield, UK) (CSS), as well as investigate the influence ofcircadian rhythms on the simulation results in terms of cardiac safety. The simulations which were run in CSS accounted for inter-individual and intra-individual variability. Firstly, the diurnal variations in QT interval length in a healthy population were simulated accounting for heart rate (HR) circadian changes alone, or with concomitant diurnal variations of plasma ion concentrations. Next, tolterodine was chosen as an exemplary drug for PKPD modelling exercise to assess the role of circadian rhythmicity in the prediction of drug effects on QT interval. The results of the simulations were in line with clinical observations, what can serve as a verification of the circadian models implemented in CSS. Moreover, the results have suggested that the circadian variability of the electrolytes balance is the main factor influencing QT circadian pattern. The fluctuation of ion concentration increases the intra-subject variability of predicted drug-triggered QT corrected for HR (QTc) prolongation effect and, in case of modest drug effect on QTc interval length, allows to capture this effect.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland.
| | - Zofia M Bielecka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Sebastian Polak
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
4
|
Diekman CO, Wei N. Circadian Rhythms of Early Afterdepolarizations and Ventricular Arrhythmias in a Cardiomyocyte Model. Biophys J 2020; 120:319-333. [PMID: 33285114 DOI: 10.1016/j.bpj.2020.11.2264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/25/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022] Open
Abstract
Sudden cardiac arrest is a malfunction of the heart's electrical system, typically caused by ventricular arrhythmias, that can lead to sudden cardiac death (SCD) within minutes. Epidemiological studies have shown that SCD and ventricular arrhythmias are more likely to occur in the morning than in the evening, and laboratory studies indicate that these daily rhythms in adverse cardiovascular events are at least partially under the control of the endogenous circadian timekeeping system. However, the biophysical mechanisms linking molecular circadian clocks to cardiac arrhythmogenesis are not fully understood. Recent experiments have shown that L-type calcium channels exhibit circadian rhythms in both expression and function in guinea pig ventricular cardiomyocytes. We developed an electrophysiological model of these cells to simulate the effect of circadian variation in L-type calcium conductance. In our simulations, we found that there is a circadian pattern in the occurrence of early afterdepolarizations (EADs), which are abnormal depolarizations during the repolarization phase of a cardiac action potential that can trigger fatal ventricular arrhythmias. Specifically, the model produces EADs in the morning, but not at other times of day. We show that the model exhibits a codimension-2 Takens-Bogdanov bifurcation that serves as an organizing center for different types of EAD dynamics. We also simulated a two-dimensional spatial version of this model across a circadian cycle. We found that there is a circadian pattern in the breakup of spiral waves, which represents ventricular fibrillation in cardiac tissue. Specifically, the model produces spiral wave breakup in the morning, but not in the evening. Our computational study is the first, to our knowledge, to propose a link between circadian rhythms and EAD formation and suggests that the efficacy of drugs targeting EAD-mediated arrhythmias may depend on the time of day that they are administered.
Collapse
Affiliation(s)
- Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey; EPSRC Centre for Predictive Modelling in Healthcare, Living Systems Institute, University of Exeter, Exeter, United Kingdom.
| | - Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, Indiana
| |
Collapse
|
5
|
Cronemberger S, Veloso AW, Veiga C, Scarpelli G, Sasso YC, Merola RV. Correlation between retinal nerve fiber layer thickness and IOP variation in glaucoma suspects and patients with primary open-angle glaucoma. Eur J Ophthalmol 2020; 31:2424-2431. [PMID: 32907390 DOI: 10.1177/1120672120957584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To analyze the relationship between retinal nerve fiber layer thickness (RNFLT) and intraocular pressure (IOP) variation in glaucoma suspects (GS) and patients with primary open-angle glaucoma (POAG). METHODS Thirty-one GS and 34 POAG patients underwent ophthalmologic examination and 24-h IOP measurements. GS had IOPs ranging from 19 to 24 mmHg and/or suspicious appearance of the optic nerve. POAG patients had reproducible abnormal visual fields. We only included patients who presented with short-term IOP fluctuation >6 mm Hg (∆IOP). Only one eye per patient was included through a randomized process. Peripapillary RNFLT was assessed by spectral-domain optical coherence tomography. We correlated RNFLT with IOP parameters. RESULTS Mean IOP was similar between GS and POAG groups (15.6 ± 3.47 vs 15.6 ± 2.83 mmHg, p = 0.90) as was IOP peak at 6 AM (21.7 ± 3.85 vs 21.3 ± 3.80 mmHg, p = 0.68). Statistically significant negative correlations were found in POAG group between IOP at 6 AM and RNFLT in global (rs = -0.543; p < 0.001), inferior (rs = -0.540; p < 0.001), superior (rs = -0.405; p = 0.009), and nasal quadrants (rs = -0.561; p < 0.001). Negative correlations were also found between ∆IOP and RNFLT in global (rs = -0.591; p < 0.001), and all other sectors (p < 0.05). In GS IOP at 6 AM correlated only with inferior quadrant (rs = -0.307; p = 0.047). CONCLUSION IOP at 6 AM and ∆IOP had negative correlations with RNFLT quadrants in POAG. In GS this correlation occurred between IOP at 6 AM and inferior quadrant. These findings may indicate potential risk factors for glaucoma progression.
Collapse
Affiliation(s)
- Sebastião Cronemberger
- Visual Sciences Laboratory, Department of Ophthalmology and Otorhinolaryngology of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Artur W Veloso
- Visual Sciences Laboratory, Department of Ophthalmology and Otorhinolaryngology of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Minas Gerais Research Foundation (FAPEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Christy Veiga
- Visual Sciences Laboratory, Department of Ophthalmology and Otorhinolaryngology of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Scarpelli
- Visual Sciences Laboratory, Department of Ophthalmology and Otorhinolaryngology of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Yara C Sasso
- Visual Sciences Laboratory, Department of Ophthalmology and Otorhinolaryngology of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael V Merola
- Visual Sciences Laboratory, Department of Ophthalmology and Otorhinolaryngology of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Tylutki Z, Mendyk A, Polak S. Physiologically based pharmacokinetic-quantitative systems toxicology and safety (PBPK-QSTS) modeling approach applied to predict the variability of amitriptyline pharmacokinetics and cardiac safety in populations and in individuals. J Pharmacokinet Pharmacodyn 2018; 45:663-677. [PMID: 29943290 PMCID: PMC6182726 DOI: 10.1007/s10928-018-9597-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022]
Abstract
The physiologically based pharmacokinetic (PBPK) models allow for predictive assessment of variability in population of interest. One of the future application of PBPK modeling is in the field of precision dosing and personalized medicine. The aim of the study was to develop PBPK model for amitriptyline given orally, predict the variability of cardiac concentrations of amitriptyline and its main metabolite-nortriptyline in populations as well as individuals, and simulate the influence of those xenobiotics in therapeutic and supratherapeutic concentrations on human electrophysiology. The cardiac effect with regard to QT and RR interval lengths was assessed. The Emax model to describe the relationship between amitriptyline concentration and heart rate (RR) length was proposed. The developed PBPK model was used to mimic 29 clinical trials and 19 cases of amitriptyline intoxication. Three clinical trials and 18 cases were simulated with the use of PBPK-QSTS approach, confirming lack of cardiotoxic effect of amitriptyline in therapeutic doses and the increase in heart rate along with potential for arrhythmia development in case of amitriptyline overdose. The results of our study support the validity and feasibility of the PBPK-QSTS modeling development for personalized medicine.
Collapse
Affiliation(s)
- Zofia Tylutki
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688, Krakow, Poland.
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9 St, 30-688, Krakow, Poland
| | - Sebastian Polak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688, Krakow, Poland
- Certara-Simcyp, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
7
|
Patel N, Wisniowska B, Polak S. Virtual Thorough QT (TQT) Trial-Extrapolation of In Vitro Cardiac Safety Data to In Vivo Situation Using Multi-Scale Physiologically Based Ventricular Cell-wall Model Exemplified with Tolterodine and Fesoterodine. AAPS JOURNAL 2018; 20:83. [PMID: 29995258 DOI: 10.1208/s12248-018-0244-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022]
Abstract
QT interval prolongation typically assessed with dedicated clinical trials called thorough QT/QTc (TQT) studies is used as surrogate to identify the proarrhythmic risk of drugs albeit with criticism in terms of cost-effectiveness in establishing the actual risk of torsade de pointes (TdP). Quantitative systems toxicology and safety (QSTS) models have potential to quantitatively translate the in vitro cardiac safety data to clinical level including simulation of TQT trials. Virtual TQT simulations have been exemplified with use of two related drugs tolterodine and fesoterodine. The impact of bio-relevant concentration in plasma versus estimated heart tissue exposure on predictions was also assessed. Tolterodine and its therapeutically equipotent metabolite formed via CYP2D6 pathway, 5-HMT, inhibit multiple cardiac ion currents (IKr, INa, ICaL). The QSTS model was able to accurately simulate the QT prolongation at therapeutic and supra-therapeutic dose levels of tolterodine well within 95% confidence interval limits of observed data. The model was able to predict the QT prolongation difference between CYP2D6 extensive and poor metaboliser subject groups at both dose levels thus confirming the ability of the model to account for electrophysiologically active metabolite. The QSTS model was able to simulate the negligible QT prolongation observed with fesoterodine establishing that the 5-HMT does not prolong QT interval even though it is a blocker of hERG channel. With examples of TOL and FESO, we demonstrated the utility of the QSTS approaches to simulate virtual TQT trials, which in turn could complement and reduce the clinical studies or help optimise clinical trial designs.
Collapse
Affiliation(s)
- Nikunjkumar Patel
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK. .,Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| | - Barbara Wisniowska
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Sebastian Polak
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK.,Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
8
|
Wiśniowska B, Polak S. Drug-physiology interaction and its influence on the QT prolongation-mechanistic modeling study. J Pharmacokinet Pharmacodyn 2018; 45:483-490. [PMID: 29546612 DOI: 10.1007/s10928-018-9583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
The current study is an example of drug-disease interaction modeling where a drug induces a condition which can affect the pharmacodynamics of other concomitantly taken drugs. The electrophysiological effects of hypokaliemia and heart rate changes induced by the antiasthmatic drugs were simulated with the use of the cardiac safety simulator. Biophysically detailed model of the human cardiac physiology-ten Tusscher ventricular cardiomyocyte cell model-was employed to generate pseudo-ECG signals and QTc intervals for 44 patients from four clinical studies. Simulated and observed mean QTc values with standard deviation (SD) for each reported study point were compared and differences were analyzed with Student's t test (α = 0.05). The simulated results reflected the QTc interval changes measured in patients, as well as their clinically observed interindividual variability. The QTc interval changes were highly correlated with the change in plasma potassium both in clinical studies and in the simulations (Pearson's correlation coefficient > 0.55). The results suggest that the modeling and simulation approach could provide valuable quantitative insight into the cardiological effect of the potassium and heart rate changes caused by electrophysiologically inactive, non-cardiological drugs. This allows to simulate and predict the joint effect of several risk factors for QT prolongation, e.g., drug-dependent QT prolongation due to the ion channels inhibition and the current patient physiological conditions.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Str., 30-688, Krakow, Poland.
| | - Sebastian Polak
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Str., 30-688, Krakow, Poland.,Simcyp (Part of Certara), Sheffield, S2 4SU, UK
| |
Collapse
|
9
|
Patel N, Hatley O, Berg A, Romero K, Wisniowska B, Hanna D, Hermann D, Polak S. Towards Bridging Translational Gap in Cardiotoxicity Prediction: an Application of Progressive Cardiac Risk Assessment Strategy in TdP Risk Assessment of Moxifloxacin. AAPS JOURNAL 2018. [DOI: 10.1208/s12248-018-0199-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Polak S, Romero K, Berg A, Patel N, Jamei M, Hermann D, Hanna D. Quantitative approach for cardiac risk assessment and interpretation in tuberculosis drug development. J Pharmacokinet Pharmacodyn 2018. [PMID: 29520534 PMCID: PMC5953981 DOI: 10.1007/s10928-018-9580-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cardiotoxicity is among the top drug safety concerns, and is of specific interest in tuberculosis, where this is a known or potential adverse event of current and emerging treatment regimens. As there is a need for a tool, beyond the QT interval, to quantify cardiotoxicity early in drug development, an empirical decision tree based classifier was developed to predict the risk of Torsades de pointes (TdP). The cardiac risk algorithm was developed using pseudo-electrocardiogram (ECG) outputs derived from cardiac myocyte electromechanical model simulations of increasing concentrations of 96 reference compounds which represented a range of clinical TdP risk. The algorithm correctly classified 89% of reference compounds with moderate sensitivity and high specificity (71 and 96%, respectively) as well as 10 out of 12 external validation compounds and the anti-TB drugs moxifloxacin and bedaquiline. The cardiac risk algorithm is suitable to help inform early drug development decisions in TB and will evolve with the addition of emerging data.
Collapse
Affiliation(s)
- Sebastian Polak
- Certara-Simcyp, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK.,Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-217, Poland
| | - Klaus Romero
- Critical Path Institute, 1730 E. River Road, Tucson, AZ, 85705, USA.
| | - Alexander Berg
- Critical Path Institute, 1730 E. River Road, Tucson, AZ, 85705, USA
| | - Nikunjkumar Patel
- Certara-Simcyp, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Masoud Jamei
- Certara-Simcyp, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | | | - Debra Hanna
- Critical Path Institute, 1730 E. River Road, Tucson, AZ, 85705, USA
| |
Collapse
|
11
|
Patel N, Wiśniowska B, Jamei M, Polak S. Real Patient and its Virtual Twin: Application of Quantitative Systems Toxicology Modelling in the Cardiac Safety Assessment of Citalopram. AAPS JOURNAL 2017; 20:6. [PMID: 29181593 DOI: 10.1208/s12248-017-0155-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/16/2017] [Indexed: 11/30/2022]
Abstract
A quantitative systems toxicology (QST) model for citalopram was established to simulate, in silico, a 'virtual twin' of a real patient to predict the occurrence of cardiotoxic events previously reported in patients under various clinical conditions. The QST model considers the effects of citalopram and its most notable electrophysiologically active primary (desmethylcitalopram) and secondary (didesmethylcitalopram) metabolites, on cardiac electrophysiology. The in vitro cardiac ion channel current inhibition data was coupled with the biophysically detailed model of human cardiac electrophysiology to investigate the impact of (i) the inhibition of multiple ion currents (IKr, IKs, ICaL); (ii) the inclusion of metabolites in the QST model; and (iii) unbound or total plasma as the operating drug concentration, in predicting clinically observed QT prolongation. The inclusion of multiple ion channel current inhibition and metabolites in the simulation with unbound plasma citalopram concentration provided the lowest prediction error. The predictive performance of the model was verified with three additional therapeutic and supra-therapeutic drug exposure clinical cases. The results indicate that considering only the hERG ion channel inhibition of only the parent drug is potentially misleading, and the inclusion of active metabolite data and the influence of other ion channel currents should be considered to improve the prediction of potential cardiac toxicity. Mechanistic modelling can help bridge the gaps existing in the quantitative translation from preclinical cardiac safety assessment to clinical toxicology. Moreover, this study shows that the QST models, in combination with appropriate drug and systems parameters, can pave the way towards personalised safety assessment.
Collapse
Affiliation(s)
- Nikunjkumar Patel
- Simcyp Limited, a Certara Company, Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK.,Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Wiśniowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Masoud Jamei
- Simcyp Limited, a Certara Company, Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK
| | - Sebastian Polak
- Simcyp Limited, a Certara Company, Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK. .,Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
12
|
Wiśniowska B, Tylutki Z, Polak S. Humans Vary, So Cardiac Models Should Account for That Too! Front Physiol 2017; 8:700. [PMID: 28983251 PMCID: PMC5613127 DOI: 10.3389/fphys.2017.00700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022] Open
Abstract
The utilization of mathematical modeling and simulation in drug development encompasses multiple mathematical techniques and the location of a drug candidate in the development pipeline. Historically speaking they have been used to analyze experimental data (i.e., Hill equation) and clarify the involved physical and chemical processes (i.e., Fick laws and drug molecule diffusion). In recent years the advanced utilization of mathematical modeling has been an important part of the regulatory review process. Physiologically based pharmacokinetic (PBPK) models identify the need to conduct specific clinical studies, suggest specific study designs and propose appropriate labeling language. Their application allows the evaluation of the influence of intrinsic (e.g., age, gender, genetics, disease) and extrinsic [e.g., dosing schedule, drug-drug interactions (DDIs)] factors, alone or in combinations, on drug exposure and therefore provides accurate population assessment. A similar pathway has been taken for the assessment of drug safety with cardiac safety being one the most advanced examples. Mechanistic mathematical model-informed safety evaluation, with a focus on drug potential for causing arrhythmias, is now discussed as an element of the Comprehensive in vitro Proarrhythmia Assay. One of the pillars of this paradigm is the use of an in silico model of the adult human ventricular cardiomyocyte to integrate in vitro measured data. Existing examples (in vitro—in vivo extrapolation with the use of PBPK models) suggest that deterministic, epidemiological and clinical data based variability models can be merged with the mechanistic models describing human physiology. There are other methods available, based on the stochastic approach and on population of models generated by randomly assigning specific parameter values (ionic current conductance and kinetic) and further pruning. Both approaches are briefly characterized in this manuscript, in parallel with the drug-specific variability.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical CollegeKrakow, Poland
| | - Zofia Tylutki
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical CollegeKrakow, Poland
| | - Sebastian Polak
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical CollegeKrakow, Poland.,SimcypCertara, Sheffield, United Kingdom
| |
Collapse
|
13
|
Abstract
Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system–resetting strategies for improving chronic disease control and patient outcomes.
Collapse
Affiliation(s)
- Annabelle Ballesta
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Pasquale F Innominato
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Robert Dallmann
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - David A Rand
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Francis A Lévi
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| |
Collapse
|
14
|
Wiśniowska B, Tylutki Z, Polak S. Thorough QT (TQT) studies: concordance with torsadogenesis and an evolving cardiac safety testing paradigm. Drug Discov Today 2017; 22:1460-1465. [PMID: 28511997 DOI: 10.1016/j.drudis.2017.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/30/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023]
Abstract
Since 2005, when the International Conference on Harmonisation (ICH) E14 guideline was adopted, no drug has been withdrawn because of QTc prolongation or torsade de pointes arrhythmia. There are, however, costs associated with this success. In addition to the time and money invested, thorough QT (TQT) studies have limited the efficiency of the drug development pipeline. In this paper, we discuss the relevance of TQT trials as a tool for proarrhythmic risk prediction as a part of the debate regarding their usefulness.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Str., 30-688 Krakow, Poland.
| | - Zofia Tylutki
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Str., 30-688 Krakow, Poland
| | - Sebastian Polak
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Str., 30-688 Krakow, Poland; Simcyp (part of Certara), Sheffield S2 4SU, UK
| |
Collapse
|
15
|
Wiśniowska B, Polak S. Virtual Clinical Trial Toward Polytherapy Safety Assessment: Combination of Physiologically Based Pharmacokinetic/Pharmacodynamic-Based Modeling and Simulation Approach With Drug-Drug Interactions Involving Terfenadine as an Example. J Pharm Sci 2016; 105:3415-3424. [PMID: 27640752 DOI: 10.1016/j.xphs.2016.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
A Quantitative Systems Pharmacology approach was utilized to predict the cardiac consequences of drug-drug interaction (DDI) at the population level. The Simcyp in vitro-in vivo correlation and physiologically based pharmacokinetic platform was used to predict the pharmacokinetic profile of terfenadine following co-administration of the drug. Electrophysiological effects were simulated using the Cardiac Safety Simulator. The modulation of ion channel activity was dependent on the inhibitory potential of drugs on the main cardiac ion channels and a simulated free heart tissue concentration. ten Tusscher's human ventricular cardiomyocyte model was used to simulate the pseudo-ECG traces and further predict the pharmacodynamic consequences of DDI. Consistent with clinical observations, predicted plasma concentration profiles of terfenadine show considerable intra-subject variability with recorded Cmax values below 5 ng/mL for most virtual subjects. The pharmacokinetic and pharmacodynamic effects of inhibitors were predicted with reasonable accuracy. In all cases, a combination of the physiologically based pharmacokinetic and physiology-based pharmacodynamic models was able to differentiate between the terfenadine alone and terfenadine + inhibitor scenario. The range of QT prolongation was comparable in the clinical and virtual studies. The results indicate that mechanistic in vitro-in vivo correlation can be applied to predict the clinical effects of DDI even without comprehensive knowledge on all mechanisms contributing to the interaction.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9 Street, Kraków 30-688, Poland.
| | - Sebastian Polak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9 Street, Kraków 30-688, Poland; Simcyp (part of Certara), Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK
| |
Collapse
|
16
|
Glinka A, Polak S. QTc modification after risperidone administration – insight into the mechanism of action with use of the modeling and simulation at the population level approach. Toxicol Mech Methods 2015; 25:279-86. [DOI: 10.3109/15376516.2015.1025346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Klinck J, McNeill L, Di Angelantonio E, Menon D. Predictors and outcome impact of perioperative serum sodium changes in a high-risk population. Br J Anaesth 2015; 114:615-22. [DOI: 10.1093/bja/aeu409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
Gotta V, Cools F, van Ammel K, Gallacher DJ, Visser SAG, Sannajust F, Morissette P, Danhof M, van der Graaf PH. Sensitivity of pharmacokinetic-pharmacodynamic analysis for detecting small magnitudes of QTc prolongation in preclinical safety testing. J Pharmacol Toxicol Methods 2014; 72:1-10. [PMID: 25556117 DOI: 10.1016/j.vascn.2014.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Preclinical concentration-effect (pharmacokinetic-pharmacodynamic, PKPD) modeling has successfully quantified QT effects of several drugs known for significant QT prolongation. This study investigated its sensitivity for detecting small magnitudes of QT-prolongation in a typical preclinical cardiovascular (CV) safety study in the conscious telemetered dog (crossover study in 4-8 animals receiving a vehicle and three dose levels). Results were compared with conventional statistical analysis (analysis of covariance, ANCOVA). METHODS A PKPD model predicting individual QTc was first developed from vehicle arms of 28 typical CV studies and one positive control study (sotalol). The model quantified between-animal, inter-occasion and within-animal variability and described QTc over 24h as a function of circadian variation and drug concentration. This "true" model was used to repeatedly (n = 500) simulate studies with typical drug-induced QTc prolongation (∆QTc) of 1 to 12 ms at high-dose peak concentrations. Simulated studies were re-analyzed by both PKPD analysis (with varying complexity) and ANCOVA. Sensitivity (power) was calculated as the percentage of studies in which a significant (α = 0.05) drug effect was found. One simulation scenario did not include a concentration-effect relationship and served to investigate false-positive rates. Exposure-effect relationships were derived from both PKPD analysis (linear concentration-effect) and ANCOVA (linear trend test for dose) and compared. RESULTS PKPD analysis/ANCOVA had a sensitivity of 80% to detect the effects of 7/13 ms (n = 4), 5/10 ms (n = 6) and 4.5/8 ms (n = 8), respectively. The false-positive rate was much higher using ANCOVA (40%) compared to PKPD analysis (1%). Typical drug effects were more precisely predicted using estimated concentration-effect slopes (± 1.5-2.8 ms) than dose-effect slopes (± 3.3-3.7 ms). DISCUSSION Preclinical PKPD analysis can increase the confidence in the quantification of small QTc effects and potentially allow reducing the number of animals while maintaining the required study sensitivity. This underscores the value of PKPD modeling in preclinical safety testing.
Collapse
Affiliation(s)
- Verena Gotta
- Systems Pharmacology, Leiden Academic Center of Drug Research (LACDR), Leiden University, Leiden, The Netherlands.
| | - Frank Cools
- Global Safety Pharmacology, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.
| | - Karel van Ammel
- Global Safety Pharmacology, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.
| | - David J Gallacher
- Global Safety Pharmacology, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.
| | - Sandra A G Visser
- Quantitative Pharmacology and Pharmacometrics, Merck Research Laboratories, Merck & Co., Inc., Upper Gwynedd, PA, USA.
| | - Frederick Sannajust
- SALAR, Safety and Exploratory Pharmacology Department, Merck Research Laboratories, Merck & Co., Inc., West Point, PA, USA.
| | - Pierre Morissette
- SALAR, Safety and Exploratory Pharmacology Department, Merck Research Laboratories, Merck & Co., Inc., West Point, PA, USA.
| | - Meindert Danhof
- Systems Pharmacology, Leiden Academic Center of Drug Research (LACDR), Leiden University, Leiden, The Netherlands.
| | - Piet H van der Graaf
- Systems Pharmacology, Leiden Academic Center of Drug Research (LACDR), Leiden University, Leiden, The Netherlands.
| |
Collapse
|
19
|
Rodriguez B. In Silico Organ Modelling in Predicting Efficacy and Safety of New Medicines. HUMAN-BASED SYSTEMS FOR TRANSLATIONAL RESEARCH 2014. [DOI: 10.1039/9781782620136-00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The development of new medicines faces important challenges due to difficulties in the assessment of their efficacy and their safety in the targeted human population. In silico approaches through the use of mathematical modelling and computer simulations are increasingly being used to overcome some of the limitations of current experimental methods used in the development of new medicines. This chapter describes state-of-the-art in silico approaches for the evaluation of the safety and efficacy of medicines targeting important causes of mortality such as cardiovascular disease. Firstly, we describe the in silico multi-scale mathematical models and simulation techniques required to describe drug-induced effects on physiological systems such as the heart from the subcellular to the whole organ level. Then we illustrate the power of in silico approaches used to augment experimental and clinical investigations, by providing the framework to unravel multi-scale mechanisms underlying variability in the response to medicines and to focus on effects in human rather than animal models. We devote the last part of the chapter to discussing the process of validation of in silico models and simulations, which is key in building up their credibility.
Collapse
Affiliation(s)
- Blanca Rodriguez
- Department of Computer Science, University of Oxford Parks Road Oxford OX1 3QD UK
| |
Collapse
|
20
|
Mishra H, Polak S, Jamei M, Rostami-Hodjegan A. Interaction Between Domperidone and Ketoconazole: Toward Prediction of Consequent QTc Prolongation Using Purely In Vitro Information. CPT Pharmacometrics Syst Pharmacol 2014; 3:e130. [PMID: 25116274 PMCID: PMC4150924 DOI: 10.1038/psp.2014.26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/09/2014] [Indexed: 12/01/2022] Open
Abstract
We aimed to investigate the application of combined mechanistic pharmacokinetic (PK) and pharmacodynamic (PD) modeling and simulation in predicting the domperidone (DOM) triggered pseudo-electrocardiogram modification in the presence of a CYP3A inhibitor, ketoconazole (KETO), using in vitro-in vivo extrapolation. In vitro metabolic and inhibitory data were incorporated into physiologically based pharmacokinetic (PBPK) models within Simcyp to simulate time course of plasma DOM and KETO concentrations when administered alone or in combination with KETO (DOM+KETO). Simulated DOM concentrations in plasma were used to predict changes in gender-specific QTcF (Fridericia correction) intervals within the Cardiac Safety Simulator platform taking into consideration DOM, KETO, and DOM+KETO triggered inhibition of multiple ionic currents in population. Combination of in vitro-in vivo extrapolation, PBPK, and systems pharmacology of electric currents in the heart was able to predict the direction and magnitude of PK and PD changes under coadministration of the two drugs although some disparities were detected.
Collapse
Affiliation(s)
- H Mishra
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, UK
| | - S Polak
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, UK
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - M Jamei
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, UK
| | - A Rostami-Hodjegan
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, UK
- Manchester Pharmacy School, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Torres PJ. Periodic oscillations of a model for membrane permeability with fluctuating environmental conditions. J Math Biol 2014; 71:57-68. [PMID: 25017486 DOI: 10.1007/s00285-014-0815-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/25/2014] [Indexed: 10/25/2022]
Abstract
We perform an analytical study of the dynamics of a multi-solute model for water transport across a cell membrane under periodic fluctuations of the extracellular solute molalities. Under the presence of non-permeating intracellular solute, water volume experiences periodic oscillations if and only if the extracellular non-permeating solute molality is positive in the average. On the other hand, in the absence of non-permeating intracellular solute, a sufficient condition for the existence of an infinite number of periodic solutions of the model is provided. Such sufficient condition holds automatically in the case of only one permeating solute. The proofs are based on classical tools from the qualitative theory of differential equations, namely Brouwer degree, upper and lower solutions and comparison arguments.
Collapse
Affiliation(s)
- Pedro J Torres
- Departamento de Matemática Aplicada, Universidad de Granada, 18071 , Granada, Spain,
| |
Collapse
|
22
|
Fijorek K, Tanner FC, Stähli BE, Gielerak G, Krzesinski P, Uzieblo-Zyczkowska B, Smurzynski P, Stanczyk A, Stolarz-Skrzypek K, Kawecka-Jaszcz K, Jastrzebski M, Podolec M, Kopec G, Stanula B, Kocowska M, Tylutki Z, Polak S. Model of the distribution of diastolic left ventricular posterior wall thickness in healthy adults and its impact on the behavior of a string of virtual cardiomyocytes. J Cardiovasc Transl Res 2014; 7:507-17. [PMID: 24676501 PMCID: PMC4098050 DOI: 10.1007/s12265-014-9558-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/05/2014] [Indexed: 11/28/2022]
Abstract
Correlation of the thickness of the left ventricular posterior wall (LVPWd) with various parameters, including age, gender, weight and height, was investigated in this study using regression models. Multicenter derived database comprised over 4,000 healthy individuals. The developed models were further utilized in the in vitro-in vivo (IVIV) translation of the drug cardiac safety data with use of the mathematical model of human cardiomyocytes operating at the virtual healthy population level. LVPWd was assumed to be equivalent to the length of one-dimensional string of virtual cardiomyocyte cells which was presented, as other physiological factors, to be a parameter influencing the simulated pseudo-ECG (pseudoelectrocardiogram), QTcF and ∆QTcF, both native and modified by exemplar drug (disopyramide) after I Kr current disruption. Simulation results support positive correlation between the LVPWd and QTcF/∆QTc. Developed models allow more detailed description of the virtual population and thus inter-individual variability influence on the drug cardiac safety.
Collapse
Affiliation(s)
- Kamil Fijorek
- Department of Statistics, Cracow University of Economics, Krakow, Poland
| | - Felix C. Tanner
- Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland
| | - Barbara E. Stähli
- Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland
| | - Grzegorz Gielerak
- Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | - Pawel Krzesinski
- Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | | | - Pawel Smurzynski
- Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | - Adam Stanczyk
- Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | - Katarzyna Stolarz-Skrzypek
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Kalina Kawecka-Jaszcz
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Jastrzebski
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, University Hospital, Krakow, Krakow, Poland
| | - Mateusz Podolec
- Department of Coronary Artery Disease, Jagiellonian University Medical College at the John Paul II Hospital, Krakow, Poland
| | - Grzegorz Kopec
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College and Centre for Rare Cardiovascular Diseases at the John Paul II Hospital, Krakow, Poland
| | | | | | - Zofia Tylutki
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Sebastian Polak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|