1
|
Desai A, Loureiro ZY, DeSouza T, Yang Q, Solivan-Rivera J, Corvera S. cAMP driven UCP1 induction in human adipocytes requires ATGL-catalyzed lipolysis. Mol Metab 2024; 90:102051. [PMID: 39454826 DOI: 10.1016/j.molmet.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE The uncoupling protein 1 (UCP1) is induced in brown or "beige" adipocytes through catecholamine-induced cAMP signaling, which activates diverse transcription factors. UCP1 expression can also be enhanced by PPARγ agonists such as rosiglitazone (Rsg). However, it is unclear whether this upregulation results from de-novo differentiation of beige adipocytes from progenitor cells, or from the induction of UCP1 in pre-existing adipocytes. To explore this, we employed human adipocytes differentiated from progenitor cells and examined their acute response to Rsg, to the adenylate-cyclase activator forskolin (Fsk), or to both simultaneously. METHODS Adipocytes generated from primary human progenitor cells were differentiated without exposure to PPARγ agonists, and treated for 3, 6 or 78 h to Fsk, to Rsg, or to both simultaneously. Bulk RNASeq, RNAScope, RT-PCR, CRISPR-Cas9 mediated knockout, oxygen consumption and western blotting were used to assess cellular responses. RESULTS UCP1 mRNA expression was induced within 3 h of exposure to either Rsg or Fsk, indicating that Rsg's effect is independent on additional adipocyte differentiation. Although Rsg and Fsk induced distinct overall transcriptional responses, both induced genes associated with calcium metabolism, lipid droplet assembly, and mitochondrial remodeling, denoting core features of human adipocyte beiging. Unexpectedly, we found that Fsk-induced UCP1 expression was reduced by approximately 80% following CRISPR-Cas9-mediated knockout of PNPLA2, the gene encoding the triglyceride lipase ATGL. As anticipated, ATGL knockout suppressed lipolysis; however, the associated suppression of UCP1 induction indicates that maximal cAMP-mediated UCP1 induction requires products of ATGL-catalyzed lipolysis. Supporting this, we observed that the reduction in Fsk-stimulated UCP1 induction caused by ATGL knockout was reversed by Rsg, implying that the role of lipolysis in this process is to generate natural PPARγ agonists. CONCLUSIONS UCP1 transcription is known to be stimulated by transcription factors activated downstream of cAMP-dependent protein kinases. Here we demonstrate that UCP1 transcription can also be acutely induced through PPARγ-activation. Moreover, both pathways are activated in human adipocytes in response to cAMP, synergistically inducing UCP1 expression. The stimulation of PPARγ in response to cAMP may result from the production of natural PPARγ activating ligands through ATGL-mediated lipolysis.
Collapse
Affiliation(s)
- Anand Desai
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Zinger Yang Loureiro
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Qin Yang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Javier Solivan-Rivera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Meng Y, Li W, Hu C, Chen S, Li H, Bai F, Zheng L, Yuan Y, Fan Y, Zhou Y. Ginsenoside F1 administration promotes UCP1-dependent fat browning and ameliorates obesity-associated insulin resistance. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Kasahara Y, Tamamura S, Hiyama G, Takagi M, Nakamichi K, Doi Y, Semba K, Watanabe S, Ishikawa K. Tyrosine Kinase Inhibitor Profiling Using Multiple Forskolin-Responsive Reporter Cells. Int J Mol Sci 2023; 24:13863. [PMID: 37762164 PMCID: PMC10530646 DOI: 10.3390/ijms241813863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
We have developed a highly sensitive promoter trap vector system using transposons to generate reporter cells with high efficiency. Using an EGFP/luciferase reporter cell clone responsive to forskolin, which is thought to activate adenylate cyclase, isolated from human chronic myelogenous leukemia cell line K562, we found several compounds unexpectedly caused reporter responses. These included tyrosine kinase inhibitors such as dasatinib and cerdulatinib, which were seemingly unrelated to the forskolin-reactive pathway. To investigate whether any other clones of forskolin-responsive cells would show the same response, nine additional forskolin-responsive clones, each with a unique integration site, were generated and quantitatively evaluated by luciferase assay. The results showed that each clone represented different response patterns to the reactive compounds. Also, it became clear that each of the reactive compounds could be profiled as a unique pattern by the 10 reporter clones. When other TKIs, mainly bcr-abl inhibitors, were evaluated using a more focused set of five reporter clones, they also showed unique profiling. Among them, dasatinib and bosutinib, and imatinib and bafetinib showed homologous profiling. The tyrosine kinase inhibitors mentioned above are approved as anticancer agents, and the system could be used for similarity evaluation, efficacy prediction, etc., in the development of new anticancer agents.
Collapse
Affiliation(s)
- Yamato Kasahara
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (K.N.); (Y.D.); (K.S.)
| | - Sakura Tamamura
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan;
| | - Gen Hiyama
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (G.H.); (M.T.); (S.W.)
| | - Motoki Takagi
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (G.H.); (M.T.); (S.W.)
| | - Kazuya Nakamichi
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (K.N.); (Y.D.); (K.S.)
| | - Yuta Doi
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (K.N.); (Y.D.); (K.S.)
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (K.N.); (Y.D.); (K.S.)
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (G.H.); (M.T.); (S.W.)
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (G.H.); (M.T.); (S.W.)
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan;
| |
Collapse
|
4
|
Zhang R, Guo X, Liang C, Pei J, Bao P, Yin M, Wu F, Chu M, Yan P. Identification and Validation of Yak ( Bos grunniens) Frozen-Thawed Sperm Proteins Associated with Capacitation and the Acrosome Reaction. J Proteome Res 2022; 21:2754-2770. [PMID: 36251486 DOI: 10.1021/acs.jproteome.2c00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To achieve fertilization, mammalian spermatozoa must undergo capacitation and the acrosome reaction (AR) within the female reproductive tract. However, the effects of cryopreservation on sperm maturation and fertilizing potential have yet to be established. To gain insight into changes in protein levels within sperm cells prepared for use in the context of fertilization, a comprehensive quantitative proteomic profiling approach was used to analyze frozen-thawed Ashidan yak spermatozoa under three sequential conditions: density gradient centrifugation-based purification, incubation in a capacitation medium, and treatment with the calcium ionophore A23187 to facilitate AR induction. In total, 3280 proteins were detected in these yak sperm samples, of which 3074 were quantified, with 68 and 32 being significantly altered following sperm capacitation and AR induction. Differentially abundant capacitation-related proteins were enriched in the metabolism and PPAR signaling pathways, while differentially abundant AR-related proteins were enriched in the AMPK signaling pathway. These data confirmed a role for superoxide dismutase 1 (SOD1) as a regulator of sperm capacitation while also offering indirect evidence that heat shock protein 90 alpha (HSP90AA1) regulates the AR. Together, these findings offer a means whereby sperm fertility-related marker proteins can be effectively identified. Data are available via Proteome Xchange with identifier PXD035038.
Collapse
Affiliation(s)
- Renzheng Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Mancai Yin
- Yak Breeding and Extension Service Center in Qinghai Province, Xining 810000, China
| | - Fude Wu
- Yak Breeding and Extension Service Center in Qinghai Province, Xining 810000, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
5
|
The effect of TGFβ1 on thermogenic markers is dependent on the degree of adipocyte differentiation. Biosci Rep 2021; 40:223097. [PMID: 32352511 PMCID: PMC7225410 DOI: 10.1042/bsr20194262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/02/2022] Open
Abstract
Transforming growth factor β (TGFβ) a multifunctional cytokine is known to regulate cell proliferation, differentiation, migration and survival. Although there is variable expression of modulators of TGFβ action during differentiation, a differential effect on fat cell metabolism at the different stages of adipocyte differentiation was unclear. In the present study, 3T3L1 cells were used as an in vitro model to study the effect of TGFβ on adipogenic and thermogenic markers at various stages of preadipocyte to mature adipocyte differentiation. As in our earlier studies on the effect of TGFβ on CEBP’s, we used a standard differentiation mix, and one with the addition of rosiglitazone. RhTGFβ1 was added to undifferentiated adipocytes (preadipocytes) and to adipocytes at day 0 (commitment stage) as well as day 10 (terminal differentiation). Cellular responses in terms of Pref1, PPARγ, TLE3, PGC1α, PRDM16, UCP1 and UCP2 mRNA levels and selected protein products, were determined. Increases in PPARγ, PRDM16, UCP1 and UCP2 mRNA and decreases in Pref1 are good indicators of successful differentiation. The early addition of rhTGFβ1 during commitment stage decreased PPARγ, PRDM16, TLE3, UCP1 and UCP2 mRNA and decreased PRDM16 protein consistent with our earlier report on the inhibition of CEBP’s by TGFβ and CCN2. The addition of rhTGFβ1 to mature adipocyte at day 10 increased UCP1 mRNA and increased PRDM16 and UCP1 proteins. In the present study, our results suggest that TGFβ1 added late enhances the thermogenic potential of mature cells and causes 3T3L1 cells to differentiate to resemble brown or beige rather than white adipose tissue.
Collapse
|
6
|
Wojciechowicz T, Billert M, Dhandapani P, Szczepankiewicz D, Wasielewski O, Strowski MZ, Nowak KW, Skrzypski M. Neuropeptide B promotes proliferation and differentiation of rat brown primary preadipocytes. FEBS Open Bio 2021; 11:1153-1164. [PMID: 33629519 PMCID: PMC8016125 DOI: 10.1002/2211-5463.13128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
Neuropeptide B (NPB) is reported to regulate energy homeostasis and metabolism via the NPBWR1 and NPBWR2 receptors in various tissues. However, the molecular mechanisms triggered from their interaction are not well investigated in brown adipose tissue. In this study, we specifically analyzed the role of NPB in controlling brown adipogenesis in rat brown preadipocytes. We first detected the expression of NPBWR1 and NPB on mRNA and protein level in brown preadipocytes and observed that NPB increased viability and proliferation of preadipocytes. Moreover, NPB stimulated expression of adipogenic genes (Prdm16, Ucp1) and suppressed the expression of antiadipogenic preadipocyte factor 1 (Pref1) during the differentiation process. Altogether, this led to an increase in intracellular lipid accumulation during preadipocyte differentiation, coupled with an increase in adrenaline‐induced oxygen consumption mediated by NPB. Furthermore, Ucp1 expression stimulated by NPB was attenuated by blockade of p38 kinase. In summary, we conclude that NPB promotes proliferation and differentiation of rat brown preadipocytes via p38‐dependent mechanism and plays an important role in controlling brown adipose tissue formation.
Collapse
Affiliation(s)
- Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poland.,Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, Germany
| | - Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poland
| | - Priyavathi Dhandapani
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poland
| | - Dawid Szczepankiewicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poland
| | | | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, Germany.,Department of Internal Medicine-Gastroenterology & Oncology, Park-Klinik Weissensee, Berlin, Germany
| | - Krzysztof W Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poland
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poland
| |
Collapse
|
7
|
Wang Y, Wagner KM, Morisseau C, Hammock BD. Inhibition of the Soluble Epoxide Hydrolase as an Analgesic Strategy: A Review of Preclinical Evidence. J Pain Res 2021; 14:61-72. [PMID: 33488116 PMCID: PMC7814236 DOI: 10.2147/jpr.s241893] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a complicated condition which causes substantial physical, emotional, and financial impacts on individuals and society. However, due to high cost, lack of efficacy and safety problems, current treatments are insufficient. There is a clear unmet medical need for safe, nonaddictive and effective therapies in the management of pain. Epoxy-fatty acids (EpFAs), which are natural signaling molecules, play key roles in mediation of both inflammatory and neuropathic pain sensation. However, their molecular mechanisms of action remain largely unknown. Soluble epoxide hydrolase (sEH) rapidly converts EpFAs into less bioactive fatty acid diols in vivo; therefore, inhibition of sEH is an emerging therapeutic target to enhance the beneficial effect of natural EpFAs. In this review, we will discuss sEH inhibition as an analgesic strategy for pain management and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Karen M Wagner
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
8
|
Abscisic acid interplays with PPARγ receptors and ameliorates diabetes-induced cognitive deficits in rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:247-257. [PMID: 34046321 PMCID: PMC8140211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study intended to evaluate if central administration of abscisic acid (ABA) alone or in combination with GW9662, a peroxisome proliferator-activated receptor γ (PPAR-γ) antagonist, could modulate learning and memory as well as hippocampal synaptic plasticity in a rat model of streptozotocin (STZ)-induced diabetes. MATERIALS AND METHODS Intraperitoneal injection of STZ (65 mg/kg) was used to induce diabetes. Diabetic rats were than treated with intracerebroventricular (i.c.v.) administration of ABA (10, 15 and 20 µg/rat), GW9662 (3 µg/rat) or GW9662 (3 µg/rat) plus ABA (20 µg/rat). Animals' spatial and passive avoidance learning and memory performances were assessed by Morris water maze (MWM) and shuttle box tasks, respectively. Further, in vivo electrophysiological field recordings were assessed in the CA1 region. RESULTS STZ diabetic rats showed diminished learning and memory in both MWM and shuttle box tasks. The STZ-induced memory deficits were attenuated by central infusion of ABA (10 and 20 µg/rat). Besides, STZ injection impaired long-term potentiation induction in CA1 neurons that was attenuated by ABA at 20 μg/rat. Central administration of GW9662 (3 µg/rat) alone did not modify STZ-induced spatial and passive avoidance learning and memory performances of rats. Further, GW9662 prevented ABA capacity to restore learning and memory in behavioral and electrophysiology trials. CONCLUSION Altogether, ABA ameliorates cognitive deficits in rats via activation of PPAR-γ receptor in diabetic rats.
Collapse
|
9
|
Kotula-Balak M, Duliban M, Pawlicki P, Tuz R, Bilinska B, Płachno BJ, Arent ZJ, Krakowska I, Tarasiuk K. The meaning of non-classical estrogen receptors and peroxisome proliferator-activated receptor for boar Leydig cell of immature testis. Acta Histochem 2020; 122:151526. [PMID: 32094002 DOI: 10.1016/j.acthis.2020.151526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
Abstract
Communication in biological systems involves diverse-types of cell-cell interaction including cross-talk between receptors expressed by the target cells. Recently, novel sort of estrogen receptors (G protein - coupled estrogen receptor; GPER and estrogen-related receptor; ERR) that signal directly via estrogen binding and/or via mutual interaction-regulated estrogen signaling were reported in various organs including testis. Peroxisome proliferator - activated receptor (PPAR) is responsible for maintaining of lipid homeostasis that is critical for sex steroid production in the testis. Here, we investigated the role of interaction between GPER, ERRβ and PPARγ in steroidogenic Leydig cells of immature boar testis. Testicular fragments cultured ex vivo were treated with GPER or PPARγ antagonists. Then, cell ultrastructure, expression and localization of GPER, ERRβ, PPARγ together with the molecular receptor mechanism, through cyclic AMP and Raf/Ras/extracellular signal activated kinases (ERK), in the control of cholesterol concentration and estrogen production by Leydig cells were studied. In the ultrastructure of antagonist-treated Leydig cells, mitochondria were not branched and not bifurcated as they were found in control. Additionally, in PPARγ-blocked Leydig cells changes in the number of lipid droplets were revealed. Independent of used antagonist, western blot revealed decreased co-expression of GPER, ERRβ, PPARγ with exception of increased expression of ERRβ after PPARγ blockage. Immunohistochemistry confirmed presence of all receptors partially located in the nucleus or cytoplasm of Leydig cells of both control and treated testes. Changes in receptor expression, decreased cholesterol and increased estradiol tissue concentrations occurred through decreased cAMP level (with exception after GPER blockage) as well as Raf/Ras/ERK pathway expression. These all findings indicate that GPER-ERRβ-PPARγ interaction exists in immature boar testis and regulates Leydig cell function. Further detailed studies and considerations on GPER-ERRβ-PPARγ as possible diagnosis/therapy target in disturbances of testis steroidogenic function are needed.
Collapse
Affiliation(s)
- M Kotula-Balak
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - M Duliban
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - R Tuz
- Department of Swine and Small Animal Breeding, Institute of Animal Sciences, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - B J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387 Krakow, Poland
| | - Z J Arent
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - I Krakowska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - K Tarasiuk
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
10
|
Verma N, Perie L, Mueller E. The mRNA levels of heat shock factor 1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3. J Biol Chem 2020; 295:5984-5994. [PMID: 32184357 DOI: 10.1074/jbc.ra119.012072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Heat shock factor 1 (HSF1) regulates cellular adaptation to challenges such as heat shock and oxidative and proteotoxic stresses. We have recently reported a previously unappreciated role for HSF1 in the regulation of energy metabolism in fat tissues; however, whether HSF1 is differentially expressed in adipose depots and how its levels are regulated in fat tissues remain unclear. Here, we show that HSF1 levels are higher in brown and subcutaneous fat tissues than in those in the visceral depot and that HSF1 is more abundant in differentiated, thermogenic adipocytes. Gene expression experiments indicated that HSF1 is transcriptionally regulated in fat by agents that modulate cAMP levels, by cold exposure, and by pharmacological stimulation of β-adrenergic signaling. An in silico promoter analysis helped identify a putative response element for activating transcription factor 3 (ATF3) at -258 to -250 base pairs from the HSF1 transcriptional start site, and electrophoretic mobility shift and ChIP assays confirmed ATF3 binding to this sequence. Furthermore, functional assays disclosed that ATF3 is necessary and sufficient for HSF1 regulation. Detailed gene expression analysis revealed that ATF3 is one of the most highly induced ATFs in thermogenic tissues of mice exposed to cold temperatures or treated with the β-adrenergic receptor agonist CL316,243 and that its expression is induced by modulators of cAMP levels in isolated adipocytes. To the best of our knowledge, our results show for the first time that HSF1 is transcriptionally controlled by ATF3 in response to classic stimuli that promote heat generation in thermogenic tissues.
Collapse
Affiliation(s)
- Narendra Verma
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University, New York, New York 10016
| | - Luce Perie
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University, New York, New York 10016
| | - Elisabetta Mueller
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University, New York, New York 10016.
| |
Collapse
|
11
|
Zhou J, Liu Z, Zhang L, Hu X, Wang Z, Ni H, Wang Y, Qin J. Activation of β2-Adrenergic Receptor Promotes Growth and Angiogenesis in Breast Cancer by Down-regulating PPARγ. Cancer Res Treat 2020; 52:830-847. [PMID: 32138468 PMCID: PMC7373858 DOI: 10.4143/crt.2019.510] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Chronic stress and related hormones are key in cancer progression. Peroxisome proliferator-activated receptor γ (PPARγ) and its agonists was reported that inducing anti-tumor effect. However, the function of PPARγ in pro-tumorigenic effects induced by chronic stress in breast cancer remains unknown. Herein, we have characterized a novel role of PPARγ and vascular endothelial growth factor (VEGF)/fibroblast growth factor 2 (FGF2) signals in breast cancer promoted by chronic stress. Materials and Methods We performed experiments in vivo and in vitro and used bioinformatics data to evaluate the therapeutic potential of PPARγ in breast cancer promoted by stress. Results Chronic stress significantly inhibited the PPARγ expression and promoted breast cancer in vivo. VEGF/FGF2-mediated angiogenesis increased in the chronic stress group compared to the control group. PPARγ agonist pioglitazone (PioG) injection offset the pro-tumorigenic effect of chronic stress. Moreover, specific β2-adrenergic receptor (β2R) antagonist ICI11-8551 inhibited the effect of chronic stress. In vitro, norepinephrine (NE) treatment had a similar tendency to chronic stress. The effect of NE was mediated by the β2R/adenylate cyclase signaling pathway and suppressed by PioG. PPARγ suppressed VEGF/FGF2 through reactive oxygen species inhibition. Bioinformatics data confirmed that therewas a lowPPARγ expression in breast invasive carcinoma. Lower PPARγ was associated with a significantly worse survival. Conclusion β2R activation induced by chronic stress and related hormones promotes growth and VEGF/FGF2-mediated angiogenesis of breast cancer by down-regulating PPARγ. Our findings hint that β receptor and PPARγ as two target molecules and the novel role for their agonists or antagonists as clinical medicine in breast cancer therapy
Collapse
Affiliation(s)
- Jing Zhou
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Zhanzhao Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Lingjing Zhang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Xiao Hu
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Zhihua Wang
- Department of Pediatrics, Tianjin Nankai Hospital, Tianjin, China
| | - Hong Ni
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Junfang Qin
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Jia P, Wu X, Pan T, Xu S, Hu J, Ding X. Uncoupling protein 1 inhibits mitochondrial reactive oxygen species generation and alleviates acute kidney injury. EBioMedicine 2019; 49:331-340. [PMID: 31678001 PMCID: PMC6945195 DOI: 10.1016/j.ebiom.2019.10.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Uncoupling protein 1 (UCP1) is predominantly found in brown adipose tissue mitochondria, and mediates energy dissipation to generate heat rather than ATP via functional mitochondrial uncoupling. However, little is known about its expression and function in kidney. METHODS We carried out a mRNA microarray analysis in mice kidneys with ischemia reperfusion (IR) injury. The most dramatically downregulated gene UCP1 after IR was identified, and its role in generation of mitochondrial reactive oxygen species (ROS) and oxidative stress injury was assessed both in vitro and in vivo. Genetic deletion of UCP1 was used to investigate the effects of UCP1 on ischemia or cisplatin-indued acute kidney injury (AKI) in mice. FINDINGS UCP1 was located in renal tubular epithelial cells in kidney and downregulated in a time-dependent manner during renal IR. Deletion of UCP1 increased oxidative stress in kidneys and aggravated ischemia or cisplatin induced AKI in mice.Viral-based overexpression of UCP1 reduced mitochondrial ROS generation and apoptosis in hypoxia-treated tubular epithelial cells. Furthermore, UCP1 expression was regulated by peroxisome proliferator-activator receptor (PPAR) γ in kidneys during renal IR. Overexpression of PPAR-γ resembled UCP1-overexpression phenotype in vitro. Treatment with PPAR-γ agonist could induce UCP1 upregulation and provide protective effect against renal IR injury in UCP1+/+mice, but not in UCP1-/-mice. INTERPRETATION UCP1 protects against AKI likely by suppressing oxidative stress, and activation of UCP1 represents a potential therapeutic strategy for AKI. FUND: National Natural Science Foundation of China grants, Science and Technology Commission of Shanghai.
Collapse
Affiliation(s)
- Ping Jia
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Xiaoli Wu
- Traditional Chinese Medicine Pharmacology Laboratory, Longhua Hospital, Shanghai University of Tranditional Chinese Medicine, Shanghai, China
| | - Tianyi Pan
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sujuan Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiachang Hu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Kidney and Dialysis Institute of Shanghai, Shanghai, China; Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China; Hemodialysis quality control center of Shanghai, Shanghai, China.
| |
Collapse
|
13
|
Perie L, Verma N, Xu L, Ma X, Mueller E. Transcriptional Regulation of ZNF638 in Thermogenic Cells by the cAMP Response Element Binding Protein in Male Mice. J Endocr Soc 2019; 3:2326-2340. [PMID: 31745529 PMCID: PMC6855216 DOI: 10.1210/js.2019-00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/27/2019] [Indexed: 11/19/2022] Open
Abstract
Zinc finger factors are implicated in a variety of cellular processes, including adipose tissue differentiation and thermogenesis. We have previously demonstrated that zinc finger protein 638 (ZNF638) is a transcriptional coactivator acting as an early regulator of adipogenesis in vitro. In this study, we show, to our knowledge for the first time, that, in vivo, ZNF638 abounds selectively in mature brown and subcutaneous fat tissues and in fully differentiated thermogenic adipocytes. Furthermore, gene expression studies revealed that ZNF638 is upregulated by cAMP modulators in vitro and by cold exposure and by pharmacological stimulation of β-adrenergic signaling in vivo. In silico analysis of the upstream regulatory region of the ZNF638 gene identified two putative cAMP response elements within 500 bp of the ZNF638 transcription start site. Detailed molecular analysis involving EMSA and chromatin immunoprecipitation assays demonstrated that cAMP response element binding protein (CREB) binds to these cAMP response element regions of the ZNF638 promoter, and functional studies revealed that CREB is necessary and sufficient to regulate the levels of ZNF638 transcripts. Taken together, these results demonstrate that ZNF638 is selectively expressed in mature thermogenic adipocytes and tissues and that its induction in response to classic stimuli that promote heat generation is mediated via CREB signaling, pointing to a possible novel role of ZNF638 in brown and beige fat tissues.
Collapse
Affiliation(s)
- Luce Perie
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University, New York, New York
| | - Narendra Verma
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University, New York, New York
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Elisabetta Mueller
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University, New York, New York
| |
Collapse
|
14
|
Jash S, Banerjee S, Lee MJ, Farmer SR, Puri V. CIDEA Transcriptionally Regulates UCP1 for Britening and Thermogenesis in Human Fat Cells. iScience 2019; 20:73-89. [PMID: 31563853 PMCID: PMC6817690 DOI: 10.1016/j.isci.2019.09.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/02/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
Our study identifies a transcriptional role of cell death-inducing DNA fragmentation factor-like effector A (CIDEA), a lipid-droplet-associated protein, whereby it regulates human adipocyte britening/beiging with consequences for the regulation of energy expenditure. The comprehensive transcriptome analysis revealed CIDEA's control over thermogenic function in brite/beige human adipocytes. In the absence of CIDEA, achieved by the modified dual-RNA-based CRISPR-Cas9nD10A system, adipocytes lost their britening capability, which was recovered upon CIDEA re-expression. Uncoupling protein 1 (UCP1), the most upregulated gene in brite human adipocytes, was suppressed in CIDEA knockout (KO) primary human adipocytes. Mechanistically, during induced britening, CIDEA shuttled from lipid droplets to the nucleus via an unusual nuclear bipartite signal in a concentration-dependent manner. In the nucleus, it specifically inhibited LXRα repression of UCP1 enhancer activity and strengthened PPARγ binding to UCP1 enhancer, hence driving UCP1 transcription. Overall, our study defines the role of CIDEA in increasing thermogenesis in human adipocytes.
Collapse
Affiliation(s)
- Sukanta Jash
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sayani Banerjee
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Mi-Jeong Lee
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
15
|
Xiong Z, Xiao W, Bao L, Xiong W, Xiao H, Qu Y, Yuan C, Ruan H, Cao Q, Wang K, Song Z, Wang C, Hu W, Ru Z, Tong J, Cheng G, Xu T, Meng X, Shi J, Chen Z, Yang H, Chen K, Zhang X. Tumor Cell "Slimming" Regulates Tumor Progression through PLCL1/UCP1-Mediated Lipid Browning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801862. [PMID: 31131187 PMCID: PMC6523368 DOI: 10.1002/advs.201801862] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/14/2019] [Indexed: 05/15/2023]
Abstract
Emerging evidence has highlighted the important role of abnormal lipid accumulation in cancer development and progression, but the mechanism for this phenomenon remains unclear. Here, it is demonstrated that phospholipase C-like 1/uncoupling protein 1 (PLCL1)/(UCP1)-mediated lipid browning promotes tumor cell "slimming" and represses tumor progression. By screening three independent lipid metabolism-related gene sets in clear cell renal cell carcinoma (ccRCC) and analyzing the TCGA database, it is found that PLCL1 predicted a poor prognosis and was downregulated in ccRCC. Restoration of PLCL1 expression in ccRCC cells significantly represses tumor progression and reduces abnormal lipid accumulation. Additionally, a phenomenon called tumor cell "slimming," in which tumor cell volume is reduced and lipid droplets are transformed into tiny pieces, is observed. Further studies show that PLCL1 promotes tumor cell "slimming" and represses tumor progression through UCP1-mediated lipid browning, which consumes lipids without producing ATP energy. Mechanistic investigations demonstrate that PLCL1 improves the protein stability of UCP1 by influencing the level of protein ubiquitination. Collectively, the data indicate that lipid browning mediated by PLCL1/UCP1 promotes tumor cell "slimming" and consumes abnormal lipid accumulation, which represses the progression of ccRCC. Tumor cell "slimming" offers a promising new concept and treatment modality against tumor development and progression.
Collapse
|
16
|
Small molecules for fat combustion: targeting obesity. Acta Pharm Sin B 2019; 9:220-236. [PMID: 30976490 PMCID: PMC6438825 DOI: 10.1016/j.apsb.2018.09.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/01/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity is increasing in an alarming rate worldwide, which causes higher risks of some diseases, such as type 2 diabetes, cardiovascular diseases, and cancer. Current therapeutic approaches, either pancreatic lipase inhibitors or appetite suppressors, are generally of limited effectiveness. Brown adipose tissue (BAT) and beige cells dissipate fatty acids as heat to maintain body temperature, termed non-shivering thermogenesis; the activity and mass of BAT and beige cells are negatively correlated with overweight and obesity. The existence of BAT and beige cells in human adults provides an effective weight reduction therapy, a process likely to be amenable to pharmacological intervention. Herein, we combed through the physiology of thermogenesis and the role of BAT and beige cells in combating with obesity. We summarized the thermogenic regulators identified in the past decades, targeting G protein-coupled receptors, transient receptor potential channels, nuclear receptors and miscellaneous pathways. Advances in clinical trials were also presented. The main purpose of this review is to provide a comprehensive and up-to-date knowledge from the biological importance of thermogenesis in energy homeostasis to the representative thermogenic regulators for treating obesity. Thermogenic regulators might have a large potential for further investigations to be developed as lead compounds in fighting obesity.
Collapse
Key Words
- AKT, protein kinase B
- ALDH9, aldehyde dehydrogenase 9
- AMPK, AMP-activated protein kinase
- ATP, adenosine triphosphate
- BA, bile acids
- BAT, brown adipose tissue
- BMP8b, bone morphogenetic protein 8b
- Beige cells
- Brown adipose tissue
- C/EBPα, CCAAT/enhancer binding protein α
- CLA, cis-12 conjugated linoleic acid
- CRABP-II, cellular RA binding protein type II
- CRE, cAMP response element
- Cidea, cell death-inducing DNA fragmentation factor α-like effector A
- Dio2, iodothyronine deiodinase type 2
- ERE, estrogen response element
- ERs, estrogen receptors
- FAS, fatty acid synthase
- FGF21, fibroblast growth factor 21
- GPCRs, G protein-coupled receptors
- HFD, high fat diet
- LXR, liver X receptors
- MAPK, mitogen-activated protein kinase
- OXPHOS, oxidative phosphorylation
- Obesity
- PDEs, phosphodiesterases
- PET-CT, positron emission tomography combined with computed tomography
- PGC-1α, peroxisome proliferator-activated receptor γ coactivator 1-α
- PKA, protein kinase A
- PPARs, peroxisome proliferator-activated receptors
- PPREs, peroxisome proliferator response elements
- PRDM16, PR domain containing 16
- PTP1B, protein-tyrosine phosphatase 1B
- PXR, pregnane X receptor
- RA, retinoic acid
- RAR, RA receptor
- RARE, RA response element
- RMR, resting metabolic rate
- RXR, retinoid X receptor
- SIRT1, silent mating type information regulation 2 homolog 1
- SNS, sympathetic nervous system
- TFAM, mitochondrial transcription factor A
- TMEM26, transmembrane protein 26
- TRPs, transient receptor potential cation channels
- Thermogenesis
- UCP1, uncoupling protein 1
- Uncoupling protein 1
- VDR, vitamin D receptor
- VDRE, VDR response elements
- WAT, white adipose tissue
- cAMP, cyclic adenosine monophosphate
- cGMP, cyclic guanosine monophosphate
- β3-AR, β3-adrenergic receptor
Collapse
|
17
|
Yuliana A, Daijo A, Jheng HF, Kwon J, Nomura W, Takahashi H, Ara T, Kawada T, Goto T. Endoplasmic Reticulum Stress Impaired Uncoupling Protein 1 Expression via the Suppression of Peroxisome Proliferator-Activated Receptor γ Binding Activity in Mice Beige Adipocytes. Int J Mol Sci 2019; 20:ijms20020274. [PMID: 30641938 PMCID: PMC6359291 DOI: 10.3390/ijms20020274] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is critical in maintaining metabolic regulation. Once it is disrupted due to accumulated unfolded proteins, ER homeostasis is restored via activation of the unfolded protein response (UPR); hence, the UPR affects diverse physiological processes. However, how ER stress influences adipocyte functions is not well known. In this study, we investigated the effect of ER stress in thermogenic capacity of mice beige adipocytes. Here, we show that the expression of uncoupling protein 1 (Ucp1) involved in thermoregulation is severely suppressed under ER stress conditions (afflicted by tunicamycin) in inguinal white adipose tissue (IWAT) both in vitro and in vivo. Further investigation showed that extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were both activated after ER stress stimulation and regulated the mRNA levels of Ucp1 and peroxisome proliferator-activated receptor γ (Pparγ), which is known as a Ucp1 transcriptional activator, in vitro and ex vivo. We also found that Pparγ protein was significantly degraded, reducing its recruitment to the Ucp1 enhancer, thereby downregulating Ucp1 expression. Additionally, only JNK inhibition, but not ERK, rescued the Pparγ protein. These findings provide novel insights into the regulatory effect of ER stress on Ucp1 expression via Pparγ suppression in beige adipocytes.
Collapse
Affiliation(s)
- Ana Yuliana
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Asumi Daijo
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Jungin Kwon
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Takeshi Ara
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
18
|
Yuliana A, Jheng HF, Kawarasaki S, Nomura W, Takahashi H, Ara T, Kawada T, Goto T. β-adrenergic Receptor Stimulation Revealed a Novel Regulatory Pathway via Suppressing Histone Deacetylase 3 to Induce Uncoupling Protein 1 Expression in Mice Beige Adipocyte. Int J Mol Sci 2018; 19:ijms19082436. [PMID: 30126161 PMCID: PMC6121552 DOI: 10.3390/ijms19082436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Browning of adipose tissue has been prescribed as a potential way to treat obesity, marked by the upregulation of uncoupling protein 1 (Ucp1). Several reports have suggested that histone deacetylase (HDAC) might regulate Ucp1 by remodelling chromatin structure, although the mechanism remains unclear. Herein, we investigate the effect of β-adrenergic receptor (β-AR) activation on the chromatin state of beige adipocyte. β-AR-stimulated Ucp1 expression via cold (in vivo) and isoproterenol (in vitro) resulted in acetylation of histone activation mark H3K27. H3K27 acetylation was also seen within Ucp1 promoter upon isoproterenol addition, favouring open chromatin for Ucp1 transcriptional activation. This result was found to be associated with the downregulation of class I HDAC mRNA, particularly Hdac3 and Hdac8. Further investigation showed that although HDAC8 activity decreased, Ucp1 expression was not altered when HDAC8 was activated or inhibited. In contrast, HDAC3 mRNA and protein levels were simultaneously downregulated upon isoproterenol addition, resulting in reduced recruitment of HDAC3 to the Ucp1 enhancer region, causing an increased H3K27 acetylation for Ucp1 upregulation. The importance of HDAC3 inhibition was confirmed through the enhanced Ucp1 expression when the cells were treated with HDAC3 inhibitor. This study highlights the novel mechanism of HDAC3-regulated Ucp1 expression during β-AR stimulation.
Collapse
Affiliation(s)
- Ana Yuliana
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Satoko Kawarasaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Takeshi Ara
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
19
|
An Additive Effect of Promoting Thermogenic Gene Expression in Mice Adipose-Derived Stromal Vascular Cells by Combination of Rosiglitazone and CL316,243. Int J Mol Sci 2017; 18:ijms18051002. [PMID: 28481288 PMCID: PMC5454915 DOI: 10.3390/ijms18051002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
It is well-documented that CL316,243 (a β3 agonist) or rosiglitazone (a PPARγ agonist) can induce white adipocyte populations to brown-like adipocytes, thus increasing energy consumption and combating obesity. However, whether there is a combined effect remains unknown. In the present study, stromal vascular cells of inguinal white adipose tissue (iWAT-SVCs for short) from mice were cultured and induced into browning by CL316,243, rosiglitazone, or both. Results showed that a combination of CL316,243 and rosiglitazone significantly upregulated the expression of the core thermogenic gene Ucp1 as well as genes related with mitochondrial function (Cidea, Cox5b, Cox7a1, Cox8b, and Cycs), compared with the treatment of CL316,243 or rosiglitazone alone. Moreover, co-treatment with rosiglitazone could reverse the downregulation of Adiponectin resulting from CL316,243 stimuli alone. Taken together, a combination of rosiglitazone and CL316,243 can produce an additive effect of promoting thermogenic gene expression and an improvement of insulin sensitivity in mouse iWAT-SVCs.
Collapse
|
20
|
de França SA, dos Santos MP, Przygodda F, Garófalo MAR, Kettelhut IC, Magalhães DA, Bezerra KS, Colodel EM, Flouris AD, Andrade CMB, Kawashita NH. A Low-Protein, High-Carbohydrate Diet Stimulates Thermogenesis in the Brown Adipose Tissue of Rats via ATF-2. Lipids 2016; 51:303-10. [PMID: 26781764 DOI: 10.1007/s11745-016-4119-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/09/2015] [Indexed: 01/19/2023]
Abstract
The aim of this study was to evaluate thermogenesis in the interscapular brown adipose tissue (IBAT) of rats submitted to low-protein, high-carbohydrate (LPHC) diet and the involvement of adrenergic stimulation in this process. Male rats (~100 g) were submitted to LPHC (6%-protein; 74%-carbohydrate) or control (C; 17%-protein; 63%-carbohydrate) isocaloric diets for 15 days. The IBAT temperature was evaluated in the rats before and after the administration of noradrenaline (NA) (20 µg 100 g b w(-1) min(-1)). The expression levels of uncoupling protein 1 (UCP1) and other proteins involved in the regulation of UCP1 expression were determined by Western blot (Student's t test, P ≤ 0.05). The LPHC diet promoted a 1.1 °C increase in the basal temperature of IBAT when compared with the basal temperature in the IBAT of the C group. NA administration promoted a 0.3 °C increase in basal temperature in the IBAT of the C rats and a 0.5 °C increase in the IBAT of the LPHC group. The level of UCP1 increased 60% in the IBAT of LPHC-fed rats, and among the proteins involved in its expression, such as β3-AR and α1-AR, there was a 40% increase in the levels of p38-MAPK and a 30% decrease in CREB when compared to the C rats. The higher sympathetic flux to IBAT, which is a consequence of the administration of the LPHC diet to rats, activates thermogenesis and increases the expression of UCP1 in the tissue. Our results suggest that the increase in UCP1 content may occur via p38 MAPK and ATF2.
Collapse
Affiliation(s)
- Suélem A de França
- Department of Chemistry, Biochemistry Laboratory, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Maísa P dos Santos
- Department of Chemistry, Biochemistry Laboratory, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Franciele Przygodda
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Antonieta R Garófalo
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isis C Kettelhut
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Diego A Magalhães
- Department of Chemistry, Biochemistry Laboratory, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Kalinne S Bezerra
- Department of Veterinary Science, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Edson M Colodel
- Department of Veterinary Science, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Cláudia M B Andrade
- Department of Chemistry, Biochemistry Laboratory, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Nair H Kawashita
- Department of Chemistry, Biochemistry Laboratory, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
21
|
Morimoto-Kobayashi Y, Ohara K, Takahashi C, Kitao S, Wang G, Taniguchi Y, Katayama M, Nagai K. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity. PLoS One 2015; 10:e0131042. [PMID: 26098641 PMCID: PMC4476742 DOI: 10.1371/journal.pone.0131042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 05/29/2015] [Indexed: 02/03/2023] Open
Abstract
Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or beverages to counteract the accumulation of body fat.
Collapse
Affiliation(s)
- Yumie Morimoto-Kobayashi
- Research Laboratories for Health Science & Food Technologies, KIRIN Company, Ltd., Yokohama, Kanagawa, Japan
- * E-mail:
| | - Kazuaki Ohara
- Research Laboratories for Health Science & Food Technologies, KIRIN Company, Ltd., Yokohama, Kanagawa, Japan
| | - Chika Takahashi
- Research Laboratories for Health Science & Food Technologies, KIRIN Company, Ltd., Yokohama, Kanagawa, Japan
| | - Sayoko Kitao
- Research Laboratories for Health Science & Food Technologies, KIRIN Company, Ltd., Yokohama, Kanagawa, Japan
| | - Guanying Wang
- Research Laboratories for Health Science & Food Technologies, KIRIN Company, Ltd., Yokohama, Kanagawa, Japan
| | - Yoshimasa Taniguchi
- Research Laboratories for Health Science & Food Technologies, KIRIN Company, Ltd., Yokohama, Kanagawa, Japan
| | - Mikio Katayama
- Research Laboratories for Health Science & Food Technologies, KIRIN Company, Ltd., Yokohama, Kanagawa, Japan
| | | |
Collapse
|
22
|
Thakran S, Zhang Q, Morales-Tirado V, Steinle JJ. Pioglitazone restores IGFBP-3 levels through DNA PK in retinal endothelial cells cultured in hyperglycemic conditions. Invest Ophthalmol Vis Sci 2014; 56:177-84. [PMID: 25525174 DOI: 10.1167/iovs.14-15550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Previously, we reported that pioglitazone prevented insulin resistance and cell death in type 2 diabetic retina by reducing TNFα and suppressor of cytokine signaling 3 (SOCS3) levels. Numerous reports suggest prominent vasoprotective effects of insulin growth factor binding protein-3 (IGFBP-3) in diabetic retinopathy. We hypothesized that pioglitazone protects against retinal cell apoptosis by regulating IGFBP-3 levels, in addition to reducing TNFα. The current study explored potential IGFBP-3 regulatory pathways by pioglitazone in retinal endothelial cells cultured in high glucose. METHODS Primary human retinal endothelial cells (REC) were grown in normal (5 mM) and high glucose (25 mM) and treated with pioglitazone for 24 hours. Cell lysates were processed for Western blotting and ELISA analysis to evaluate IGFBP-3, TNFα, and cleaved caspase 3 protein levels. RESULTS Our results show that treatment with pioglitazone restored the high glucose-induced decrease in IGFBP-3 levels. This regulation was independent of TNFα actions, as reducing TNFα levels with siRNA did not prevent pioglitazone from increasing IGFBP-3 levels. Pioglitazone required protein kinase A (PKA) and DNA-dependent protein kinase (DNA PK) activity to regulate IGFBP-3, as specific inhibitors for each protein prevented pioglitazone-mediated normalization of IGFBP-3 in high glucose. Insulin growth factor binding protein-3 activity was increased and apoptosis decreased by pioglitazone, which was eliminated when serine site 156 of IGFBP-3 was mutated suggesting a key role of this phosphorylation site in pioglitazone actions. CONCLUSIONS Our findings suggest that pioglitazone mediates regulation of IGFBP-3 via activation of PKA/DNA PK pathway in hyperglycemic retinal endothelial cells.
Collapse
Affiliation(s)
- Shalini Thakran
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Vanessa Morales-Tirado
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Jena J Steinle
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|