1
|
Zhang D, Zhang Y, Pan J, Cao J, Sun X, Li X, Zhang L, Qin C. Degradation of NLRP3 by p62-dependent-autophagy improves cognitive function in Alzheimer's disease by maintaining the phagocytic function of microglia. CNS Neurosci Ther 2023; 29:2826-2842. [PMID: 37072933 PMCID: PMC10493665 DOI: 10.1111/cns.14219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Activation of the NLRP3 inflammasome promotes microglia to secrete inflammatory cytokines and induce pyroptosis, leading to impaired phagocytic and clearance functions of microglia in Alzheimer's disease (AD). This study found that the autophagy-associated protein p62 interacts with NLRP3, which is the rate-limiting protein of the NLRP3 inflammasome. Thus, we aimed to prove that the degradation of NLRP3 occurs through the autophagy-lysosome pathway (ALP) and also demonstrate its effects on the function of microglia and pathological changes in AD. METHODS The 5XFAD/NLRP3-KO mouse model was established to study the effect of NLRP3 reduction on AD. Behavioral experiments were conducted to assess the cognitive function of the mice. In addition, immunohistochemistry was used to evaluate the deposition of Aβ plaques and morphological changes in microglia. BV2 cells treated with lipopolysaccharide (LPS) followed by Aβ1-42 oligomers were used as in vitro AD inflammation models and transfected with lentivirus to regulate the expression of the target protein. The pro-inflammatory status and function of BV2 cells were detected by flow cytometry and immunofluorescence (IF). Co-immunoprecipitation, mass spectrometry, IF, Western blot (WB), quantitative real-time PCR, and RNA-seq analysis were used to elucidate the mechanisms of molecular regulation. RESULTS Cognitive function was improved in the 5XFAD/NLRP3-KO mouse model by reducing the pro-inflammatory response of microglia and maintaining the phagocytic and clearance function of microglia to the deposited Aβ plaque. The pro-inflammatory function and pyroptosis of microglia were regulated by NLRP3 expression. Ubiquitinated NLRP3 can be recognized by p62 and degraded by ALP, slowing down the proinflammatory function and pyroptosis of microglia. The expression of autophagy pathway-related proteins such as LC3B/A, p62 was increased in the AD model in vitro. CONCLUSIONS P62 recognizes and binds to ubiquitin-modified NLRP3. It plays a vital role in regulating the inflammatory response by participating in ALP-associated NLRP3 protein degradation, which improves cognitive function in AD by reducing the pro-inflammatory status and pyroptosis of microglia, thus maintaining its phagocytic function.
Collapse
Affiliation(s)
- Dongyuan Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational center of Technology Innovation for animal modelChangping National laboratory (CPNL)Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC)BeijingChina
| | - Yu Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational center of Technology Innovation for animal modelChangping National laboratory (CPNL)Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC)BeijingChina
| | - Jirong Pan
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational center of Technology Innovation for animal modelChangping National laboratory (CPNL)Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC)BeijingChina
| | - Jingjing Cao
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational center of Technology Innovation for animal modelChangping National laboratory (CPNL)Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC)BeijingChina
| | - Xiuping Sun
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational center of Technology Innovation for animal modelChangping National laboratory (CPNL)Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC)BeijingChina
| | - Xianglei Li
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational center of Technology Innovation for animal modelChangping National laboratory (CPNL)Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC)BeijingChina
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational center of Technology Innovation for animal modelChangping National laboratory (CPNL)Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC)BeijingChina
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational center of Technology Innovation for animal modelChangping National laboratory (CPNL)Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC)BeijingChina
| |
Collapse
|
2
|
Lin SY, Ma J, An JX, Qian XY, Wang Y, Cope DK, Williams JP. Ozone Inhibits APP/Aβ Production and Improves Cognition in an APP/PS1 Transgenic Mouse Model. Neuroscience 2019; 418:110-121. [PMID: 31349006 DOI: 10.1016/j.neuroscience.2019.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder without effective treatment. Accumulating evidence demonstrates the production and deposition of amyloid-β peptides (Aβ) in the pathological mechanism of this disease. In our study, we investigated the effect of an ozone intraperitoneal injection on AD pathology in APP/PS1 transgenic mouse model. The male mice (5-months-old) received either ozone intraperitoneal injection (at 30 μg/ml or 50 μg/ml) or abdominocentesis administration daily for 25 days, and they were evaluated in the Morris water maze and the open field test for improvements in spatial learning-memory and working memory and anxious. Prefrontal cortex and hippocampus amyloid-β precursor protein (APP), along with other relevant biomarkers for AD, were measured through ELISA, western blot and immunohistochemistry. Results showed that ozone ameliorated the behavioral and pathological deterioration of APP/PS1 transgenic mice, and reduced the level of APP, which supports the therapeutic potential of administration of ozone in APP/PS1 mice.
Collapse
Affiliation(s)
- Si-Yu Lin
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - Jun Ma
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - Jian-Xiong An
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China.
| | - Xiao-Yan Qian
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - Yong Wang
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - Doris K Cope
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - John P Williams
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
3
|
AnkG hemizygous mice present cognitive impairment and elevated anxiety/depressive-like traits associated with decreased expression of GABA receptors and postsynaptic density protein. Exp Brain Res 2017; 235:3375-3390. [PMID: 28821923 DOI: 10.1007/s00221-017-5056-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
Recent genome-wide association studies (GWAS) of patient populations and genetic linkage assessments have demonstrated that the ankyrin-G (AnkG) gene is involved in neuropsychiatric disorders, including bipolar disorder, schizophrenia, and Alzheimer's disease, but it remains unclear how the genetic variants of AnkG contribute to neuropsychiatric disorders. Here, we generated AnkG hemizygous mice using the gene trapping approach. Homozygous AnkG was embryonically lethal. Western blotting and real-time polymerase chain reaction (qPCR) assessments of wild type (WT) and AnkG +/- mutant mice demonstrated a 50% reduction of ANKG levels, at the gene and protein levels, in AnkG hemizygous mice. In behavioral tests, AnkG hemizygous mice exhibited elevated anxiety- and depression-like traits, as well as cognitive impairment. Moreover, the expression levels of cognitive-related proteins (including metabotropic glutamate receptor subtype-1, brain-derived neurotrophic factor, postsynaptic density-95, GABA-B receptor, and GABA-A receptor alpha-1) were significantly decreased (P < 0.05), suggesting a possible role for AnkG in cognition. It is possible that the loss of AnkG in the brain disrupts the excitation/inhibition balance of neurotransmitters, hindering the synaptic plasticity of neurons, and consequently leading to abnormal behavioral symptoms. Therefore, AnkG possibly contributes to neuroprotection and normal brain function, and may constitute a new target for treating neuropsychiatric diseases, especially cognitive dysfunction.
Collapse
|
4
|
Yao ZG, Hua F, Zhang HZ, Li YY, Qin YJ. Olfactory dysfunction in the APP/PS1 transgenic mouse model of Alzheimer's disease: Morphological evaluations from the nose to the brain. Neuropathology 2017. [PMID: 28643854 DOI: 10.1111/neup.12391] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Olfactory dysfunction is among the signs of Alzheimer's disease (AD) and cognitive impairment. It has been demonstrated Aβ was associated with olfactory impairment observed in both transgenic mice and in AD patients. In this study, we evaluated amyloid deposition in the olfactory circuit of APP/PS1 transgenic mouse model of AD, which showed olfactory dysfunction in olfactory behavior tests. We found amyloid depositions were widely distributed in the whole olfactory circuit. Moreover, we think these amyloid depositions contribute to neuronal atrophy, dendritic abnormalities, synapse loss and axonal degeneration. Therefore, there was a correlation between olfactory deficits and amyloid deposition. Our findings provide initial insights into the pathological basis of AD-related olfactory dysfunction.
Collapse
Affiliation(s)
- Zhi-Gang Yao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Fang Hua
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hao-Zhuang Zhang
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yan-Yan Li
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ye-Jun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
5
|
Zuo F, Xiong F, Wang X, Li X, Wang R, Ge W, Bao X. Intrastriatal Transplantation of Human Neural Stem Cells Restores the Impaired Subventricular Zone in Parkinsonian Mice. Stem Cells 2017; 35:1519-1531. [PMID: 28328168 DOI: 10.1002/stem.2616] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 02/17/2017] [Accepted: 02/26/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Fuxing Zuo
- Department of Neurosurgery; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Feng Xiong
- State Key Laboratory of Medical Molecular Biology & Department of Immunology; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; Beijing China
| | - Xia Wang
- State Key Laboratory of Medical Molecular Biology & Department of Immunology; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; Beijing China
| | - Xueyuan Li
- Department of Neurosurgery; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Renzhi Wang
- Department of Neurosurgery; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of Immunology; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; Beijing China
| | - Xinjie Bao
- Department of Neurosurgery; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| |
Collapse
|
6
|
Li X, Zhu H, Sun X, Zuo F, Lei J, Wang Z, Bao X, Wang R. Human Neural Stem Cell Transplantation Rescues Cognitive Defects in APP/PS1 Model of Alzheimer's Disease by Enhancing Neuronal Connectivity and Metabolic Activity. Front Aging Neurosci 2016; 8:282. [PMID: 27932977 PMCID: PMC5120101 DOI: 10.3389/fnagi.2016.00282] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD), the most frequent type of dementia, is featured by Aβ pathology, neural degeneration and cognitive decline. To date, there is no cure for this disease. Neural stem cell (NSC) transplantation provides new promise for treating AD. Many studies report that intra-hippocampal transplantation of murine NSCs improved cognition in rodents with AD by alleviating neurodegeneration via neuronal complement or replacement. However, few reports examined the potential of human NSC transplantation for AD. In this study, we implanted human brain-derived NSCs (hNSCs) into bilateral hippocampus of an amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (Tg) mouse model of AD to test the effects of hNSC transplantation on Alzheimer’s behavior and neuropathology. Six weeks later, transplanted hNSCs engrafted into the brains of AD mice, migrated dispersedly in broad brain regions, and some of them differentiated into neural cell types of central nervous system (CNS). The hNSC transplantation restored the recognition, learning and memory deficits but not anxiety tasks in AD mice. Although Aβ plaques were not significantly reduced, the neuronal, synaptic and nerve fiber density was significantly increased in the frontal cortex and hippocampus of hNSC-treated AD mice, suggesting of improved neuronal connectivity in AD brains after hNSC transplantation. Ultrastructural analysis confirmed that synapses and nerve fibers maintained relatively well-structured shapes in these mice. Furthermore, in vivo magnetic resonance spectroscopy (MRS) showed that hNSC-treated mice had notably increased levels of N-acetylaspartate (NAA) and Glu in the frontal cortex and hippocampus, suggesting that neuronal metabolic activity was improved in AD brains after hNSC transplantation. These results suggest that transplanted hNSCs rescued Alzheimer’s cognition by enhancing neuronal connectivity and metabolic activity through a compensation mechanism in APP/PS1 mice. This study provides preclinical evidence that hNSC transplantation can be a possible and feasible strategy for treating patients with AD.
Collapse
Affiliation(s)
- Xueyuan Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Hua Zhu
- Department of Pathology, Comparative Medical Center, Peking Union Medical College and Institute of Laboratory Animal Science, Chinese Academy of Medical Science Beijing, China
| | - Xicai Sun
- Center for Stem Cell Biology and Regenerative Medicine, Center for Life Sciences, School of Medicine, Tsinghua University Beijing, China
| | - Fuxing Zuo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Jianfeng Lei
- Center for Medical Experiments and Testing, Capital Medical University Beijing, China
| | - Zhanjing Wang
- Center for Stem Cell Biology and Regenerative Medicine, Center for Life Sciences, School of Medicine, Tsinghua University Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| |
Collapse
|
7
|
Song N, Zhang L, Chen W, Zhu H, Deng W, Han Y, Guo J, Qin C. Cyanidin 3- O -β-glucopyranoside activates peroxisome proliferator-activated receptor-γ and alleviates cognitive impairment in the APP swe /PS1 ΔE9 mouse model. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1786-800. [DOI: 10.1016/j.bbadis.2016.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/04/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022]
|
8
|
Yao ZG, Jing HY, Wang DM, Lv BB, Li JM, Liu FF, Fan H, Sun XC, Qin YJ, Zhao MQ. Valproic acid ameliorates olfactory dysfunction in APP/PS1 transgenic mice of Alzheimer's disease: Ameliorations from the olfactory epithelium to the olfactory bulb. Pharmacol Biochem Behav 2016; 144:53-9. [PMID: 26948859 DOI: 10.1016/j.pbb.2016.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 11/29/2022]
Abstract
Olfactory dysfunction is a common and early symptom of many neurodegenerative diseases, particularly of Alzheimer's disease (AD) and mild cognitive impairment, pointing to the progression to dementia. Recent studies have revealed that valproic acid (VPA) has neuroprotective effects in rodent models of AD. In this study, we investigated the effects of VPA on olfactory dysfunction of APP/PS1 double transgenic mouse models of AD. After continuous treatment with a 100mg/kg daily dose of VPA for 3 months, APP/PS1 mice showed improved olfactory performances. In agreement with the behavioral findings, VPA treatment reduced amyloid β (Aβ) burden in the olfactory epithelium (OE) of transgenic mice. And, VPA increased epithelial thickness of the olfactory mucosa through decreased cell apoptosis and increased cell proliferation. In the olfactory bulb (OB), VPA administration also reduced senile plaques and levels of soluble and insoluble Aβ42 peptides. Besides, VPA promoted the increase of mitral cells and decrease of neurofilament immunostaining. In hence, VPA treatment completely improved the olfactory performances and prevented degenerative changes of the OE and OB. Our study raises the possibility of AD diagnosis by OE biopsy. Moreover, VPA may provide a novel therapeutic strategy for the treatment of olfactory dysfunction in AD patients.
Collapse
Affiliation(s)
- Zhi-Gang Yao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, China
| | - Hai-Yan Jing
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, China
| | - Dong-Mei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Building 6, Anhui Jianxi District, Luoyang 471003, China
| | - Bei-Bei Lv
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, China
| | - Jia-Mei Li
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, China
| | - Feng-Feng Liu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, China
| | - Hui Fan
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, China
| | - Xi-Chao Sun
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, China
| | - Ye-Jun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, China
| | - Miao-Qing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, China
| |
Collapse
|
9
|
Yao ZG, Liang L, Liu Y, Zhang L, Zhu H, Huang L, Qin C. Valproate improves memory deficits in an Alzheimer's disease mouse model: investigation of possible mechanisms of action. Cell Mol Neurobiol 2014; 34:805-12. [PMID: 24939432 DOI: 10.1007/s10571-013-0012-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is a very common progressive neurodegenerative disorder affecting the learning and memory abilities in the brain. Key findings from recent studies of epigenetic mechanisms of memory suggest chromatin remodeling disorders via histone hypoacetylation of the lysine residue contribute to the cognitive impairment in AD. Therefore, the deinhibition of histone acetylation induced by histone deacetylases (HDACs) inhibitors contributes to recovery of learning and memory. We show here that the antiepileptic drug sodium valproate (VPA) potently enhanced long-term recognition memory and spatial learning and memory in AD transgenic mice. Possible mechanisms showed VPA could significantly elevate histone acetylation through HDACs activity inhibition and increase plasticity-associated gene expression within the hippocampi of mice. Our study suggests that VPA, serving as a HDACs inhibitor, can be considered as a potential pharmaceutical agent for the improvement of cognitive function in AD.
Collapse
Affiliation(s)
- Zhi-Gang Yao
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Han H, Du W, Zhou B, Zhang W, Xu G, Niu R, Sun Z. Effects of chronic fluoride exposure on object recognition memory and mRNA expression of SNARE complex in hippocampus of male mice. Biol Trace Elem Res 2014; 158:58-64. [PMID: 24488208 DOI: 10.1007/s12011-014-9889-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
This study aimed to investigate the effects of long-term fluoride exposure on object recognition memory and mRNA expression of soluble N-ethylmaleimidesensitive fusion protein attachment protein receptors (SNARE) complex (synaptosome-associated protein of 25 kDa (SNAP-25), vesicle-associated membrane protein 2 (VAMP-2), and syntaxin 1A) in the hippocampus of male mice. Sixty sexually matured male Kunming mice were randomly divided into four groups: control group (given distilled water), low F group (25 mg/L NaF, corresponding to 11 mg/L F(-)), medium F group (50 mg/L NaF, corresponding to 22 mg/L F(-)), and high F group (100 mg/L NaF, corresponding to 45 mg/L F(-)). After 180 days, the spontaneous locomotor behavior and object recognition memory were detected by open field test and novel object recognition (NOR) test. Results showed that compared with the control group, frequency in each zone, total distance, and line crosses were significantly increased in low F and medium F groups, suggesting fluoride enhanced excitement of mice, while there were no marked changes in high F group. Twenty-four hours after training, a deficit of long-term memory (LTM) occurred only in high F group (P < 0.05), but there was no significant change of short-term memory (STM) 1.5 h later. The mRNA expression levels of SNAP-25, VAMP-2, and syntaxin 1A were detected by real-time quantitative RT-PCR, which revealed that the mRNA expression of VAMP-2 was significantly increased in medium F and high F groups (P < 0.01). Taken together, these results indicated that long-term fluoride administration can enhance the excitement of male mice, impair recognition memory, and upregulate VAMP-2 mRNA expression, which are involved in the adverse effects of fluoride on the object recognition memory of nervous system.
Collapse
Affiliation(s)
- Haijun Han
- Shanxi Key Laboratory of Environmental Medicine, Shanxi Agricultural University, Taigu, Shanxi, China,
| | | | | | | | | | | | | |
Collapse
|