1
|
Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, Hess DC, Baban B, Vale FL, Dhandapani KM, Vaibhav K. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochem Int 2021; 150:105192. [PMID: 34560175 PMCID: PMC8542401 DOI: 10.1016/j.neuint.2021.105192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan P Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
2
|
Patabendige A, Singh A, Jenkins S, Sen J, Chen R. Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke. Int J Mol Sci 2021; 22:4280. [PMID: 33924191 PMCID: PMC8074612 DOI: 10.3390/ijms22084280] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Transient or permanent loss of tissue perfusion due to ischaemic stroke can lead to damage to the neurovasculature, and disrupt brain homeostasis, causing long-term motor and cognitive deficits. Despite promising pre-clinical studies, clinically approved neuroprotective therapies are lacking. Most studies have focused on neurons while ignoring the important roles of other cells of the neurovascular unit, such as astrocytes and pericytes. Astrocytes are important for the development and maintenance of the blood-brain barrier, brain homeostasis, structural support, control of cerebral blood flow and secretion of neuroprotective factors. Emerging data suggest that astrocyte activation exerts both beneficial and detrimental effects following ischaemic stroke. Activated astrocytes provide neuroprotection and contribute to neurorestoration, but also secrete inflammatory modulators, leading to aggravation of the ischaemic lesion. Astrocytes are more resistant than other cell types to stroke pathology, and exert a regulative effect in response to ischaemia. These roles of astrocytes following ischaemic stroke remain incompletely understood, though they represent an appealing target for neurovascular protection following stroke. In this review, we summarise the astrocytic contributions to neurovascular damage and repair following ischaemic stroke, and explore mechanisms of neuroprotection that promote revascularisation and neurorestoration, which may be targeted for developing novel therapies for ischaemic stroke.
Collapse
Affiliation(s)
- Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2321, Australia;
- Priority Research Centre for Stroke and Brain Injury, and Priority Research Centre for Brain & Mental Health, University of Newcastle, Callaghan, NSW 2321, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Institute of Infection & Global Health, University of Liverpool, Liverpool L7 3EA, UK
| | - Ayesha Singh
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| | - Stuart Jenkins
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (S.J.); (J.S.)
- Neural Tissue Engineering: Keele (NTEK), Keele University, Staffordshire ST5 5BG, UK
| | - Jon Sen
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (S.J.); (J.S.)
- Clinical Informatics and Neurosurgery Fellow, The Cleveland Clinic, 33 Grosvenor Square, London SW1X 7HY, UK
| | - Ruoli Chen
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
3
|
Park E, Gim J, Kim DK, Kim CS, Chun HS. Protective Effects of Alpha-Lipoic Acid on Glutamate-Induced Cytotoxicity in C6 Glioma Cells. Biol Pharm Bull 2019; 42:94-102. [PMID: 30606992 DOI: 10.1248/bpb.b18-00603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate-mediated cytotoxicity has been implicated in the pathogenesis of neurological diseases, including Parkinson's disease, Alzheimer's disease, and stroke. In this study, we investigated the protective effects of alpha-lipoic acid (ALA), a naturally occurring thiol antioxidant, on glutamate-induced cytotoxicity in cultured C6 astroglial cells. Exposure to high-dose glutamate (10 mM) caused oxidative stress and mitochondrial dysfunction through the elevation of reactive oxygen species, depletion of glutathione, and loss of the mitochondrial membrane potential (ΔΨm). Pretreatment with ALA (200 µM), however, significantly inhibited the glutamate-induced oxidative stress and mitochondrial dysfunction. ALA pretreatment dose-dependently suppressed glutamate-induced apoptotic events including altered nuclear morphology and activation of caspase-3. In addition, ALA significantly attenuated glutamate-induced endoplasmic reticulum (ER) stress markers; namely, glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), protein kinase regulated by RNA (PKR)-like ER-associated kinase (PERK), eukaryotic translation initiation factor 2 alpha (eIF2α), inositol-requiring enzyme 1 (IRE1), CCAAT/enhancer binding protein homologous protein (CHOP), and caspase-12. We confirmed that CHOP and caspase-12 are key mediators of glutamate-induced ER stress. Furthermore, exposure of the cells to a caspase-12-specific inhibitor and CHOP small interfering RNAs (siRNAs) led to restoration of the ΔΨm that was damaged by glutamate treatment. These results suggest that ALA can effectively suppress oxidative stress, mitochondrial dysfunction, and ER stress in astroglial cells.
Collapse
Affiliation(s)
- Euteum Park
- Department of Biomedical Science, Chosun University
| | - Jungsoo Gim
- Department of Biomedical Science, Chosun University
| | - Do Kyung Kim
- Department of Oral Physiology, College of Dentistry, Chosun University
| | - Chun-Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University
| | | |
Collapse
|
4
|
Paradells-Navarro S, Benlloch-Navarro MS, Almansa Frias MI, Garcia-Esparza MA, Broccoli V, Miranda M, Soria JM. Neuroprotection of Brain Cells by Lipoic Acid Treatment after Cellular Stress. ACS Chem Neurosci 2017; 8:569-577. [PMID: 27935686 DOI: 10.1021/acschemneuro.6b00306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have previously observed that in vivo lipoic acid (LA) treatment induced a protective effect onto primary cortical neurons after brain injury. In an effort to better understand LA action mechanism in the brain, in the present study, we stressed brain cells in vitro and ex vivo and then analyzed by inmmunocytochemistry and biochemical assays, the changes induced by LA on cell survival and on the concentration of oxidative stress markers, such as glutathione (GSH), oxidized glutathione (GSSG), and malondialdehyde (MDA). The stressors used were lipopolysaccharide (LPS), dopamine, and l-buthionine-S,R-sulfoximine (BSO). Our results showed that LA decreased cell death and increased GSH/GSSG ratio in cells stressed by LPS + dopamine, suggesting that the mechanism underlying LA action is regeneration of GSSG to GSH. When cells were stressed by BSO, LA diminished cell death and decreased GSH/GSSG ratio. In this case, it could be concluded that, due to the low GSH basal levels, GSSG reduction is not possible and therefore it might be thought that cell death prevention might be mediated through other mechanisms. Finally, we induced chemical oxidative damage in brain homogenate. After LA treatment, GSH and GSH/GSSG ratio increased and MDA concentration decreased, demonstrating again that LA was not able to increase de novo GSH synthesis but is able to increase GSSG conversion to GSH.
Collapse
|
5
|
Rocamonde B, Paradells S, Garcia Esparza MA, Vives MS, Sauro S, Ramos CM, Pradas MM, Soria JM. Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury. Brain Inj 2016; 30:208-16. [PMID: 26745450 DOI: 10.3109/02699052.2015.1091505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PRIMARY OBJECTIVE The aim of this study was to investigate the reparative potential of a polymeric scaffold designed for brain tissue repair in combination with lipoic acid. RESEARCH DESIGN Histological, cytological and structural analysis of a combined treatment after a brain cryo-injury model in rats. METHODS AND PROCEDURES Adult Wistar rats were subjected to cryogenic brain injury. A channelled-porous scaffold of ethyl acrylate and hydroxyethylacrylate, p(EA-co-HEA) was grafted into cerebral penumbra alone or combined with intraperitoneal LA administration. Histological and cytological evaluation was performed after 15 and 60 days and structural magnetic resonance (MRI) assessment was performed at 2 and 6 months after the surgery. MAIN OUTCOMES AND RESULTS The scaffold was suitable for the establishment of different cellular types. The results obtained suggest that this strategy promotes blood vessels formation, decreased microglial response and neuron migration, particularly when LA was administrated. CONCLUSIONS These evidences demonstrated that the combination of a channelled polymer scaffold with LA administration may represent a potential treatment for neural tissue repair after brain injury.
Collapse
Affiliation(s)
- Brenda Rocamonde
- a Facultad Ciencias de la Salud, Universidad CEU-Cardenal Herrera , Valencia , Spain
| | - Sara Paradells
- a Facultad Ciencias de la Salud, Universidad CEU-Cardenal Herrera , Valencia , Spain
| | | | - Mavi Sánchez Vives
- b Institut D'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS , Barcelona , Spain
| | - Salvatore Sauro
- a Facultad Ciencias de la Salud, Universidad CEU-Cardenal Herrera , Valencia , Spain
| | - Cristina Martínez Ramos
- c Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia , Valencia , Spain
| | - Manuel Monleón Pradas
- c Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia , Valencia , Spain
| | - José Miguel Soria
- a Facultad Ciencias de la Salud, Universidad CEU-Cardenal Herrera , Valencia , Spain.,d Instituto de Ciencias Biomédicas, Universidad CEU-Cardenal Herrera , Moncada , Valencia , Spain
| |
Collapse
|
6
|
Lucke-Wold BP, Naser ZJ, Logsdon AF, Turner RC, Smith KE, Robson MJ, Bailes JE, Lee JM, Rosen CL, Huber JD. Amelioration of nicotinamide adenine dinucleotide phosphate-oxidase mediated stress reduces cell death after blast-induced traumatic brain injury. Transl Res 2015; 166:509-528.e1. [PMID: 26414010 DOI: 10.1016/j.trsl.2015.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/29/2015] [Accepted: 08/12/2015] [Indexed: 02/08/2023]
Abstract
A total of 1.7 million traumatic brain injuries (TBIs) occur each year in the United States, but available pharmacologic options for the treatment of acute neurotrauma are limited. Oxidative stress is an important secondary mechanism of injury that can lead to neuronal apoptosis and subsequent behavioral changes. Using a clinically relevant and validated rodent blast model, we investigated how nicotinamide adenine dinucleotide phosphate oxidase (Nox) expression and associated oxidative stress contribute to cellular apoptosis after single and repeat blast injuries. Nox4 forms a complex with p22phox after injury, forming free radicals at neuronal membranes. Using immunohistochemical-staining methods, we found a visible increase in Nox4 after single blast injury in Sprague Dawley rats. Interestingly, Nox4 was also increased in postmortem human samples obtained from athletes diagnosed with chronic traumatic encephalopathy. Nox4 activity correlated with an increase in superoxide formation. Alpha-lipoic acid, an oxidative stress inhibitor, prevented the development of superoxide acutely and increased antiapoptotic markers B-cell lymphoma 2 (t = 3.079, P < 0.05) and heme oxygenase 1 (t = 8.169, P < 0.001) after single blast. Subacutely, alpha-lipoic acid treatment reduced proapoptotic markers Bax (t = 4.483, P < 0.05), caspase 12 (t = 6.157, P < 0.001), and caspase 3 (t = 4.573, P < 0.01) after repetitive blast, and reduced tau hyperphosphorylation indicated by decreased CP-13 and paired helical filament staining. Alpha-lipoic acid ameliorated impulsive-like behavior 7 days after repetitive blast injury (t = 3.573, P < 0.05) compared with blast exposed animals without treatment. TBI can cause debilitating symptoms and psychiatric disorders. Oxidative stress is an ideal target for neuropharmacologic intervention, and alpha-lipoic acid warrants further investigation as a therapeutic for prevention of chronic neurodegeneration.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WVa; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa
| | - Zachary J Naser
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WVa; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa; Department of Medicine, Professional Studies in Health Sciences, Drexel University College of Medicine, Philadelphia, PA
| | - Aric F Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa; Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WVa
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WVa; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa
| | - Kelly E Smith
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa; Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WVa
| | - Matthew J Robson
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WVa; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tenn
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Ill
| | - John M Lee
- Department of Pathology, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Ill
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WVa; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa
| | - Jason D Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa; Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WVa.
| |
Collapse
|
7
|
Santos CL, Bobermin LD, Souza DG, Bellaver B, Bellaver G, Arús BA, Souza DO, Gonçalves CA, Quincozes-Santos A. Lipoic acid and N-acetylcysteine prevent ammonia-induced inflammatory response in C6 astroglial cells: The putative role of ERK and HO1 signaling pathways. Toxicol In Vitro 2015; 29:1350-7. [PMID: 26043815 DOI: 10.1016/j.tiv.2015.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/03/2015] [Accepted: 05/30/2015] [Indexed: 02/05/2023]
Abstract
Hyperammonemia induces significant changes in the central nervous system (CNS) in direct association with astroglial functions, such as oxidative damage, glutamatergic excitotoxicity, and impaired glutamine synthetase (GS) activity and pro-inflammatory cytokine release. Classically, lipoic acid (LA) and N-acetylcysteine (NAC) exhibit antioxidant and anti-inflammatory activities by increasing glutathione (GSH) biosynthesis and decreasing pro-inflammatory mediator levels in glial cells. Thus, we evaluated the protective effects of LA and NAC against ammonia cytotoxicity in C6 astroglial cells. Ammonia decreased GSH levels and increased cytokine release and NFκB transcriptional activation. LA and NAC prevented these effects by the modulation of ERK and HO1 pathways. Taken together, these observations show that LA and NAC prevent the ammonia-induced inflammatory response.
Collapse
Affiliation(s)
- Camila Leite Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Guerini Souza
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Bellaver
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Bellaver
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bernardo Assein Arús
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Bobermin LD, Wartchow KM, Flores MP, Leite MC, Quincozes-Santos A, Gonçalves CA. Ammonia-induced oxidative damage in neurons is prevented by resveratrol and lipoic acid with participation of heme oxygenase 1. Neurotoxicology 2015; 49:28-35. [PMID: 26003724 DOI: 10.1016/j.neuro.2015.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/29/2022]
Abstract
Ammonia is a metabolite that, at high concentrations, is implicated in neurological disorders, such as hepatic encephalopathy (HE), which is associated with acute or chronic liver failure. Astrocytes are considered the primary target of ammonia toxicity in the central nervous system (CNS) because glutamine synthetase (GS), responsible for ammonia metabolism in CNS, is an astrocytic enzyme. Thus, neuronal dysfunction has been associated as secondary to astrocytic impairment. However, we demonstrated that ammonia can induce direct effects on neuronal cells. The cell viability was decreased by ammonia in SH-SY5Y cells and cerebellar granule neurons. In addition, ammonia induced increased reactive oxygen species (ROS) production and decreased GSH intracellular content, the main antioxidant in CNS. As ammonia neurotoxicity is strongly associated with oxidative stress, we also investigated the potential neuroprotective roles of the antioxidants, resveratrol (RSV) and lipoic acid (LA), against ammonia toxicity in cerebellar granule neurons. RSV and LA were able to prevent the oxidative damage induced by ammonia, maintaining the levels of ROS production and GSH close to basal values. Both antioxidants also decreased ROS production and increased GSH content under basal conditions (in the absence of ammonia). Moreover, we showed that heme oxygenase 1 (HO1), a protein associated with protection against stress conditions, is involved in the beneficial effects of RSV and LA in cerebellar granule neurons. Thus, this study reinforces the neuroprotective effects of RSV and LA. Although more studies in vivo are required, RSV and LA could represent interesting therapeutic strategies for the management of HE.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Krista Minéia Wartchow
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marianne Pires Flores
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Concli Leite
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|