1
|
Albin D, Ramsahoye M, Kochavi E, Alistar M. PhageScanner: a reconfigurable machine learning framework for bacteriophage genomic and metagenomic feature annotation. Front Microbiol 2024; 15:1446097. [PMID: 39355420 PMCID: PMC11442244 DOI: 10.3389/fmicb.2024.1446097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Bacteriophages are the most prolific organisms on Earth, yet many of their genomes and assemblies from metagenomic sources lack protein sequences with identified functions. While most bacteriophage proteins are structural proteins, categorized as Phage Virion Proteins (PVPs), a considerable number remain unclassified. Complicating matters further, traditional lab-based methods for PVP identification can be tedious. To expedite the process of identifying PVPs, machine-learning models are increasingly being employed. Existing tools have developed models for predicting PVPs from protein sequences as input. However, none of these efforts have built software allowing for both genomic and metagenomic data as input. In addition, there is currently no framework available for easily curating data and creating new types of machine learning models. In response, we introduce PhageScanner, an open-source platform that streamlines data collection for genomic and metagenomic datasets, model training and testing, and includes a prediction pipeline for annotating genomic and metagenomic data. PhageScanner also features a graphical user interface (GUI) for visualizing annotations on genomic and metagenomic data. We further introduce a BLAST-based classifier that outperforms ML-based models and an efficient Long Short-Term Memory (LSTM) classifier. We then showcase the capabilities of PhageScanner by predicting PVPs in six previously uncharacterized bacteriophage genomes. In addition, we create a new model that predicts phage-encoded toxins within bacteriophage genomes, thus displaying the utility of the framework.
Collapse
Affiliation(s)
- Dreycey Albin
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States
| | - Michelle Ramsahoye
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States
| | - Eitan Kochavi
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States
| | - Mirela Alistar
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States
- ATLAS Institute, University of Colorado at Boulder, Boulder, CO, United States
| |
Collapse
|
2
|
Fu Y, Yu S, Li J, Lao Z, Yang X, Lin Z. DeepMineLys: Deep mining of phage lysins from human microbiome. Cell Rep 2024; 43:114583. [PMID: 39110597 DOI: 10.1016/j.celrep.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Vast shotgun metagenomics data remain an underutilized resource for novel enzymes. Artificial intelligence (AI) has increasingly been applied to protein mining, but its conventional performance evaluation is interpolative in nature, and these trained models often struggle to extrapolate effectively when challenged with unknown data. In this study, we present a framework (DeepMineLys [deep mining of phage lysins from human microbiome]) based on the convolutional neural network (CNN) to identify phage lysins from three human microbiome datasets. When validated with an independent dataset, our method achieved an F1-score of 84.00%, surpassing existing methods by 20.84%. We expressed 16 lysin candidates from the top 100 sequences in E. coli, confirming 11 as active. The best one displayed an activity 6.2-fold that of lysozyme derived from hen egg white, establishing it as the most potent lysin from the human microbiome. Our study also underscores several important issues when applying AI to biology questions. This framework should be applicable for mining other proteins.
Collapse
Affiliation(s)
- Yiran Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Shuting Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jianfeng Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zisha Lao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
3
|
Li Y, Yu ND, Ye XL, Jiang MC, Chen XQ. Construction of lung cancer serum markers based on ReliefF feature selection. Comput Methods Biomech Biomed Engin 2024; 27:1215-1223. [PMID: 37489703 DOI: 10.1080/10255842.2023.2235045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Serum miRNAs are available clinical samples for cancer screening. Identifying early serum markers in lung cancer (LC) is essential for patients' early diagnosis and clinical treatment. Expression data of serum miRNAs of lung adenocarcinoma (LUAD) patients and healthy individuals were downloaded from the Gene Expression Omnibus (GEO). These data were normalized and subjected to differential expression analysis to obtain differentially expressed miRNAs (DEmiRNAs). The DEmiRNAs were subsequently subjected to ReliefF feature selection, and subsets closely related to cancer were screened as candidate feature miRNAs. Thereafter, a Gaussian Naive Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF) classifier were constructed based on these candidate feature miRNAs. Then the best diagnostic signature was constructed through NB combined with incremental feature selection (IFS). Thereafter, these samples were subjected to principal component analysis (PCA) based on miRNAs with optimal predictive performance. Finally, the peripheral serum miRNAs of 64 LUAD patients and 59 normal individuals were extracted for qRT-PCR analysis to validate the performance of the diagnostic model in respect of clinical detection. Finally, according to area under the curve (AUC) and accuracy values, the NB classifier composed of miR-5100 and miR-663a manifested the most outstanding diagnostic performance. The PCA results also revealed that the 2-miRNA diagnostic signature could effectively distinguish cancer patients from healthy individuals. Finally, qRT-PCR results of clinical serum samples revealed that miR-5100 and miR-663a expression in tumor samples was remarkably higher than that in normal samples. The AUC of the 2-miRNA diagnostic signature was 0.968. In summary, we identified markers (miR-5100 and miR-663a) in serum for early LUAD screening, providing ideas for developing early LUAD diagnostic models.
Collapse
Affiliation(s)
- Yong Li
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Nan-Ding Yu
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiang-Li Ye
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Mei-Chen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiang-Qi Chen
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Wade KE, Chen L, Deng C, Zhou G, Hu P. Investigating alignment-free machine learning methods for HIV-1 subtype classification. BIOINFORMATICS ADVANCES 2024; 4:vbae108. [PMID: 39228995 PMCID: PMC11371153 DOI: 10.1093/bioadv/vbae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024]
Abstract
Motivation Many viruses are organized into taxonomies of subtypes based on their genetic similarities. For human immunodeficiency virus 1 (HIV-1), subtype classification plays a crucial role in infection management. Sequence alignment-based methods for subtype classification are impractical for large datasets because they are costly and time-consuming. Alignment-free methods involve creating numerical representations for genetic sequences and applying statistical or machine learning methods. Despite their high overall accuracy, existing models perform poorly on less common subtypes. Furthermore, there is limited work investigating the impact of sequence vectorization methods, in particular natural language-inspired embedding methods, on HIV-1 subtype classification. Results We present a comprehensive analysis of sequence vectorization methods across machine learning methods. We report a k-mer-based XGBoost model with a balanced accuracy of 0.84, indicating that it has good overall performance for both common and uncommon HIV-1 subtypes. We also report a Word2Vec-based support vector machine that achieves promising results on precision and balanced accuracy. Our study sheds light on the effect of sequence vectorization methods on HIV-1 subtype classification and suggests that natural language-inspired encoding methods show promise. Our results could help to develop improved HIV-1 subtype classification methods, leading to improved individual patient outcomes, and the development of subtype-specific treatments. Availability and implementation Source code is available at https://www.github.com/kwade4/HIV_Subtypes.
Collapse
Affiliation(s)
- Kaitlyn E Wade
- Department of Computer Science, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Lianghong Chen
- Department of Computer Science, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Chutong Deng
- Department of Computer Science, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Gen Zhou
- Department of Computer Science, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Pingzhao Hu
- Department of Computer Science, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
5
|
Zou H, Yu W. Integrating Low-Order and High-Order Correlation Information for Identifying Phage Virion Proteins. J Comput Biol 2023; 30:1131-1143. [PMID: 37729064 DOI: 10.1089/cmb.2022.0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Phage virion proteins (PVPs) play an important role in the host cell. Fast and accurate identification of PVPs is beneficial for the discovery and development of related drugs. Although wet experimental approaches are the first choice to identify PVPs, they are costly and time-consuming. Thus, researchers have turned their attention to computational models, which can speed up related studies. Therefore, we proposed a novel machine-learning model to identify PVPs in the current study. First, 50 different types of physicochemical properties were used to denote protein sequences. Next, two different approaches, including Pearson's correlation coefficient (PCC) and maximal information coefficient (MIC), were employed to extract discriminative information. Further, to capture the high-order correlation information, we used PCC and MIC once again. After that, we adopted the least absolute shrinkage and selection operator algorithm to select the optimal feature subset. Finally, these chosen features were fed into a support vector machine to discriminate PVPs from phage non-virion proteins. We performed experiments on two different datasets to validate the effectiveness of our proposed method. Experimental results showed a significant improvement in performance compared with state-of-the-art approaches. It indicates that the proposed computational model may become a powerful predictor in identifying PVPs.
Collapse
Affiliation(s)
- Hongliang Zou
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wanting Yu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
6
|
Shang J, Peng C, Tang X, Sun Y. PhaVIP: Phage VIrion Protein classification based on chaos game representation and Vision Transformer. Bioinformatics 2023; 39:i30-i39. [PMID: 37387136 DOI: 10.1093/bioinformatics/btad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION As viruses that mainly infect bacteria, phages are key players across a wide range of ecosystems. Analyzing phage proteins is indispensable for understanding phages' functions and roles in microbiomes. High-throughput sequencing enables us to obtain phages in different microbiomes with low cost. However, compared to the fast accumulation of newly identified phages, phage protein classification remains difficult. In particular, a fundamental need is to annotate virion proteins, the structural proteins, such as major tail, baseplate, etc. Although there are experimental methods for virion protein identification, they are too expensive or time-consuming, leaving a large number of proteins unclassified. Thus, there is a great demand to develop a computational method for fast and accurate phage virion protein (PVP) classification. RESULTS In this work, we adapted the state-of-the-art image classification model, Vision Transformer, to conduct virion protein classification. By encoding protein sequences into unique images using chaos game representation, we can leverage Vision Transformer to learn both local and global features from sequence "images". Our method, PhaVIP, has two main functions: classifying PVP and non-PVP sequences and annotating the types of PVP, such as capsid and tail. We tested PhaVIP on several datasets with increasing difficulty and benchmarked it against alternative tools. The experimental results show that PhaVIP has superior performance. After validating the performance of PhaVIP, we investigated two applications that can use the output of PhaVIP: phage taxonomy classification and phage host prediction. The results showed the benefit of using classified proteins over all proteins. AVAILABILITY AND IMPLEMENTATION The web server of PhaVIP is available via: https://phage.ee.cityu.edu.hk/phavip. The source code of PhaVIP is available via: https://github.com/KennthShang/PhaVIP.
Collapse
Affiliation(s)
- Jiayu Shang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| | - Cheng Peng
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| | - Xubo Tang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| |
Collapse
|
7
|
Prediction of Phage Virion Proteins Using Machine Learning Methods. Molecules 2023; 28:molecules28052238. [PMID: 36903484 PMCID: PMC10004995 DOI: 10.3390/molecules28052238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Antimicrobial resistance (AMR) is a major problem and an immediate alternative to antibiotics is the need of the hour. Research on the possible alternative products to tackle bacterial infections is ongoing worldwide. One of the most promising alternatives to antibiotics is the use of bacteriophages (phage) or phage-driven antibacterial drugs to cure bacterial infections caused by AMR bacteria. Phage-driven proteins, including holins, endolysins, and exopolysaccharides, have shown great potential in the development of antibacterial drugs. Likewise, phage virion proteins (PVPs) might also play an important role in the development of antibacterial drugs. Here, we have developed a machine learning-based prediction method to predict PVPs using phage protein sequences. We have employed well-known basic and ensemble machine learning methods with protein sequence composition features for the prediction of PVPs. We found that the gradient boosting classifier (GBC) method achieved the best accuracy of 80% on the training dataset and an accuracy of 83% on the independent dataset. The performance on the independent dataset is better than other existing methods. A user-friendly web server developed by us is freely available to all users for the prediction of PVPs from phage protein sequences. The web server might facilitate the large-scale prediction of PVPs and hypothesis-driven experimental study design.
Collapse
|
8
|
Su W, Xie XQ, Liu XW, Gao D, Ma CY, Zulfiqar H, Yang H, Lin H, Yu XL, Li YW. iRNA-ac4C: A novel computational method for effectively detecting N4-acetylcytidine sites in human mRNA. Int J Biol Macromol 2023; 227:1174-1181. [PMID: 36470433 DOI: 10.1016/j.ijbiomac.2022.11.299] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022]
Abstract
RNA N4-acetylcytidine (ac4C) is the acetylation of cytidine at the nitrogen-4 position, which is a highly conserved RNA modification and involves a variety of biological processes. Hence, accurate identification of genome-wide ac4C sites is vital for understanding regulation mechanism of gene expression. In this work, a novel predictor, named iRNA-ac4C, was established to identify ac4C sites in human mRNA based on three feature extraction methods, including nucleotide composition, nucleotide chemical property, and accumulated nucleotide frequency. Subsequently, minimum-Redundancy-Maximum-Relevance combined with incremental feature selection strategies was utilized to select the optimal feature subset. According to the optimal feature subset, the best ac4C classification model was trained by gradient boosting decision tree with 10-fold cross-validation. The results of independent testing set indicated that our proposed method could produce encouraging generalization capabilities. For the convenience of other researchers, we established a user-friendly web server which is freely available at http://lin-group.cn/server/iRNA-ac4C/. We hope that the tool could provide guide for wet-experimental scholars.
Collapse
Affiliation(s)
- Wei Su
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xue-Qin Xie
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiao-Wei Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dong Gao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cai-Yi Ma
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hasan Zulfiqar
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hui Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hao Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xiao-Long Yu
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Yan-Wen Li
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China; Key Laboratory of Intelligent Information Processing of Jilin Province, Northeast Normal University, Changchun 130117, China; Institute of Computational Biology, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
9
|
Butt AH, Alkhalifah T, Alturise F, Khan YD. A machine learning technique for identifying DNA enhancer regions utilizing CIS-regulatory element patterns. Sci Rep 2022; 12:15183. [PMID: 36071071 PMCID: PMC9452539 DOI: 10.1038/s41598-022-19099-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Enhancers regulate gene expression, by playing a crucial role in the synthesis of RNAs and proteins. They do not directly encode proteins or RNA molecules. In order to control gene expression, it is important to predict enhancers and their potency. Given their distance from the target gene, lack of common motifs, and tissue/cell specificity, enhancer regions are thought to be difficult to predict in DNA sequences. Recently, a number of bioinformatics tools were created to distinguish enhancers from other regulatory components and to pinpoint their advantages. However, because the quality of its prediction method needs to be improved, its practical application value must also be improved. Based on nucleotide composition and statistical moment-based features, the current study suggests a novel method for identifying enhancers and non-enhancers and evaluating their strength. The proposed study outperformed state-of-the-art techniques using fivefold and tenfold cross-validation in terms of accuracy. The accuracy from the current study results in 86.5% and 72.3% in enhancer site and its strength prediction respectively. The results of the suggested methodology point to the potential for more efficient and successful outcomes when statistical moment-based features are used. The current study's source code is available to the research community at https://github.com/csbioinfopk/enpred.
Collapse
Affiliation(s)
- Ahmad Hassan Butt
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Saudi Arabia.
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
10
|
Fang Z, Feng T, Zhou H, Chen M. DeePVP: Identification and classification of phage virion proteins using deep learning. Gigascience 2022; 11:giac076. [PMID: 35950840 PMCID: PMC9366990 DOI: 10.1093/gigascience/giac076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Many biological properties of phages are determined by phage virion proteins (PVPs), and the poor annotation of PVPs is a bottleneck for many areas of viral research, such as viral phylogenetic analysis, viral host identification, and antibacterial drug design. Because of the high diversity of PVP sequences, the PVP annotation of a phage genome remains a particularly challenging bioinformatic task. FINDINGS Based on deep learning, we developed DeePVP. The main module of DeePVP aims to discriminate PVPs from non-PVPs within a phage genome, while the extended module of DeePVP can further classify predicted PVPs into the 10 major classes of PVPs. Compared with the present state-of-the-art tools, the main module of DeePVP performs better, with a 9.05% higher F1-score in the PVP identification task. Moreover, the overall accuracy of the extended module of DeePVP in the PVP classification task is approximately 3.72% higher than that of PhANNs. Two application cases show that the predictions of DeePVP are more reliable and can better reveal the compact PVP-enriched region than the current state-of-the-art tools. Particularly, in the Escherichia phage phiEC1 genome, a novel PVP-enriched region that is conserved in many other Escherichia phage genomes was identified, indicating that DeePVP will be a useful tool for the analysis of phage genomic structures. CONCLUSIONS DeePVP outperforms state-of-the-art tools. The program is optimized in both a virtual machine with graphical user interface and a docker so that the tool can be easily run by noncomputer professionals. DeePVP is freely available at https://github.com/fangzcbio/DeePVP/.
Collapse
Affiliation(s)
- Zhencheng Fang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tao Feng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Muxuan Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
11
|
Liu S, Cui C, Chen H, Liu T. Ensemble Learning-Based Feature Selection for Phage Protein Prediction. Front Microbiol 2022; 13:932661. [PMID: 35910662 PMCID: PMC9335128 DOI: 10.3389/fmicb.2022.932661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Phage has high specificity for its host recognition. As a natural enemy of bacteria, it has been used to treat super bacteria many times. Identifying phage proteins from the original sequence is very important for understanding the relationship between phage and host bacteria and developing new antimicrobial agents. However, traditional experimental methods are both expensive and time-consuming. In this study, an ensemble learning-based feature selection method is proposed to find important features for phage protein identification. The method uses four types of protein sequence-derived features, quantifies the importance of each feature by adding perturbations to the features to influence the results, and finally splices the important features among the four types of features. In addition, we analyzed the selected features and their biological significance.
Collapse
Affiliation(s)
- Songbo Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chengmin Cui
- Beijing Institute of Control Engineering, China Academy of Space Technology, Beijing, China
| | - Huipeng Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- *Correspondence: Huipeng Chen
| | - Tong Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
12
|
Chu Y, Guo S, Cui D, Fu X, Ma Y. DeephageTP: a convolutional neural network framework for identifying phage-specific proteins from metagenomic sequencing data. PeerJ 2022; 10:e13404. [PMID: 35698617 PMCID: PMC9188312 DOI: 10.7717/peerj.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/18/2022] [Indexed: 01/14/2023] Open
Abstract
Bacteriophages (phages) are the most abundant and diverse biological entity on Earth. Due to the lack of universal gene markers and database representatives, there about 50-90% of genes of phages are unable to assign functions. This makes it a challenge to identify phage genomes and annotate functions of phage genes efficiently by homology search on a large scale, especially for newly phages. Portal (portal protein), TerL (large terminase subunit protein), and TerS (small terminase subunit protein) are three specific proteins of Caudovirales phage. Here, we developed a CNN (convolutional neural network)-based framework, DeephageTP, to identify the three specific proteins from metagenomic data. The framework takes one-hot encoding data of original protein sequences as the input and automatically extracts predictive features in the process of modeling. To overcome the false positive problem, a cutoff-loss-value strategy is introduced based on the distributions of the loss values of protein sequences within the same category. The proposed model with a set of cutoff-loss-values demonstrates high performance in terms of Precision in identifying TerL and Portal sequences (94% and 90%, respectively) from the mimic metagenomic dataset. Finally, we tested the efficacy of the framework using three real metagenomic datasets, and the results shown that compared to the conventional alignment-based methods, our proposed framework had a particular advantage in identifying the novel phage-specific protein sequences of portal and TerL with remote homology to their counterparts in the training datasets. In summary, our study for the first time develops a CNN-based framework for identifying the phage-specific protein sequences with high complexity and low conservation, and this framework will help us find novel phages in metagenomic sequencing data. The DeephageTP is available at https://github.com/chuym726/DeephageTP.
Collapse
Affiliation(s)
- Yunmeng Chu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese, Shenzhen, Guangdong, P.R. China,Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, Fujian, P.R. China
| | - Shun Guo
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese, Shenzhen, Guangdong, P.R. China
| | - Dachao Cui
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese, Shenzhen, Guangdong, P.R. China
| | - Xiongfei Fu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese, Shenzhen, Guangdong, P.R. China
| | - Yingfei Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
13
|
Ahmad S, Charoenkwan P, Quinn JMW, Moni MA, Hasan MM, Lio' P, Shoombuatong W. SCORPION is a stacking-based ensemble learning framework for accurate prediction of phage virion proteins. Sci Rep 2022; 12:4106. [PMID: 35260777 PMCID: PMC8904530 DOI: 10.1038/s41598-022-08173-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 12/30/2022] Open
Abstract
Fast and accurate identification of phage virion proteins (PVPs) would greatly aid facilitation of antibacterial drug discovery and development. Although, several research efforts based on machine learning (ML) methods have been made for in silico identification of PVPs, these methods have certain limitations. Therefore, in this study, we propose a new computational approach, termed SCORPION, (StaCking-based Predictior fOR Phage VIrion PrOteiNs), to accurately identify PVPs using only protein primary sequences. Specifically, we explored comprehensive 13 different feature descriptors from different aspects (i.e., compositional information, composition-transition-distribution information, position-specific information and physicochemical properties) with 10 popular ML algorithms to construct a pool of optimal baseline models. These optimal baseline models were then used to generate probabilistic features (PFs) and considered as a new feature vector. Finally, we utilized a two-step feature selection strategy to determine the optimal PF feature vector and used this feature vector to develop a stacked model (SCORPION). Both tenfold cross-validation and independent test results indicate that SCORPION achieves superior predictive performance than its constitute baseline models and existing methods. We anticipate SCORPION will serve as a useful tool for the cost-effective and large-scale screening of new PVPs. The source codes and datasets for this work are available for downloading in the GitHub repository (https://github.com/saeed344/SCORPION).
Collapse
Affiliation(s)
- Saeed Ahmad
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Julian M W Quinn
- Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Mohammad Ali Moni
- Faculty of Health and Behavioural Sciences, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Md Mehedi Hasan
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA, 70112, USA
| | - Pietro Lio'
- Department of Computer Science and Technology, University of Cambridge, Cambridge, CB3 0FD, UK
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
14
|
Kabir M, Nantasenamat C, Kanthawong S, Charoenkwan P, Shoombuatong W. Large-scale comparative review and assessment of computational methods for phage virion proteins identification. EXCLI JOURNAL 2022; 21:11-29. [PMID: 35145365 PMCID: PMC8822302 DOI: 10.17179/excli2021-4411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
Phage virion proteins (PVPs) are effective at recognizing and binding to host cell receptors while having no deleterious effects on human or animal cells. Understanding their functional mechanisms is regarded as a critical goal that will aid in rational antibacterial drug discovery and development. Although high-throughput experimental methods for identifying PVPs are considered the gold standard for exploring crucial PVP features, these procedures are frequently time-consuming and labor-intensive. Thusfar, more than ten sequence-based predictors have been established for the in silico identification of PVPs in conjunction with traditional experimental approaches. As a result, a revised and more thorough assessment is extremely desirable. With this purpose in mind, we first conduct a thorough survey and evaluation of a vast array of 13 state-of-the-art PVP predictors. Among these PVP predictors, they can be classified into three groups according to the types of machine learning (ML) algorithms employed (i.e. traditional ML-based methods, ensemble-based methods and deep learning-based methods). Subsequently, we explored which factors are important for building more accurate and stable predictors and this included training/independent datasets, feature encoding algorithms, feature selection methods, core algorithms, performance evaluation metrics/strategies and web servers. Finally, we provide insights and future perspectives for the design and development of new and more effective computational approaches for the detection and characterization of PVPs.
Collapse
Affiliation(s)
- Muhammad Kabir
- School of Systems and Technology, Department of Computer Science, University of Management and Technology, Lahore, Pakistan, 54770
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand, 10700
| | - Sakawrat Kanthawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, 40002
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand, 10700
| |
Collapse
|
15
|
βLact-Pred: A Predictor Developed for Identification of Beta-Lactamases Using Statistical Moments and PseAAC via 5-Step Rule. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:8974265. [PMID: 34956358 PMCID: PMC8709780 DOI: 10.1155/2021/8974265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022]
Abstract
Beta-lactamase (β-lactamase) produced by different bacteria confers resistance against β-lactam-containing drugs. The gene encoding β-lactamase is plasmid-borne and can easily be transferred from one bacterium to another during conjugation. By such transformations, the recipient also acquires resistance against the drugs of the β-lactam family. β-Lactam antibiotics play a vital significance in clinical treatment of disastrous diseases like soft tissue infections, gonorrhoea, skin infections, urinary tract infections, and bronchitis. Herein, we report a prediction classifier named as βLact-Pred for the identification of β-lactamase proteins. The computational model uses the primary amino acid sequence structure as its input. Various metrics are derived from the primary structure to form a feature vector. Experimentally determined data of positive and negative beta-lactamases are collected and transformed into feature vectors. An operating algorithm based on the artificial neural network is used by integrating the position relative features and sequence statistical moments in PseAAC for training the neural networks. The results for the proposed computational model were validated by employing numerous types of approach, i.e., self-consistency testing, jackknife testing, cross-validation, and independent testing. The overall accuracy of the predictor for self-consistency, jackknife testing, cross-validation, and independent testing presents 99.76%, 96.07%, 94.20%, and 91.65%, respectively, for the proposed model. Stupendous experimental results demonstrated that the proposed predictor “βLact-Pred” has surpassed results from the existing methods.
Collapse
|
16
|
Fan Y, Wang W. Using multi-layer perceptron to identify origins of replication in eukaryotes via informative features. BMC Bioinformatics 2021; 22:516. [PMID: 34688247 PMCID: PMC8542328 DOI: 10.1186/s12859-021-04431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The origin is the starting site of DNA replication, an extremely vital part of the informational inheritance between parents and children. More importantly, accurately identifying the origin of replication has great application value in the diagnosis and treatment of diseases related to genetic information errors, while the traditional biological experimental methods are time-consuming and laborious. RESULTS We carried out research on the origin of replication in a variety of eukaryotes and proposed a unique prediction method for each species. Throughout the experiment, we collected data from 7 species, including Homo sapiens, Mus musculus, Drosophila melanogaster, Arabidopsis thaliana, Kluyveromyces lactis, Pichia pastoris and Schizosaccharomyces pombe. In addition to the commonly used sequence feature extraction methods PseKNC-II and Base-content, we designed a feature extraction method based on TF-IDF. Then the two-step method was utilized for feature selection. After comparing a variety of traditional machine learning classification models, the multi-layer perceptron was employed as the classification algorithm. Ultimately, the data and codes involved in the experiment are available at https://github.com/Sarahyouzi/EukOriginPredict . CONCLUSIONS The prediction accuracy of the training set of the above-mentioned seven species after 100 times fivefold cross validation reach 92.60%, 90.80%, 91.22%, 96.15%, 96.72%, 99.86%, 96.72%, respectively. It denotes that compared with other methods, the methods we designed could accomplish superior performance. In addition, our experiments reveals that the models of multiple species could predict each other with high accuracy, and the results of STREME shows that they have a certain common motif.
Collapse
Affiliation(s)
- Yongxian Fan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Wanru Wang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
17
|
Sandaruwan PD, Wannige CT. An improved deep learning model for hierarchical classification of protein families. PLoS One 2021; 16:e0258625. [PMID: 34669708 PMCID: PMC8528337 DOI: 10.1371/journal.pone.0258625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 10/01/2021] [Indexed: 12/28/2022] Open
Abstract
Although genes carry information, proteins are the main role player in providing all the functionalities of a living organism. Massive amounts of different proteins involve in every function that occurs in a cell. These amino acid sequences can be hierarchically classified into a set of families and subfamilies depending on their evolutionary relatedness and similarities in their structure or function. Protein characterization to identify protein structure and function is done accurately using laboratory experiments. With the rapidly increasing huge amount of novel protein sequences, these experiments have become difficult to carry out since they are expensive, time-consuming, and laborious. Therefore, many computational classification methods are introduced to classify proteins and predict their functional properties. With the progress of the performance of the computational techniques, deep learning plays a key role in many areas. Novel deep learning models such as DeepFam, ProtCNN have been presented to classify proteins into their families recently. However, these deep learning models have been used to carry out the non-hierarchical classification of proteins. In this research, we propose a deep learning neural network model named DeepHiFam with high accuracy to classify proteins hierarchically into different levels simultaneously. The model achieved an accuracy of 98.38% for protein family classification and more than 80% accuracy for the classification of protein subfamilies and sub-subfamilies. Further, DeepHiFam performed well in the non-hierarchical classification of protein families and achieved an accuracy of 98.62% and 96.14% for the popular Pfam dataset and COG dataset respectively.
Collapse
|
18
|
iTAGPred: A Two-Level Prediction Model for Identification of Angiogenesis and Tumor Angiogenesis Biomarkers. Appl Bionics Biomech 2021; 2021:2803147. [PMID: 34616486 PMCID: PMC8490072 DOI: 10.1155/2021/2803147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/02/2021] [Indexed: 12/09/2022] Open
Abstract
A crucial biological process called angiogenesis plays a vital role in migration, growth, and wound healing of endothelial cells and other processes that are controlled by chemical signals. Angiogenesis is the process that controls the growth of blood vessels within tissues while angiogenesis proteins play a significant role in the proper working of this process. The balancing of these signals is necessary for the proper working of angiogenesis. Unbalancing of these signals increases blood vessel formation, which causes abnormal growth or several diseases including cancer. The proposed work focuses on developing a two-layered prediction model using different classifiers like random forest (RF), neural network, and support vector machine. The first level performs in silico identification of angiogenesis proteins based on the primary structure. In the case the protein is an angiogenesis protein, then the second level predicts whether the protein is linked with tumor angiogenesis or not. The performance of the model is evaluated through various validation techniques. The model was evaluated using k-fold cross-validation, independent, self-consistency, and jackknife testing. The overall accuracy using an RF classifier for angiogenesis at the first level was 97.8% and for tumor angiogenesis at the second level was 99.5%, ANN showed 94.1% accuracy for angiogenesis and 79.9% for tumor angiogenesis, and the accuracy of SVM for angiogenesis was 78.8% and for tumor angiogenesis was 65.19%.
Collapse
|
19
|
Alghamdi W, Alzahrani E, Ullah MZ, Khan YD. 4mC-RF: Improving the prediction of 4mC sites using composition and position relative features and statistical moment. Anal Biochem 2021; 633:114385. [PMID: 34571005 DOI: 10.1016/j.ab.2021.114385] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/28/2023]
Abstract
N4-methylcytosine (4 mC) is an important epigenetic modification that occurs enzymatically by the action of DNA methyltransferases. 4 mC sites exist in prokaryotes and eukaryotes while playing a vital role in regulating gene expression, DNA replication, and cell cycle. The efficient and accurate prediction of 4 mC sites has a significant role in the insight of 4 mC biological properties and functions. Therefore, a sequence-based predictor is proposed, namely 4 mC-RF, for identifying 4 mC sites through the integration of statistical moments along with position, and composition-dependent features. Relative and absolute position-based features are computed to extract optimal features. A popular machine learning classifier Random Forest was used for training the model. Validation results were obtained through rigorous processes of self-consistency, 10-fold cross-validation, Independent set testing, and Jackknife yielding 95.1%, 95.2%, 97.0%, and 94.7% accuracies, respectively. Our proposed model depicts the highest prediction accuracies as compared to existing models. Subsequently, the developed 4 mC-RF model was constructed into a web server. A significant and more accurate predictor of 4 mC Methylcytosine sites helps experimental scientists to gather faster, efficient, and cost-effective results.
Collapse
Affiliation(s)
- Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, P. O. Box 80221, Jeddah 21589, Saudi Arabia.
| | - Ebraheem Alzahrani
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Malik Zaka Ullah
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Yaser Daanial Khan
- Department of Computer Science, University of Management and Technology, Lahore 54770, Pakistan.
| |
Collapse
|
20
|
Akmal MA, Hussain W, Rasool N, Khan YD, Khan SA, Chou KC. Using CHOU'S 5-Steps Rule to Predict O-Linked Serine Glycosylation Sites by Blending Position Relative Features and Statistical Moment. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2045-2056. [PMID: 31985438 DOI: 10.1109/tcbb.2020.2968441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glycosylation of proteins in eukaryote cells is an important and complicated post-translation modification due to its pivotal role and association with crucial physiological functions within most of the proteins. Identification of glycosylation sites in a polypeptide chain is not an easy task due to multiple impediments. Analytical identification of these sites is expensive and laborious. There is a dire need to develop a reliable computational method for precise determination of such sites which can help researchers to save time and effort. Herein, we propose a novel predictor namely iGlycoS-PseAAC by integrating the Chou's Pseudo Amino Acid Composition (PseAAC) and relative/absolute position-based features. The self-consistency results show that the accuracy revealed by the model using the benchmark dataset for prediction of O-linked glycosylation having serine sites is 98.8 percent. The overall accuracy of predictor achieved through 10-fold cross validation by combining the positive and negative results is 97.2 percent. The overall accuracy achieved through Jackknife test is 96.195 percent by aggregating of all the prediction results. Thus the proposed predictor can help in predicting the O-linked glycosylated serine sites in an efficient and accurate way. The overall results show that the accuracy of the iGlycoS-PseAAC is higher than the existing tools.
Collapse
|
21
|
iPVP-MCV: A Multi-Classifier Voting Model for the Accurate Identification of Phage Virion Proteins. Symmetry (Basel) 2021. [DOI: 10.3390/sym13081506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The classic structure of a bacteriophage is commonly characterized by complex symmetry. The head of the structure features icosahedral symmetry, whereas the tail features helical symmetry. The phage virion protein (PVP), a type of bacteriophage structural protein, is an essential material of the infectious viral particles and is responsible for multiple biological functions. Accurate identification of PVPs is of great significance for comprehending the interaction between phages and host bacteria and developing new antimicrobial drugs or antibiotics. However, traditional experimental approaches for identifying PVPs are often time-consuming and laborious. Therefore, the development of computational methods that can efficiently and accurately identify PVPs is desired. In this study, we proposed a multi-classifier voting model called iPVP-MCV to enhance the predictive performance of PVPs based on their amino acid sequences. First, three types of evolutionary features were extracted from the position-specific scoring matrix (PSSM) profiles to represent PVPs and non-PVPs. Then, a set of baseline models were trained based on the support vector machine (SVM) algorithm combined with each type of feature descriptors. Finally, the outputs of these baseline models were integrated to construct the proposed method iPVP-MCV by using the majority voting strategy. Our results demonstrated that the proposed iPVP-MCV model was superior to existing methods when performing the rigorous independent dataset test.
Collapse
|
22
|
Li Y, Pu F, Wang J, Zhou Z, Zhang C, He F, Ma Z, Zhang J. Machine Learning Methods in Prediction of Protein Palmitoylation Sites: A Brief Review. Curr Pharm Des 2021; 27:2189-2198. [PMID: 33183190 DOI: 10.2174/1381612826666201112142826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Protein palmitoylation is a fundamental and reversible post-translational lipid modification that involves a series of biological processes. Although a large number of experimental studies have explored the molecular mechanism behind the palmitoylation process, the computational methods has attracted much attention for its good performance in predicting palmitoylation sites compared with expensive and time-consuming biochemical experiments. The prediction of protein palmitoylation sites is helpful to reveal its biological mechanism. Therefore, the research on the application of machine learning methods to predict palmitoylation sites has become a hot topic in bioinformatics and promoted the development in the related fields. In this review, we briefly introduced the recent development in predicting protein palmitoylation sites by using machine learningbased methods and discussed their benefits and drawbacks. The perspective of machine learning-based methods in predicting palmitoylation sites was also provided. We hope the review could provide a guide in related fields.
Collapse
Affiliation(s)
- Yanwen Li
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Feng Pu
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Jingru Wang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Zhiguo Zhou
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Chunhua Zhang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Fei He
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Zhiqiang Ma
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Jingbo Zhang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
23
|
Zulfiqar H, Yuan SS, Huang QL, Sun ZJ, Dao FY, Yu XL, Lin H. Identification of cyclin protein using gradient boost decision tree algorithm. Comput Struct Biotechnol J 2021; 19:4123-4131. [PMID: 34527186 PMCID: PMC8346528 DOI: 10.1016/j.csbj.2021.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclin proteins are capable to regulate the cell cycle by forming a complex with cyclin-dependent kinases to activate cell cycle. Correct recognition of cyclin proteins could provide key clues for studying their functions. However, their sequences share low similarity, which results in poor prediction for sequence similarity-based methods. Thus, it is urgent to construct a machine learning model to identify cyclin proteins. This study aimed to develop a computational model to discriminate cyclin proteins from non-cyclin proteins. In our model, protein sequences were encoded by seven kinds of features that are amino acid composition, composition of k-spaced amino acid pairs, tri peptide composition, pseudo amino acid composition, geary correlation, normalized moreau-broto autocorrelation and composition/transition/distribution. Afterward, these features were optimized by using analysis of variance (ANOVA) and minimum redundancy maximum relevance (mRMR) with incremental feature selection (IFS) technique. A gradient boost decision tree (GBDT) classifier was trained on the optimal features. Five-fold cross-validated results showed that our model would identify cyclins with an accuracy of 93.06% and AUC value of 0.971, which are higher than the two recent studies on the same data.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shi-Shi Yuan
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qin-Lai Huang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zi-Jie Sun
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fu-Ying Dao
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiao-Long Yu
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Hao Lin
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
24
|
Wang M, Yue L, Yang X, Wang X, Han Y, Yu B. Fertility-LightGBM: A fertility-related protein prediction model by multi-information fusion and light gradient boosting machine. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Zhang J, Chen Q, Liu B. DeepDRBP-2L: A New Genome Annotation Predictor for Identifying DNA-Binding Proteins and RNA-Binding Proteins Using Convolutional Neural Network and Long Short-Term Memory. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1451-1463. [PMID: 31722485 DOI: 10.1109/tcbb.2019.2952338] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs) are two kinds of crucial proteins, which are associated with various cellule activities and some important diseases. Accurate identification of DBPs and RBPs facilitate both theoretical research and real world application. Existing sequence-based DBP predictors can accurately identify DBPs but incorrectly predict many RBPs as DBPs, and vice versa, resulting in low prediction precision. Moreover, some proteins (DRBPs) interacting with both DNA and RNA play important roles in gene expression and cannot be identified by existing computational methods. In this study, a two-level predictor named DeepDRBP-2L was proposed by combining Convolutional Neural Network (CNN) and the Long Short-Term Memory (LSTM). It is the first computational method that is able to identify DBPs, RBPs and DRBPs. Rigorous cross-validations and independent tests showed that DeepDRBP-2L is able to overcome the shortcoming of the existing methods and can go one further step to identify DRBPs. Application of DeepDRBP-2L to tomato genome further demonstrated its performance. The webserver of DeepDRBP-2L is freely available at http://bliulab.net/DeepDRBP-2L.
Collapse
|
26
|
Feng P, Feng L, Tang C. Comparison and Analysis of Computational Methods for Identifying N6-Methyladenosine Sites in Saccharomyces cerevisiae. Curr Pharm Des 2021; 27:1219-1229. [PMID: 33167827 DOI: 10.2174/1381612826666201109110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND N6-methyladenosine (m6A) plays critical roles in a broad range of biological processes. Knowledge about the precise location of m6A site in the transcriptome is vital for deciphering its biological functions. Although experimental techniques have made substantial contributions to identify m6A, they are still labor intensive and time consuming. As complement to experimental methods, in the past few years, a series of computational approaches have been proposed to identify m6A sites. METHODS In order to facilitate researchers to select appropriate methods for identifying m6A sites, it is necessary to conduct a comprehensive review and comparison of existing methods. RESULTS Since research works on m6A in Saccharomyces cerevisiae are relatively clear, in this review, we summarized recent progress of computational prediction of m6A sites in S. cerevisiae and assessed the performance of existing computational methods. Finally, future directions of computationally identifying m6A sites are presented. CONCLUSION Taken together, we anticipate that this review will serve as an important guide for computational analysis of m6A modifications.
Collapse
Affiliation(s)
- Pengmian Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Lijing Feng
- School of Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Chaohui Tang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| |
Collapse
|
27
|
CWLy-RF: A novel approach for identifying cell wall lyases based on random forest classifier. Genomics 2021; 113:2919-2924. [PMID: 34186189 DOI: 10.1016/j.ygeno.2021.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 02/05/2023]
Abstract
Drug resistance of pathogenic bacteria has become increasingly serious due to the abuse of antibiotics in recent years. Researchers have found that cell wall lyases are effective antibacterial agents that can specifically recognize target bacteria and degrade bacterial peptidoglycan. Traditional wet experiments are usually expensive, time-consuming and laborious for the identification of lyases. Therefore, there is an urgent need to develop prediction tools based on computer methods to identify lyases quickly and accurately. In this paper, a new predictor, CWLy-RF, is proposed based on the random forest (RF) algorithm to identify cell wall lyases. In this method, we combined three features, namely, 400D, 188D and the composition of k-spaced amino acid group pairs, using mixed-feature representation methods. Afterward, we improved the feature representation ability with the selected top 100 features by using the information gain method and trained a predictive model using RF. The constructed prediction model is evaluated by using 10-fold cross-validation. The accuracy obtained was 96.09%, the AUC was 0.993, the MCC was 0.922, the sensitivity was 94.92%, and the specificity was 97.32%. We have proved that the proposed predictor CWLy-RF is superior to other latest models, and it will hopefully become an effective and useful tool for identifying lyases.
Collapse
|
28
|
Nami Y, Imeni N, Panahi B. Application of machine learning in bacteriophage research. BMC Microbiol 2021; 21:193. [PMID: 34174831 PMCID: PMC8235560 DOI: 10.1186/s12866-021-02256-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Phages are one of the key components in the structure, dynamics, and interactions of microbial communities in different bins. It has a clear impact on human health and the food industry. Bacteriophage characterization using in vitro approaches are time/cost consuming and laborious tasks. On the other hand, with the advent of new high-throughput sequencing technology, the development of a powerful computational framework to characterize the newly identified bacteriophages is inevitable for future research. Machine learning includes powerful techniques that enable the analysis of complex datasets for knowledge discovery and pattern recognition. In this study, we have conducted a comprehensive review of machine learning methods application using different types of features were applied in various aspects of bacteriophage research including, automated curation, identification, classification, host species recognition, virion protein identification, and life cycle prediction. Moreover, potential limitations and advantages of the developed frameworks were discussed.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Nazila Imeni
- Young Researchers and Elite Clube, Marand Branch, Islamic Azad University, Marand, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
29
|
Abstract
Background:
Bioluminescence is a unique and significant phenomenon in nature.
Bioluminescence is important for the lifecycle of some organisms and is valuable in biomedical
research, including for gene expression analysis and bioluminescence imaging technology. In recent
years, researchers have identified a number of methods for predicting bioluminescent proteins
(BLPs), which have increased in accuracy, but could be further improved.
Method:
In this study, a new bioluminescent proteins prediction method, based on a voting
algorithm, is proposed. Four methods of feature extraction based on the amino acid sequence were
used. 314 dimensional features in total were extracted from amino acid composition,
physicochemical properties and k-spacer amino acid pair composition. In order to obtain the highest
MCC value to establish the optimal prediction model, a voting algorithm was then used to build the
model. To create the best performing model, the selection of base classifiers and vote counting rules
are discussed.
Results:
The proposed model achieved 93.4% accuracy, 93.4% sensitivity and
91.7% specificity in the test set, which was better than any other method. A previous prediction of
bioluminescent proteins in three lineages was also improved using the model building method,
resulting in greatly improved accuracy.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba Science City, Japan
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Shuguang Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
30
|
Zhang ZM, Guan ZX, Wang F, Zhang D, Ding H. Application of Machine Learning Methods in Predicting Nuclear Receptors and their Families. Med Chem 2021; 16:594-604. [PMID: 31584374 DOI: 10.2174/1573406415666191004125551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/18/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022]
Abstract
Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that are closely related to cell development, differentiation, reproduction, homeostasis, and metabolism. According to the alignments of the conserved domains, NRs are classified and assigned the following seven subfamilies or eight subfamilies: (1) NR1: thyroid hormone like (thyroid hormone, retinoic acid, RAR-related orphan receptor, peroxisome proliferator activated, vitamin D3- like), (2) NR2: HNF4-like (hepatocyte nuclear factor 4, retinoic acid X, tailless-like, COUP-TFlike, USP), (3) NR3: estrogen-like (estrogen, estrogen-related, glucocorticoid-like), (4) NR4: nerve growth factor IB-like (NGFI-B-like), (5) NR5: fushi tarazu-F1 like (fushi tarazu-F1 like), (6) NR6: germ cell nuclear factor like (germ cell nuclear factor), and (7) NR0: knirps like (knirps, knirpsrelated, embryonic gonad protein, ODR7, trithorax) and DAX like (DAX, SHP), or dividing NR0 into (7) NR7: knirps like and (8) NR8: DAX like. Different NRs families have different structural features and functions. Since the function of a NR is closely correlated with which subfamily it belongs to, it is highly desirable to identify NRs and their subfamilies rapidly and effectively. The knowledge acquired is essential for a proper understanding of normal and abnormal cellular mechanisms. With the advent of the post-genomics era, huge amounts of sequence-known proteins have increased explosively. Conventional methods for accurately classifying the family of NRs are experimental means with high cost and low efficiency. Therefore, it has created a greater need for bioinformatics tools to effectively recognize NRs and their subfamilies for the purpose of understanding their biological function. In this review, we summarized the application of machine learning methods in the prediction of NRs from different aspects. We hope that this review will provide a reference for further research on the classification of NRs and their families.
Collapse
Affiliation(s)
- Zi-Mei Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zheng-Xing Guan
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fang Wang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dan Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
31
|
Awais M, Hussain W, Khan YD, Rasool N, Khan SA, Chou KC. iPhosH-PseAAC: Identify Phosphohistidine Sites in Proteins by Blending Statistical Moments and Position Relative Features According to the Chou's 5-Step Rule and General Pseudo Amino Acid Composition. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:596-610. [PMID: 31144645 DOI: 10.1109/tcbb.2019.2919025] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein phosphorylation is one of the key mechanism in prokaryotes and eukaryotes and is responsible for various biological functions such as protein degradation, intracellular localization, the multitude of cellular processes, molecular association, cytoskeletal dynamics, and enzymatic inhibition/activation. Phosphohistidine (PhosH) has a key role in a number of biological processes, including central metabolism to signalling in eukaryotes and bacteria. Thus, identification of phosphohistidine sites in a protein sequence is crucial, and experimental identification can be expensive, time-taking, and laborious. To address this problem, here, we propose a novel computational model namely iPhosH-PseAAC for prediction of phosphohistidine sites in a given protein sequence using pseudo amino acid composition (PseAAC), statistical moments, and position relative features. The results of the proposed predictor are validated through self-consistency testing, 10-fold cross-validation, and jackknife testing. The self-consistency validation gave the 100 percent accuracy, whereas, for cross-validation, the accuracy achieved is 94.26 percent. Moreover, jackknife testing gave 97.07 percent accuracy for the proposed model. Thus, the proposed model iPhosH-PseAAC for prediction of iPhosH site has the great ability to predict the PhosH sites in given proteins.
Collapse
|
32
|
Fang Z, Zhou H. VirionFinder: Identification of Complete and Partial Prokaryote Virus Virion Protein From Virome Data Using the Sequence and Biochemical Properties of Amino Acids. Front Microbiol 2021; 12:615711. [PMID: 33613485 PMCID: PMC7894196 DOI: 10.3389/fmicb.2021.615711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Viruses are some of the most abundant biological entities on Earth, and prokaryote virus are the dominant members of the viral community. Because of the diversity of prokaryote virus, functional annotation cannot be performed on a large number of genes from newly discovered prokaryote virus by searching the current database; therefore, the development of an alignment-free algorithm for functional annotation of prokaryote virus proteins is important to understand the viral community. The identification of prokaryote virus proteins (PVVPs) is a critical step for many viral analyses, such as species classification, phylogenetic analysis and the exploration of how prokaryote virus interact with their hosts. Although a series of PVVP prediction tools have been developed, the performance of these tools is still not satisfactory. Moreover, viral metagenomic data contains fragmented sequences, leading to the existence of some incomplete genes. Therefore, a tool that can identify partial prokaryote virus proteins is also needed. In this work, we present a novel algorithm, called VirionFinder, to identify the complete and partial PVVPs from non-prokaryote virus virion proteins (non-PVVPs). VirionFinder uses the sequence and biochemical properties of 20 amino acids as the mathematical model to encode the protein sequences and uses a deep learning technique to identify whether a given protein is a PVVP. Compared with the state-of-the-art tools using artificial benchmark datasets, the results show that under the same specificity (Sp), the sensitivity (Sn) of VirionFinder is approximately 10-34% much higher than the Sn of these tools on both complete and partial proteins. When evaluating related tools using real virome data, the recognition rate of PVVP-like sequences of VirionFinder is also much higher than that of the other tools. We expect that VirionFinder will be a powerful tool for identifying novel virion proteins from both complete prokaryote virus genomes and viral metagenomic data. VirionFinder is freely available at https://github.com/zhenchengfang/VirionFinder.
Collapse
Affiliation(s)
- Zhencheng Fang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Khan YD, Alzahrani E, Alghamdi W, Ullah MZ. Sequence-based Identification of Allergen Proteins Developed by Integration of PseAAC and Statistical Moments via 5-Step Rule. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200424085947] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background:
Allergens are antigens that can stimulate an atopic type I human
hypersensitivity reaction by an immunoglobulin E (IgE) reaction. Some proteins are naturally
allergenic than others. The challenge for toxicologists is to identify properties that allow proteins
to cause allergic sensitization and allergic diseases. The identification of allergen proteins is a very
critical and pivotal task. The experimental identification of protein functions is a hectic, laborious
and costly task; therefore, computer scientists have proposed various methods in the field of
computational biology and bioinformatics using various data science approaches. Objectives:
Herein, we report a novel predictor for the identification of allergen proteins.
Methods:
For feature extraction, statistical moments and various position-based features have been
incorporated into Chou’s pseudo amino acid composition (PseAAC), and are used for training of a
neural network.
Results:
The predictor is validated through 10-fold cross-validation and Jackknife testing, which
gave 99.43% and 99.87% accurate results.
Conclusions:
Thus, the proposed predictor can help in predicting the Allergen proteins in an
efficient and accurate way and can provide baseline data for the discovery of new drugs and
biomarkers.
Collapse
Affiliation(s)
- Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, C II Johar Town, Lahore 54770, Pakistan
| | - Ebraheem Alzahrani
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 80221, Jeddah, Saudi Arabia
| | - Malik Zaka Ullah
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
34
|
Feng P, Liu W, Huang C, Tang Z. Classifying the superfamily of small heat shock proteins by using g-gap dipeptide compositions. Int J Biol Macromol 2020; 167:1575-1578. [PMID: 33212104 DOI: 10.1016/j.ijbiomac.2020.11.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 01/16/2023]
Abstract
Small heat shock protein (sHSP) is a superfamily of molecular chaperone and is found from archaea to human. Recent researches have demonstrated that sHSPs participate in a series of biological processes and are even closely associated with serious diseases. Since sHSP is a very large superfamily and members from different superfamilies exhibit distinct functions, accurate classification of the subfamily of sHSP will be helpful for unrevealing its functions. In the present work, a support vector machine-based method was proposed to classify the subfamily of sHSPs. In the 10-fold cross validation test, an overall accuracy of 93.25% was obtained for classifying the subfamily of sHSPs. The superiority of the proposed method was also demonstrated by comparing it with the other methods. It is anticipated that the proposed method will become a useful tool for classifying the subfamily of sHSPs.
Collapse
Affiliation(s)
- Pengmian Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China.
| | - Weiwei Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Cong Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Zhaohui Tang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| |
Collapse
|
35
|
Yang L, Gao H, Wu K, Zhang H, Li C, Tang L. Identification of Cancerlectins By Using Cascade Linear Discriminant Analysis and Optimal g-gap Tripeptide Composition. Curr Bioinform 2020. [DOI: 10.2174/1574893614666190730103156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background:
Lectins are a diverse group of glycoproteins or glycoconjugate proteins
that can be extracted from plants, invertebrates and higher animals. Cancerlectins, a kind of lectins,
which play a key role in the process of tumor cells interacting with each other and are being employed
as therapeutic agents. A full understanding of cancerlectins is significant because it provides
a tool for the future direction of cancer therapy.
Objective:
To develop an accurate and practically useful timesaving tool to identify cancerlectins.
A novel sequence-based method is proposed along with a correlative webserver to access the proposed
tool.
Methods:
Firstly, protein features were extracted in a newly feature building way termed, g-gap
tripeptide composition. After which a proposed cascade linear discriminant analysis (Cascade
LDA) is used to alleviate the high dimensional difficulties with the Analysis Of Variance (ANOVA)
as a feature importance criterion. Finally, Support Vector Machine (SVM) is used as the classifier
to identify cancerlectins.
Results:
The proposed method achieved an accuracy of 91.34% with sensitivity of 89.89%, specificity
of 92.48% and an 0.8318 Mathew’s correlation coefficient based on only 13 fusion features
in jackknife cross validation, the result of which is superior to other published methods in this domain.
Conclusion:
In this study, a new method based only on primary structure of protein is proposed
and experimental results show that it could be a promising tool to identify cancerlectins. An openaccess
webserver is made available in this work to facilitate other related works.
Collapse
Affiliation(s)
- Liangwei Yang
- Center for Informational Biology, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Gao
- Center for Informational Biology, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Keyu Wu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Haotian Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Changyu Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lixia Tang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
36
|
Cantu VA, Salamon P, Seguritan V, Redfield J, Salamon D, Edwards RA, Segall AM. PhANNs, a fast and accurate tool and web server to classify phage structural proteins. PLoS Comput Biol 2020; 16:e1007845. [PMID: 33137102 PMCID: PMC7660903 DOI: 10.1371/journal.pcbi.1007845] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/12/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
For any given bacteriophage genome or phage-derived sequences in metagenomic data sets, we are unable to assign a function to 50–90% of genes, or more. Structural protein-encoding genes constitute a large fraction of the average phage genome and are among the most divergent and difficult-to-identify genes using homology-based methods. To understand the functions encoded by phages, their contributions to their environments, and to help gauge their utility as potential phage therapy agents, we have developed a new approach to classify phage ORFs into ten major classes of structural proteins or into an “other” category. The resulting tool is named PhANNs (Phage Artificial Neural Networks). We built a database of 538,213 manually curated phage protein sequences that we split into eleven subsets (10 for cross-validation, one for testing) using a novel clustering method that ensures there are no homologous proteins between sets yet maintains the maximum sequence diversity for training. An Artificial Neural Network ensemble trained on features extracted from those sets reached a test F1-score of 0.875 and test accuracy of 86.2%. PhANNs can rapidly classify proteins into one of the ten structural classes or, if not predicted to fall in one of the ten classes, as “other,” providing a new approach for functional annotation of phage proteins. PhANNs is open source and can be run from our web server or installed locally. Bacteriophages (phages, viruses that infect bacteria) are the most abundant biological entity on Earth. They outnumber bacteria by a factor of ten. As phages are very different from each other and from bacteria, and we have relatively few phage genes in our database compared to bacterial genes, we are unable to assign function to 50–90% of phage genes. In this work, we developed PhANNs, a machine learning tool that can classify a phage gene as one of ten structural roles, or “other”. This approach does not require a similar gene to be known.
Collapse
Affiliation(s)
- Vito Adrian Cantu
- Computational Science Research Center, San Diego State University, San Diego, United States of America
- Viral Information Institute, San Diego State University, San Diego, United States of America
| | - Peter Salamon
- Viral Information Institute, San Diego State University, San Diego, United States of America
- Department of Mathematics and Statistics, San Diego State University, San Diego, United States of America
| | - Victor Seguritan
- Computational Science Research Center, San Diego State University, San Diego, United States of America
| | - Jackson Redfield
- Department of Biology, San Diego State University, San Diego, United States of America
| | - David Salamon
- Department of Mathematics and Statistics, San Diego State University, San Diego, United States of America
| | - Robert A. Edwards
- Computational Science Research Center, San Diego State University, San Diego, United States of America
- Viral Information Institute, San Diego State University, San Diego, United States of America
- Department of Biology, San Diego State University, San Diego, United States of America
| | - Anca M. Segall
- Computational Science Research Center, San Diego State University, San Diego, United States of America
- Viral Information Institute, San Diego State University, San Diego, United States of America
- Department of Biology, San Diego State University, San Diego, United States of America
- * E-mail:
| |
Collapse
|
37
|
Sequence based prediction of pattern recognition receptors by using feature selection technique. Int J Biol Macromol 2020; 162:931-934. [DOI: 10.1016/j.ijbiomac.2020.06.234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/04/2023]
|
38
|
Meng C, Wu J, Guo F, Dong B, Xu L. CWLy-pred: A novel cell wall lytic enzyme identifier based on an improved MRMD feature selection method. Genomics 2020; 112:4715-4721. [DOI: 10.1016/j.ygeno.2020.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 10/25/2022]
|
39
|
Amanat S, Ashraf A, Hussain W, Rasool N, Khan YD. Identification of Lysine Carboxylation Sites in Proteins by Integrating Statistical Moments and Position Relative Features via General PseAAC. Curr Bioinform 2020. [DOI: 10.2174/1574893614666190723114923] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background:
Carboxylation is one of the most biologically important post-translational
modifications and occurs on lysine, arginine, and glutamine residues of a protein. Among all these
three, the covalent attachment of the carboxyl group with the lysine side chain is the most frequent
and biologically important type of carboxylation. For studying such biological functions, it is essential
to correctly determine the lysine sites sensitive to carboxylation.
Objective:
Herein, we present a computational model for the prediction of the carboxylysine site
which is based on machine learning.
Methods:
Various position and composition relative features have been incorporated into the Pse-
AAC for construction of feature vectors and a neural network is employed as a classifier. The
model is validated by jackknife, cross-validation, self-consistency, and independent testing.
Results:
The results of the self-consistency test elaborated that model has 99.76% Acc, 99.76% Sp,
99.76% Sp, and 0.99 MCC. Using the jackknife method, prediction model validation gave 97.07%
Acc, while for 10-fold cross-validation, prediction model validation gave 95.16% Acc.
Conclusion:
The results of independent dataset testing were 94.3% which illustrated that the proposed
model has better performance as compared to the existing model PreLysCar; however, the
accuracy can be improved further, in the future, due to the increasing number of carboxylysine
sites in proteins.
Collapse
Affiliation(s)
- Saba Amanat
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Adeel Ashraf
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Waqar Hussain
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Nouman Rasool
- Department of Life Sciences, School of Science University of Management and Technology, Lahore, Pakistan
| | - Yaser D. Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
40
|
Chen YM, Zu XP, Li D. Identification of Proteins of Tobacco Mosaic Virus by Using a Method of Feature Extraction. Front Genet 2020; 11:569100. [PMID: 33193664 PMCID: PMC7581905 DOI: 10.3389/fgene.2020.569100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/09/2020] [Indexed: 12/03/2022] Open
Abstract
Tobacco mosaic virus, TMV for short, is widely distributed in the global tobacco industry and has a significant impact on tobacco production. It can reduce the amount of tobacco grown by 50-70%. In this research of study, we aimed to identify tobacco mosaic virus proteins and healthy tobacco leaf proteins by using machine learning approaches. The experiment's results showed that the support vector machine algorithm achieved high accuracy in different feature extraction methods. And 188-dimensions feature extraction method improved the classification accuracy. In that the support vector machine algorithm and 188-dimensions feature extraction method were finally selected as the final experimental methods. In the 10-fold cross-validation processes, the SVM combined with 188-dimensions achieved 93.5% accuracy on the training set and 92.7% accuracy on the independent validation set. Besides, the evaluation index of the results of experiments indicate that the method developed by us is valid and robust.
Collapse
Affiliation(s)
| | | | - Dan Li
- Information and Computer Engineering College, Northeast Forestry University, Harbin, China
| |
Collapse
|
41
|
Chen W, Nie F, Ding H. Recent Advances of Computational Methods for Identifying Bacteriophage Virion Proteins. Protein Pept Lett 2020; 27:259-264. [PMID: 30968770 DOI: 10.2174/0929866526666190410124642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/07/2019] [Accepted: 04/01/2019] [Indexed: 01/09/2023]
Abstract
Phage Virion Proteins (PVP) are essential materials of bacteriophage, which participate in a series of biological processes. Accurate identification of phage virion proteins is helpful to understand the mechanism of interaction between the phage and its host bacteria. Since experimental method is labor intensive and time-consuming, in the past few years, many computational approaches have been proposed to identify phage virion proteins. In order to facilitate researchers to select appropriate methods, it is necessary to give a comprehensive review and comparison on existing computational methods on identifying phage virion proteins. In this review, we summarized the existing computational methods for identifying phage virion proteins and also assessed their performances on an independent dataset. Finally, challenges and future perspectives for identifying phage virion proteins were presented. Taken together, we hope that this review could provide clues to researches on the study of phage virion proteins.
Collapse
Affiliation(s)
- Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China.,Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Fulei Nie
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
42
|
Xu L, Liang G, Chen B, Tan X, Xiang H, Liao C. A Computational Method for the Identification of Endolysins and Autolysins. Protein Pept Lett 2020; 27:329-336. [PMID: 31577192 DOI: 10.2174/0929866526666191002104735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/27/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. OBJECTIVE In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. METHODS We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. RESULTS Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. CONCLUSION The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.
Collapse
Affiliation(s)
- Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Guangmin Liang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Baowen Chen
- School of Software, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Xu Tan
- School of Software, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Huaikun Xiang
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Changrui Liao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
43
|
Chen W, Feng P, Nie F. iATP: A Sequence Based Method for Identifying Anti-tubercular Peptides. Med Chem 2020; 16:620-625. [DOI: 10.2174/1573406415666191002152441] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022]
Abstract
Background:
Tuberculosis is one of the biggest threats to human health. Recent studies
have demonstrated that anti-tubercular peptides are promising candidates for the discovery of new
anti-tubercular drugs. Since experimental methods are still labor intensive, it is highly desirable to
develop automatic computational methods to identify anti-tubercular peptides from the huge
amount of natural and synthetic peptides. Hence, accurate and fast computational methods are
highly needed.
Methods and Results:
In this study, a support vector machine based method was proposed to identify
anti-tubercular peptides, in which the peptides were encoded by using the optimal g-gap dipeptide
compositions. Comparative results demonstrated that our method outperforms existing methods
on the same benchmark dataset. For the convenience of scientific community, a freely accessible
web-server was built, which is available at http://lin-group.cn/server/iATP.
Conclusion:
It is anticipated that the proposed method will become a useful tool for identifying
anti-tubercular peptides.
Collapse
Affiliation(s)
- Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Pengmian Feng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Fulei Nie
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
44
|
Feng P, Feng L. Recent Advances on Antioxidant Identification Based on Machine Learning Methods. Curr Drug Metab 2020; 21:804-809. [PMID: 32682368 DOI: 10.2174/1389200221666200719001449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Antioxidants are molecules that can prevent damages to cells caused by free radicals. Recent studies also demonstrated that antioxidants play roles in preventing diseases. However, the number of known molecules with antioxidant activity is very small. Therefore, it is necessary to identify antioxidants from various resources. In the past several years, a series of computational methods have been proposed to identify antioxidants. In this review, we briefly summarized recent advances in computationally identifying antioxidants. The challenges and future perspectives for identifying antioxidants were also discussed. We hope this review will provide insights into researches on antioxidant identification.
Collapse
Affiliation(s)
- Pengmian Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Lijing Feng
- School of Sciences, North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
45
|
Zhang D, Guan ZX, Zhang ZM, Li SH, Dao FY, Tang H, Lin H. Recent Development of Computational Predicting Bioluminescent Proteins. Curr Pharm Des 2020; 25:4264-4273. [PMID: 31696804 DOI: 10.2174/1381612825666191107100758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
Bioluminescent Proteins (BLPs) are widely distributed in many living organisms that act as a key role of light emission in bioluminescence. Bioluminescence serves various functions in finding food and protecting the organisms from predators. With the routine biotechnological application of bioluminescence, it is recognized to be essential for many medical, commercial and other general technological advances. Therefore, the prediction and characterization of BLPs are significant and can help to explore more secrets about bioluminescence and promote the development of application of bioluminescence. Since the experimental methods are money and time-consuming for BLPs identification, bioinformatics tools have played important role in fast and accurate prediction of BLPs by combining their sequences information with machine learning methods. In this review, we summarized and compared the application of machine learning methods in the prediction of BLPs from different aspects. We wish that this review will provide insights and inspirations for researches on BLPs.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zheng-Xing Guan
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zi-Mei Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shi-Hao Li
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fu-Ying Dao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hua Tang
- Department of Pathophysiology, Southwest Medical University, Luzhou 646000, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
46
|
Abstract
Background:Pseudouridine (Ψ) is the most abundant RNA modification and has important functions in a series of biological and cellular processes. Although experimental techniques have made great contributions to identify Ψ sites, they are still labor-intensive and costineffective. In the past few years, a series of computational approaches have been developed, which provided rapid and efficient approaches to identify Ψ sites.Results:To provide the readership with a clear landscape about the recent development in this important area, in this review, we summarized and compared the representative computational approaches developed for identifying Ψ sites. Moreover, future directions in computationally identifying Ψ sites were discussed as well.Conclusion:We anticipate that this review will provide novel insights into the researches on pseudouridine modification.
Collapse
Affiliation(s)
- Wei Chen
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063210, China
| | - Kewei Liu
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
47
|
Wang C, Zhang Y, Han S. Its2vec: Fungal Species Identification Using Sequence Embedding and Random Forest Classification. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2468789. [PMID: 32566672 PMCID: PMC7275950 DOI: 10.1155/2020/2468789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
Fungi play essential roles in many ecological processes, and taxonomic classification is fundamental for microbial community characterization and vital for the study and preservation of fungal biodiversity. To cope with massive fungal barcode data, tools that can implement extensive volumes of barcode sequences, especially the internal transcribed spacer (ITS) region, are necessary. However, high variation in the ITS region and computational requirements for processing high-dimensional features remain challenging for existing predictors. In this study, we developed Its2vec, a bioinformatics tool for the classification of fungal ITS barcodes to the species level. An ITS database covering more than 25,000 species in a broad range of fungal taxa was assembled. For dimensionality reduction, a word embedding algorithm was used to represent an ITS sequence as a dense low-dimensional vector. A random forest-based classifier was built for species identification. Benchmarking results showed that our model achieved an accuracy comparable to that of several state-of-the-art predictors, and more importantly, it could implement large datasets and greatly reduce dimensionality. We expect the Its2vec model to be helpful for fungal species identification and, thus, for revealing microbial community structures and in deepening our understanding of their functional mechanisms.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin 150088, China
| | - Shuguang Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 60054, China
| |
Collapse
|
48
|
Feng CQ, Zhang ZY, Zhu XJ, Lin Y, Chen W, Tang H, Lin H. iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics 2020; 35:1469-1477. [PMID: 30247625 DOI: 10.1093/bioinformatics/bty827] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
MOTIVATION Transcription termination is an important regulatory step of gene expression. If there is no terminator in gene, transcription could not stop, which will result in abnormal gene expression. Detecting such terminators can determine the operon structure in bacterial organisms and improve genome annotation. Thus, accurate identification of transcriptional terminators is essential and extremely important in the research of transcription regulations. RESULTS In this study, we developed a new predictor called 'iTerm-PseKNC' based on support vector machine to identify transcription terminators. The binomial distribution approach was used to pick out the optimal feature subset derived from pseudo k-tuple nucleotide composition (PseKNC). The 5-fold cross-validation test results showed that our proposed method achieved an accuracy of 95%. To further evaluate the generalization ability of 'iTerm-PseKNC', the model was examined on independent datasets which are experimentally confirmed Rho-independent terminators in Escherichia coli and Bacillus subtilis genomes. As a result, all the terminators in E. coli and 87.5% of the terminators in B. subtilis were correctly identified, suggesting that the proposed model could become a powerful tool for bacterial terminator recognition. AVAILABILITY AND IMPLEMENTATION For the convenience of most of wet-experimental researchers, the web-server for 'iTerm-PseKNC' was established at http://lin-group.cn/server/iTerm-PseKNC/, by which users can easily obtain their desired result without the need to go through the detailed mathematical equations involved.
Collapse
Affiliation(s)
- Chao-Qin Feng
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao-Yue Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Juan Zhu
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Chen
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Hua Tang
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
49
|
iterb-PPse: Identification of transcriptional terminators in bacterial by incorporating nucleotide properties into PseKNC. PLoS One 2020; 15:e0228479. [PMID: 32413030 PMCID: PMC7228126 DOI: 10.1371/journal.pone.0228479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/01/2020] [Indexed: 11/19/2022] Open
Abstract
Terminator is a DNA sequence that gives the RNA polymerase the transcriptional termination signal. Identifying terminators correctly can optimize the genome annotation, more importantly, it has considerable application value in disease diagnosis and therapies. However, accurate prediction methods are deficient and in urgent need. Therefore, we proposed a prediction method "iterb-PPse" for terminators by incorporating 47 nucleotide properties into PseKNC-Ⅰ and PseKNC-Ⅱ and utilizing Extreme Gradient Boosting to predict terminators based on Escherichia coli and Bacillus subtilis. Combing with the preceding methods, we employed three new feature extraction methods K-pwm, Base-content, Nucleotidepro to formulate raw samples. The two-step method was applied to select features. When identifying terminators based on optimized features, we compared five single models as well as 16 ensemble models. As a result, the accuracy of our method on benchmark dataset achieved 99.88%, higher than the existing state-of-the-art predictor iTerm-PseKNC in 100 times five-fold cross-validation test. Its prediction accuracy for two independent datasets reached 94.24% and 99.45% respectively. For the convenience of users, we developed a software on the basis of "iterb-PPse" with the same name. The open software and source code of "iterb-PPse" are available at https://github.com/Sarahyouzi/iterb-PPse.
Collapse
|
50
|
Hussain W, Rasool N, Khan YD. A Sequence-Based Predictor of Zika Virus Proteins Developed by Integration of PseAAC and Statistical Moments. Comb Chem High Throughput Screen 2020; 23:797-804. [PMID: 32342804 DOI: 10.2174/1386207323666200428115449] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND ZIKV has been a well-known global threat, which hits almost all of the American countries and posed a serious threat to the entire globe in 2016. The first outbreak of ZIKV was reported in 2007 in the Pacific area, followed by another severe outbreak, which occurred in 2013/2014 and subsequently, ZIKV spread to all other Pacific islands. A broad spectrum of ZIKV associated neurological malformations in neonates and adults has driven this deadly virus into the limelight. Though tremendous efforts have been focused on understanding the molecular basis of ZIKV, the viral proteins of ZIKV have still not been studied extensively. OBJECTIVES Herein, we report the first and the novel predictor for the identification of ZIKV proteins. METHODS We have employed Chou's pseudo amino acid composition (PseAAC), statistical moments and various position-based features. RESULTS The predictor is validated through 10-fold cross-validation and Jackknife testing. In 10- fold cross-validation, 94.09% accuracy, 93.48% specificity, 94.20% sensitivity and 0.80 MCC were achieved while in Jackknife testing, 96.62% accuracy, 94.57% specificity, 97.00% sensitivity and 0.88 MCC were achieved. CONCLUSION Thus, ZIKVPred-PseAAC can help in predicting the ZIKV proteins efficiently and accurately and can provide baseline data for the discovery of new drugs and biomarkers against ZIKV.
Collapse
Affiliation(s)
- Waqar Hussain
- National Center of Artificial Intelligence, Punjab University College of Information Technology, University of the
Punjab, Lahore, Pakistan,Center for Professional Studies, Lahore, Pakistan
| | | | - Yaser D Khan
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|