1
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Liu Z, Liu J, Wang W, An X, Luo L, Yu D, Sun W. Epigenetic modification in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1133970. [PMID: 37455912 PMCID: PMC10348754 DOI: 10.3389/fendo.2023.1133970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common microangiopathy in diabetic patients and the main cause of death in diabetic patients. The main manifestations of DKD are proteinuria and decreased renal filtration capacity. The glomerular filtration rate and urinary albumin level are two of the most important hallmarks of the progression of DKD. The classical treatment of DKD is controlling blood glucose and blood pressure. However, the commonly used clinical therapeutic strategies and the existing biomarkers only partially slow the progression of DKD and roughly predict disease progression. Therefore, novel therapeutic methods, targets and biomarkers are urgently needed to meet clinical requirements. In recent years, increasing attention has been given to the role of epigenetic modification in the pathogenesis of DKD. Epigenetic variation mainly includes DNA methylation, histone modification and changes in the noncoding RNA expression profile, which are deeply involved in DKD-related inflammation, oxidative stress, hemodynamics, and the activation of abnormal signaling pathways. Since DKD is reversible at certain disease stages, it is valuable to identify abnormal epigenetic modifications as early diagnosis and treatment targets to prevent the progression of end-stage renal disease (ESRD). Because the current understanding of the epigenetic mechanism of DKD is not comprehensive, the purpose of this review is to summarize the role of epigenetic modification in the occurrence and development of DKD and evaluate the value of epigenetic therapies in DKD.
Collapse
Affiliation(s)
- Zhe Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiahui Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wanning Wang
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Li M, Zhang T, Chen W. Development of necroptosis-related gene signature to predict the prognosis of colon adenocarcinoma. Front Genet 2022; 13:1051800. [PMID: 36353119 PMCID: PMC9639779 DOI: 10.3389/fgene.2022.1051800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2025] Open
Abstract
Colon adenocarcinoma (COAD) is a common malignancy and has a high mortality rate. However, the current tumor node metastasis (TNM) staging system is inadequate for prognostic assessment of COAD patients. Therefore, there is an urgent need to identify reliable biomarkers for the prognosis COAD patients. The aberrant expression of necroptosis-related genes (NRGs) is reported to be associated with tumorigenesis and metastasis. In the present work, we compared the expression profiles of NRGs between COAD patients and normal individuals. Based on seven differentially expressed NRGs, a risk score was defined to predict the prognosis of COAD patients. The validation results from both training and independent external cohorts demonstrated that the risk score is able to distinguish the high and low risk COAD patients with higher accuracies, and is independent of the other clinical factors. To facilitate its clinical use, by integrating the proposed risk score, a nomogram was built to predict the risk of individual COAD patients. The C-index of the nomogram is 0.75, indicating the reliability of the nomogram in predicting survival rates. Furthermore, two candidate drugs, namely dapsone and xanthohumol, were screed out and validated by molecular docking, which hold the potential for the treatment of COAD. These results will provide novel clues for the diagnosis and treatment of COAD.
Collapse
Affiliation(s)
- Miaomiao Li
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Tianyang Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Wei Chen
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Kushwaha K, Garg SS, Gupta J. Targeting epigenetic regulators for treating diabetic nephropathy. Biochimie 2022; 202:146-158. [PMID: 35985560 DOI: 10.1016/j.biochi.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Diabetes is accompanied by the worsening of kidney functions. The reasons for kidney dysfunction mainly include high blood pressure (BP), high blood sugar levels, and genetic makeup. Vascular complications are the leading cause of the end-stage renal disorder (ESRD) and death of diabetic patients. Epigenetics has emerged as a new area to explain the inheritance of non-mendelian conditions like diabetic kidney diseases. Aberrant post-translational histone modifications (PTHMs), DNA methylation (DNAme), and miRNA constitute major epigenetic mechanisms that progress diabetic nephropathy (DN). Increased blood sugar levels alter PTHMs, DNAme, and miRNA in kidney cells results in aberrant gene expression that causes fibrosis, accumulation of extracellular matrix (ECM), increase in reactive oxygen species (ROS), and renal injuries. Histone acetylation (HAc) and histone deacetylation (HDAC) are the most studied epigenetic modifications with implications in the occurrence of kidney disorders. miRNAs induced by hyperglycemia in renal cells are also responsible for ECM accumulation and dysfunction of the glomerulus. In this review, we highlight the role of epigenetic modifications in DN progression and current strategies employed to ameliorate DN.
Collapse
Affiliation(s)
- Kriti Kushwaha
- Department of Biotechnology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara, Punjab, India
| | - Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
5
|
Svikle Z, Peterfelde B, Sjakste N, Baumane K, Verkauskiene R, Jeng CJ, Sokolovska J. Ubiquitin-proteasome system in diabetic retinopathy. PeerJ 2022; 10:e13715. [PMID: 35873915 PMCID: PMC9306563 DOI: 10.7717/peerj.13715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/21/2022] [Indexed: 01/22/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes, being the most prevalent reason for blindness among the working-age population in the developed world. Despite constant improvement of understanding of the pathogenesis of DR, identification of novel biomarkers of DR is needed for improvement of patient risk stratification and development of novel prevention and therapeutic approaches. The ubiquitin-proteasome system (UPS) is the primary protein quality control system responsible for recognizing and degrading of damaged proteins. This review aims to summarize literature data on modifications of UPS in diabetes and DR. First, we briefly review the structure and functions of UPS in physiological conditions. We then describe how UPS is involved in the development and progression of diabetes and touch upon the association of UPS genetic factors with diabetes and its complications. Further, we focused on the effect of diabetes-induced hyperglycemia, oxidative stress and hypoxia on UPS functioning, with examples of studies on DR. In other sections, we discussed the association of several other mechanisms of DR (endoplasmic reticulum stress, neurodegeneration etc) with UPS modifications. Finally, UPS-affecting drugs and remedies are reviewed. This review highlights UPS as a promising target for the development of therapies for DR prevention and treatment and identifies gaps in existing knowledge and possible future study directions.
Collapse
Affiliation(s)
- Zane Svikle
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Beate Peterfelde
- Faculty of Medicine, University of Latvia, Riga, Latvia,Ophthalmology Department, Riga East University Hospital, Riga, Latvia
| | | | - Kristine Baumane
- Faculty of Medicine, University of Latvia, Riga, Latvia,Ophthalmology Department, Riga East University Hospital, Riga, Latvia
| | - Rasa Verkauskiene
- Institute of Endocrinology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Chi-Juei Jeng
- Ophthalmology Department, Taipei Medical University Shuang Ho Hospital, Ministry of Health and Welfare, Taipei, The Republic of China (Taiwan),College of Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
6
|
The Role of Epigenetic Modifications in Late Complications in Type 1 Diabetes. Genes (Basel) 2022; 13:genes13040705. [PMID: 35456511 PMCID: PMC9029845 DOI: 10.3390/genes13040705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Type 1 diabetes is a chronic autoimmune disease in which the destruction of pancreatic β cells leads to hyperglycemia. The prevention of hyperglycemia is very important to avoid or at least postpone the development of micro- and macrovascular complications, also known as late complications. These include diabetic retinopathy, chronic renal failure, diabetic neuropathy, and cardiovascular diseases. The impact of long-term hyperglycemia has been shown to persist long after the normalization of blood glucose levels, a phenomenon known as metabolic memory. It is believed that epigenetic mechanisms such as DNA methylation, histone modifications, and microRNAs, play an important role in metabolic memory. The aim of this review is to address the impact of long-term hyperglycemia on epigenetic marks in late complications of type 1 diabetes.
Collapse
|
7
|
Pei HJ, Yang J, Hu FX, Chen YZ, Yang CH. Tribulus terrestris L. protects glomerular endothelial cells via the miR155-H2AC6 interaction network in hypertensive renal injury. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1626. [PMID: 34926670 PMCID: PMC8640897 DOI: 10.21037/atm-21-5641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 01/31/2023]
Abstract
Background Hypertensive renal injury is one of the most lethal complications of hypertension. At present, renin-angiotensin-aldosterone system (RAAS) blockers are considered the best drugs for the treatment of renal injury in hypertension because of their nephroprotective effect of reducing proteinuria, but there are no specific drugs for this purpose, however, clinical trials proved that Chinese medicine has a protective effect on target organs in the treatment of hypertension. Tribulus terrestris L. (TrT), a traditional Chinese medicine (TCM), has potential applications due to its reno-protective and immunomodulatory effects. Methods We investigated the underlying reno-protective mechanism of TrT on Angiotensin II (AngII)-induced hypertensive renal injury in glomerular endothelial cells by integrating the differential expression profiles of micro RNA (miRNA) and messenger RNA (mRNA) to construct a miRNA-mRNA interaction network associated with hypertensive kidney injury, followed by quantitative real-time polymerase chain reaction (qRT-PCR) for validation. Results Seventy-six differentially expressed mRNAs (DEmRNAs) and 1 differentially expressed miRNAs (DEmiRNAs) were identified in the control group and the AngII-induced hypertensive renal injury group, respectively. 110 DEmRNAs and 27 DEmiRNAs were identified in the TrT treatment group and the AngII-induced group, respectively. The core component of the miRNA-mRNA network was miR-155-5p. Our study showed that miR-155-5p expression levels were more decreased in the AngII-induced hypertensive renal injury group than the control group. TrT treatment also significantly upregulated miR-155-5p. Additionally, we found that miR-155-5p expression levels were negatively correlated with H2A clustered histone 6 (H2AC6). Conclusions The results of this study indicate that TrT has a reno-protective effect on AngII-induced hypertensive renal injury by miR-155-5p, which negatively regulates the expression of H2AC6. Our findings offer a new therapeutic strategy and have identified an effective candidate target for the treatment of hypertensive renal injury in clinical settings.
Collapse
Affiliation(s)
- Hui-Juan Pei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang-Xiao Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong-Zhi Chen
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuan-Hua Yang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Zhang T, Li J, Liu CP, Guo M, Gao CL, Zhou LP, Long Y, Xu Y. Butyrate ameliorates alcoholic fatty liver disease via reducing endotoxemia and inhibiting liver gasdermin D-mediated pyroptosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:873. [PMID: 34164507 PMCID: PMC8184481 DOI: 10.21037/atm-21-2158] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Alcoholic fatty liver disease (AFLD) is characterized by hepatic steatosis and carries an elevated risk of cirrhosis and hepatocellular carcinoma. However, the mechanism of AFLD has not been elucidated thoroughly, and there are still no efficient therapies in clinic. Notably, butyrate, one kind of short-chain fatty acids produced by gut microbiota, has been shown to improve methionine-choline-deficient diet-induced non-alcoholic steatohepatitis. And our previous study found that butyrate ameliorated endotoxemia in db/db mice. In this study, we aimed to explore the role of butyrate in the development of AFLD. Methods C57BL/6 mice were treated with saline (normal control), alcohol with or without butyrate by gavage for 6 months. AFLD was evaluated by the levels of serum alcohol, aspartate aminotransferase (AST), alanine transaminase (ALT), triglyceride (TG) and intrahepatic TG. And the histology and inflammation in liver and colon were analyzed using hematoxylin-eosin (H&E) staining, immunohistochemistry and western blot. In addition, gut microbiota composition was analyzed using the V3–V4 regions of the bacterial 16S ribosomal RNA gene by sequence. Furthermore, we performed in vitro experiment to verify the role of butyrate in hepatocyte by western blot and transmission electron microscopy. Results We found that butyrate ameliorated alcohol-induced hepatic steatosis and inflammation. Furthermore, chronic alcohol feeding induced dysbiosis and dysfunction of the gut microbiota, disrupted the intestinal barrier, and increased serum endotoxin levels. Meanwhile, butyrate improved the intestinal barrier disruption and endotoxemia induced by alcohol, but did not significantly alleviate the microbiome dysfunction. Mechanistically, butyrate ameliorated AFLD by inhibiting gasdermin D (GSDMD)-mediated pyroptosis. Conclusions In summary, we found butyrate ameliorated alcoholic fatty liver by down-regulating GSDMD-mediated pyroptosis. We speculate that butyrate improves AFLD mainly by maintaining intestinal barrier function and alleviating gut leakage. These findings suggest that butyrate may have the potential to serve as a novel treatment for AFLD.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jun Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Cui-Ping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Man Guo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chen-Lin Gao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lu-Ping Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Long
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| |
Collapse
|
9
|
Mao D, Cao H, Shi M, Wang CC, Kwong J, Li JJX, Hou Y, Ming X, Lee HM, Tian XY, Wong CK, Chow E, Kong APS, Lui VWY, Chan PKS, Chan JCN. Increased co-expression of PSMA2 and GLP-1 receptor in cervical cancer models in type 2 diabetes attenuated by Exendin-4: A translational case-control study. EBioMedicine 2021; 65:103242. [PMID: 33684886 PMCID: PMC7938253 DOI: 10.1016/j.ebiom.2021.103242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) increases the risk of many types of cancer. Dysregulation of proteasome-related protein degradation leads to tumorigenesis, while Exendin-4, a glucagon-like peptide 1 receptor (GLP-1R) agonist, possesses anti-cancer effects. METHODS We explored the co-expression of proteasome alpha 2 subunit (PSMA2) and GLP-1R in the Cancer Genome Atlas (TCGA) database and human cervical cancer specimens, supplemented by in vivo and in vitro studies using multiple cervical cancer cell lines. FINDINGS PSMA2 expression was increased in 12 cancer types in TCGA database and cervical cancer specimens from patients with T2D (T2D vs non-T2D: 3.22 (95% confidence interval CI: 1.38, 5.05) vs 1.00 (0.66, 1.34) fold change, P = 0.01). psma2-shRNA decreased cell proliferation in vitro, and tumour volume and Ki67 expression in vivo. Exendin-4 decreased psma2 expression, tumour volume and Ki67 expression in vivo. There was no change in GLP-1R expression in 12 cancer types in TCGA database. However, GLP-1R expression (T2D vs non-T2D: 5.49 (3.0, 8.1) vs 1.00 (0.5, 1.5) fold change, P < 0.001) was increased and positively correlated with PSMA2 expression in T2D-related (r = 0.68) but not in non-T2D-related cervical cancer specimens. This correlation was corroborated by in vitro experiments where silencing glp-1r decreased psma2 expression. Exendin-4 attenuated phospho-p65 and -IκB expression in the NF-κB pathway. INTERPRETATION PSMA2 and GLP-1R expression in T2D-related cervical cancer specimens was increased and positively correlated, suggesting hyperglycaemia might promote cancer growth by increasing PSMA2 expression which could be attenuated by Exendin-4. FUNDING This project was supported by Postdoctoral Fellowship Scheme, Direct Grant, Diabetes Research and Education Fund from the Chinese University of Hong Kong (CUHK).
Collapse
Affiliation(s)
- Dandan Mao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Huanyi Cao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Joseph Kwong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Joshua Jing Xi Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yong Hou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xing Ming
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Heung Man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Alice Pik Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul Kay Sheung Chan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Juliana Chung Ngor Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.
| |
Collapse
|
10
|
Zhang J, Hawkins LJ, Storey KB. DNA methylation and regulation of DNA methyltransferases in a freeze-tolerant vertebrate. Biochem Cell Biol 2019; 98:145-153. [PMID: 31116953 DOI: 10.1139/bcb-2019-0091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The wood frog is one of the few freeze-tolerance vertebrates. This is accomplished in part by the accumulation of cryoprotectant glucose, metabolic rate depression, and stress response activation. These may be achieved by mechanisms such as DNA methylation, which is typically associated with transcriptional repression. Hyperglycemia is also associated with modifications to epigenetic profiles, indicating an additional role that the high levels of glucose play in freeze tolerance. We sought to determine whether DNA methylation is affected during freezing exposure, and whether this is due to the wood frog's response to hyperglycemia. We examined global DNA methylation and DNA methyltransferases (DNMTs) in the liver and muscle of frozen and glucose-loaded wood frogs. The results showed that levels of 5-methylcytosine (5mC) increased in the muscle, suggesting elevated DNA methylation during freezing. DNMT activities also decreased in muscle during thawing, glucose loading, and in vitro glucose experiments. Liver DNMT activities were similar to muscle; however, a varied response to DNMT levels and a decrease in 5mC highlight the metabolic role the liver plays during freezing. Glucose was also shown to decrease DNMT activity levels in the wood frog, in vitro, elucidating a potentially novel regulatory mechanism. Together these results suggest an interplay between freeze tolerance and hyperglycemic regulation of DNA methylation.
Collapse
Affiliation(s)
- Jing Zhang
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Liam J Hawkins
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
11
|
Li Y, Evers J, Luo A, Erber L, Postler Z, Chen Y. A Quantitative Chemical Proteomics Approach for Site-specific Stoichiometry Analysis of Ubiquitination. Angew Chem Int Ed Engl 2018; 58:537-541. [DOI: 10.1002/anie.201810569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Yunan Li
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Jonathan Evers
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Zachary Postler
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| |
Collapse
|
12
|
Li Y, Evers J, Luo A, Erber L, Postler Z, Chen Y. A Quantitative Chemical Proteomics Approach for Site-specific Stoichiometry Analysis of Ubiquitination. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yunan Li
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Jonathan Evers
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Zachary Postler
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| |
Collapse
|
13
|
Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, Lai S, Jiang Y, Li H, Zeng X. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits β5i. Cell Death Dis 2018; 9:1031. [PMID: 30301930 PMCID: PMC6178343 DOI: 10.1038/s41419-018-1098-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 01/12/2023]
Abstract
The epithelial−mesenchymal transition (EMT) of podocytes had been reported to be involved in the glomerular fibrosis in diabetic kidney diseases, which was regulated by TGFβ and NFκB pathways. And apelin, an adipokine which is upregulated in diabetic kidney diseases, was reported to be negatively correlated to TGFβ in polycystic kidney disease and attenuate EMT in renal tubular cells. Therefore, it is hypothesized that apelin might inhibit the EMT of podocytes through downregulating the expression and activation of TGFβ/Smad pathway in diabetic kidney diseases. The results showed that apelin in glomeruli of diabetic mice were increased and exogenous apelin inhibited the EMT of podocytes in diabetic mice, which were accompanied with the decreased expression of proteasome subunits β5i. The results from β5iKO mice confirmed that the inhibiting effects of apelin on EMT of podocytes in diabetic mice were dependent on β5i. The results from culture podocytes showed that apelin decreased the degradation of pIκB and promoted the translocation of IκB into nucleus through decreasing the expression of β5i, which would inhibit the promoting effects of NFκB on expression of TGFβ and followed by decreased activation of Smad pathway and EMT in podocytes. In conclusion, apelin might act as an EMT suppressor for podocytes to decrease the process of glomerular fibrosis in diabetic mice.
Collapse
Affiliation(s)
- Jiming Yin
- Beijing You An Hospital, Capital Medical University, 100069, Beijing, China.,Beijing Institute of Hepatology, 100069, Beijing, China
| | - Yangjia Wang
- Department of Pathology and Pathophysiology, Capital Medical University, 100069, Beijing, China
| | - Jing Chang
- Beijing You An Hospital, Capital Medical University, 100069, Beijing, China
| | - Bin Li
- Department of Pathology and Pathophysiology, Capital Medical University, 100069, Beijing, China
| | - Jia Zhang
- Department of Pathology and Pathophysiology, Capital Medical University, 100069, Beijing, China
| | - Yu Liu
- Department of Pathology and Pathophysiology, Capital Medical University, 100069, Beijing, China
| | - Song Lai
- Department of Cardiology. Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, No.193, Lianhe Road, Xigang District, 116011, Dalian, China
| | - Ying Jiang
- Department of Pathology and Pathophysiology, Capital Medical University, 100069, Beijing, China
| | - Huihua Li
- Department of Cardiology. Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, No.193, Lianhe Road, Xigang District, 116011, Dalian, China
| | - Xiangjun Zeng
- Department of Pathology and Pathophysiology, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
14
|
Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND, Zhao YY. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018. [PMID: 29518614 DOI: 10.1016/j.biopha.2018.02.090] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
15
|
Novel reno-protective mechanism of Aspirin involves H2AK119 monoubiquitination and Set7 in preventing type 1 diabetic nephropathy. Pharmacol Rep 2017; 70:497-502. [PMID: 29656179 DOI: 10.1016/j.pharep.2017.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Even after several novel therapeutic approaches, the number of people with diabetic nephropathy (DN) still continues to increase globally, this suggest to find novel therapeutic strategies to prevent it completely. Recent reports, are indicating the ubiquitin proteasome system alterations in DN. Recently, we also showed that, histone H2AK119 mono-ubiquitination (H2AK119-Ub) found to regulate Set7, a key epigenetic enzyme in the development of renal fibrosis under type 1 diabetic condition. Hence, we aimed to study the role of a known 20s proteasome inhibitor Aspirin, on histone ubiquitination in the progression of DN. METHODS Male Wistar rats were rendered diabetic using a single dose of Streptozotocin (55mgkg-1, ip). After 4 weeks, diabetic animals were grouped into respective groups and the drug, aspirin, low dose (25mgkg-1day-1), high dose (50mgkg-1day-1) was administered through po route. At the end of the study, kidneys from all the groups were collected and processed separately for glomerular isolation, protein isolation, and for histopathological studies. RESULTS Aspirin administration, reduced the protein expression of Mysm1, increased the protein expression of H2AK119-Ub and thereby reduced the Set7 protein expression in glomeruli isolated from diabetic animals and prevented renal fibrosis. CONCLUSIONS In conclusion, our results are clearly indicating that, aspirin prevents renal fibrosis in diabetic animals through decreasing the expression of Mysm1, increasing the expression of H2AK119-Ub and thereby decreasing the protein expression of Set7, which is a novel mechanism. Moreover, this mechanism may lay down a novel strategy to prevent DN completely in future.
Collapse
|
16
|
Han Q, Zhu H, Chen X, Liu Z. Non-genetic mechanisms of diabetic nephropathy. Front Med 2017; 11:319-332. [PMID: 28871454 DOI: 10.1007/s11684-017-0569-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes mellitus patients and is characterized by thickened glomerular basement membrane, increased extracellular matrix formation, and podocyte loss. These phenomena lead to proteinuria and altered glomerular filtration rate, that is, the rate initially increases but progressively decreases. DN has become the leading cause of end-stage renal disease. Its prevalence shows a rapid growth trend and causes heavy social and economic burden in many countries. However, this disease is multifactorial, and its mechanism is poorly understood due to the complex pathogenesis of DN. In this review, we highlight the new molecular insights about the pathogenesis of DN from the aspects of immune inflammation response, epithelial-mesenchymal transition, apoptosis and mitochondrial damage, epigenetics, and podocyte-endothelial communication. This work offers groundwork for understanding the initiation and progression of DN, as well as provides ideas for developing new prevention and treatment measures.
Collapse
Affiliation(s)
- Qiuxia Han
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hanyu Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
17
|
Sharma D, Bhattacharya P, Kalia K, Tiwari V. Diabetic nephropathy: New insights into established therapeutic paradigms and novel molecular targets. Diabetes Res Clin Pract 2017; 128:91-108. [PMID: 28453961 DOI: 10.1016/j.diabres.2017.04.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy is one of the most prevalent microvascular complication in patients suffering from diabetes and is reported to be the major cause of renal failure when compared to any other kidney disease. Currently, available therapies provide only symptomatic relief and unable to treat the underlying pathophysiology of diabetic nephropathy. This review will explore new insights into the established therapeutic paradigms targeting oxidative stress, inflammation and endoplasmic reticulum stress with the focus on recent clinical developments. Apart from this, the involvement of novel cellular and molecular mechanisms including the role of endothelin-receptor antagonists, Wnt signaling pathway, epigenetics and micro RNA is also discussed so that key molecular switches involved in the pathogenesis of diabetic nephropathy can be identified. Elucidating new molecular pathways will help in the development of novel therapeutics for the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Dilip Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India.
| | - Vinod Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
18
|
Maresin 1 Mitigates High Glucose-Induced Mouse Glomerular Mesangial Cell Injury by Inhibiting Inflammation and Fibrosis. Mediators Inflamm 2017; 2017:2438247. [PMID: 28182085 PMCID: PMC5274668 DOI: 10.1155/2017/2438247] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/06/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Inflammation and fibrosis are the important pathophysiologic processes in diabetic nephropathy (DN). Maresin 1 is a potential anti-inflammatory lipid mediator, which has displayed powerful proresolving activities. Aim. We determine whether maresin 1 has protective effect on mouse glomerular mesangial cells (GMCs) induced by high glucose. Methods. We cultured GMCs stimulated by high glucose and categorized as follows: normal glucose group (5.6 mmol/L), high glucose group (30 mmol/L), mannitol group, maresin 1 intervention group (1, 10, and 100 nmol/L), maresin 1 and normal glucose group, and the N-acetylcysteine (NAC) intervention group (10 μmol/L NAC). After 24 h, the expression of ROS, NLRP3, caspase-1, procaspase-1, IL-1β, and pro-IL-1β was detected by western-blot, RT-PCR, and immunofluorescence. After 48 h, the expression of TGF-β1 and FN was detected by RT-PCR and ELISA. Results. Compared with normal glucose group, the expression of ROS, NLRP3, caspase-1, IL-1β, TGF-β1, and FN increased in high glucose group (P < 0.05), but it decreased after the treatment of maresin 1 in different concentrations. On the contrary, the expression of procaspase-1 and pro-IL-1β protein was restrained by high glucose and enhanced by maresin 1 in a dose-dependent manner (P < 0.05). Conclusion. Maresin 1 can inhibit NLRP3 inflammasome, TGF-β1, and FN in GMCs; it may have protective effect on DN by mitigating the inflammation and early fibrosis.
Collapse
|
19
|
Pandey A, Goru SK, Kadakol A, Malek V, Sharma N, Gaikwad AB. H2AK119 monoubiquitination regulates Angiotensin II receptor mediated macrophage infiltration and renal fibrosis in type 2 diabetic rats. Biochimie 2016; 131:68-76. [PMID: 27693081 DOI: 10.1016/j.biochi.2016.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/25/2016] [Indexed: 12/11/2022]
Abstract
Monocyte chemoattractant protein (MCP-1) and transforming growth factor-β (TGF-β1)-markers of inflammation and fibrosis, are central to type 2 diabetic nephropathy (T2DN) progression. The epigenetic basis of their expression has also been explored to certain extent. H2A lysine 119 monoubiquitination (H2AK119Ub), a repressive chromatin mark regulates progression of hyperglycaemia induced fibrosis in glomerular mesangial cells. However, how H2AK119Ub affects the expression of MCP-1 and TGF-β1 and their regulation by Angiotensin II receptor subtypes remains unknown. In the current study, we aimed to study the effect of Angiotensin II receptors' blockade on the macrophage infiltration and histone modifications occurring at the promoter region of Mcp1 and Tgfb1in high fat diet fed and low dose streptozotocin treated male Wistar rats. Hereby, we present the first report delineating a distinct link between H2AK119Ub and macrophage infiltration and fibrosis i.e. the enrichment of H2AUb at Mcp1 and Tgfb1 promoter region was found to reduce drastically in the T2DN which could be significantly reversed by Telmisartan and was further elevated by PD123319. We could conclude that the Angiotensin II mediated macrophage infiltration in T2DN is regulated at least partially by H2AK119Ub through both AT1 and AT2 receptors, which to the best of our knowledge, presents the first report for the regulation of Mcp1 by H2AK119Ub. Thus an approach targeting AT1R blockade and AT2R activation accompanied by an epigenetic modulator may be more suitable to ameliorate the macrophage infiltration and fibrosis associated with T2DN.
Collapse
Affiliation(s)
- Anuradha Pandey
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Santosh Kumar Goru
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Almesh Kadakol
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
20
|
Histone H2AK119 and H2BK120 mono-ubiquitination modulate SET7/9 and SUV39H1 in type 1 diabetes-induced renal fibrosis. Biochem J 2016; 473:3937-3949. [PMID: 27582499 DOI: 10.1042/bcj20160595] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
Hyperglycaemia-induced expression of extracellular matrix (ECM) components plays a major role in the development of diabetic nephropathy (DN). The epigenetic mechanisms that modulate ECM gene expression in DN remain unclear. Therefore, we examined the role of histone H2A and H2B monoubiquitination on epigenetic chromatin marks, such as histone H3 lysine dimethylation (H3K4Me2, H3K9Me2 and H3K79Me2) in type 1 diabetic rat kidney. Hyperglycaemia increased collagen deposition and Col1a1 gene expression. In whole kidney of diabetic animals, both H2AK119 mono-ubiquitination (H2AK119Ub) and H2BK120 mono-ubiquitination (H2BK120Ub) were found to be increased, whereas, in glomeruli of diabetic animals, expression of both H2AK119Ub and H2BK120Ub was reduced. Changes in ubiquitin proteasome system components like increased Rnf2 (H2A-specific E3 ligase) and decreased H2A- and H2B-specific deubiquitinases (ubiquitin-specific proteases 7, 16, 21 and 22) were also observed. Globally increased levels of chromatin marks associated with active genes (H3K4Me2 and H3K79Me2) and decreased levels of repressive marks (H3K9Me2) were also observed. Hyperglycaemia also increased the protein expression of SET7/9 and decreased the expression of SUV39H1. We also showed the decreased occupancy of H2AK119Ub and H2BK120Ub on the promoters of Set7/9 and Suv39h1 in diabetic kidney. In addition, methylation marks regulated by H2AK119Ub (H3K27Me2 and H3K36Me2) and H2BK120Ub (H3K4Me2 and H3K79Me2) were also found to be altered on the promoters of Set7/9 and Suv39h1 Taken together, these results show the functional role of H2AK119Ub and H2BK120Ub in regulating histone H3K4Me2 and H3K9Me2 through modulating the expression of SET7/9 and SUV39H1 in the development of diabetic renal fibrosis.
Collapse
|
21
|
Majumder S, Advani A. The epigenetic regulation of podocyte function in diabetes. J Diabetes Complications 2015; 29:1337-44. [PMID: 26344726 DOI: 10.1016/j.jdiacomp.2015.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/06/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
Chronic hyperglycemia early in the course of diabetes confers a sustained increase in the risk of complications development. In recent years, efforts to understand the molecular basis for this "metabolic memory" have focused on epigenetic mechanisms as a means by which transient high glucose can cause persistent and propagated changes in cell function. For instance, in vascular endothelial cells, smooth muscle cells and peripheral blood cells, temporary exposure to high glucose causes changes in epigenetic marks that promote a shift towards a pro-inflammatory phenotype. However, the influence of epigenetic processes in complications development extends beyond their contribution to metabolic memory. Podocytes, for example, are terminally differentiated cells of the renal glomerulus whose injury is a major contributor to the pathogenesis of nephropathy. Over recent months, several reports have emerged describing the essential actions of histone-modifying enzymes and DNA methylation patterns (the two principal epigenetic mechanisms) in maintaining podocyte integrity, especially under diabetic conditions. Here, we review the known and potential role of epigenetic processes within podocytes, focusing on the evidence linking these processes to oxidative stress, crosstalk with tubule cells, autophagy and slit-pore protein expression. Whether podocytes themselves exhibit a metabolic memory awaits to be seen.
Collapse
MESH Headings
- Acetylation
- Animals
- Autophagy
- DNA Methylation
- Diabetes Complications/genetics
- Diabetes Complications/metabolism
- Diabetes Complications/pathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Epigenesis, Genetic
- Evidence-Based Medicine
- Gene Expression Regulation, Developmental
- Histones/metabolism
- Humans
- Models, Biological
- Oxidative Stress
- Podocytes/metabolism
- Podocytes/pathology
- Protein Processing, Post-Translational
Collapse
Affiliation(s)
- Syamantak Majumder
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Kadakol A, Malek V, Goru SK, Pandey A, Gaikwad AB. Esculetin reverses histone H2A/H2B ubiquitination, H3 dimethylation, acetylation and phosphorylation in preventing type 2 diabetic cardiomyopathy. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
23
|
Park LK, Maione AG, Smith A, Gerami-Naini B, Iyer LK, Mooney DJ, Veves A, Garlick JA. Genome-wide DNA methylation analysis identifies a metabolic memory profile in patient-derived diabetic foot ulcer fibroblasts. Epigenetics 2015; 9:1339-49. [PMID: 25437049 PMCID: PMC4622843 DOI: 10.4161/15592294.2014.967584] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are a serious complication of diabetes. Previous exposure to hyperglycemic conditions accelerates a decline in cellular function through metabolic memory despite normalization of glycemic control. Persistent, hyperglycemia-induced epigenetic patterns are considered a central mechanism that activates metabolic memory; however, this has not been investigated in patient-derived fibroblasts from DFUs. We generated a cohort of patient-derived lines from DFU fibroblasts (DFUF), and site- and age-matched diabetic foot fibroblasts (DFF) and non-diabetic foot fibroblasts (NFF) to investigate global and genome-wide DNA methylation patterns using liquid chromatography/mass spectrometry and the Illumina Infinium HumanMethylation450K array. DFFs and DFUFs demonstrated significantly lower global DNA methylation compared to NFFs (p = 0.03). Hierarchical clustering of differentially methylated probes (DMPs, p = 0.05) showed that DFFs and DFUFs cluster together and separately from NFFs. Twenty-five percent of the same probes were identified as DMPs when individually comparing DFF and DFUF to NFF. Functional annotation identified enrichment of DMPs associated with genes critical to wound repair, including angiogenesis (p = 0.07) and extracellular matrix assembly (p = 0.035). Identification of sustained DNA methylation patterns in patient-derived fibroblasts after prolonged passage in normoglycemic conditions demonstrates persistent metabolic memory. These findings suggest that epigenetic-related metabolic memory may also underlie differences in wound healing phenotypes and can potentially identify therapeutic targets.
Collapse
Key Words
- ANOVA, Analysis of Variance
- BMP, Bone Morphogenic Protein
- COL4A1, Collagen 4A1
- DAVID, Database for Annotation, Visualization, and Integrative Discovery
- DCCT, Diabetes Control and Complications Trial
- DFF, Diabetic Foot Fibroblast
- DFU, Diabetic Foot Ulcer
- DFUF, Diabetic Foot Ulcer Fibroblast
- DHS, DNase Hypersensitive Site
- DMP, Differentially Methylated Probe
- DNA methylation
- ECM, Extracellular Matrix
- EDIC, Epidemiology of Diabetes Interventions and Complications
- ENCODE, Encyclopedia of DNA Elements
- FGF1, Fibroblast Growth Factor 1
- HbA1c, Hemoglobin A1c
- NFF, Non-diabetic Foot Fibroblast
- NHLF, Normal Human Lung Fibroblast
- PLAU, Plasminogen Activator Urokinase
- SNP, Single Nucleotide Polymorphism
- TFBS, Transcription Factor Binding Site
- TGFb, Transforming Growth Factor b
- TNFa, Tumor Necrosis Factor a
- TSS, Transcription Start Site
- UTR, Untranslated Region.
- dNTPs, deoxynucleotide
- diabetes
- diabetic foot ulcer
- epigenetics
- fibroblast
- metabolic memory
- wound healing
Collapse
Affiliation(s)
- Lara K Park
- a Department of Oral and Maxillofacial Pathology ; Oral Medicine and Craniofacial Pain ; Tufts University School of Dental Medicine ; Boston , MA USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
The role of ubiquitination and sumoylation in diabetic nephropathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:160692. [PMID: 24991536 PMCID: PMC4065738 DOI: 10.1155/2014/160692] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/19/2014] [Indexed: 01/14/2023]
Abstract
Diabetic nephropathy (DN) is a common and characteristic microvascular complication of diabetes; the mechanisms that cause DN have not been clarified, and the epigenetic mechanism was promised in the pathology of DN. Furthermore, ubiquitination and small ubiquitin-like modifier (SUMO) were involved in the progression of DN. MG132, as a ubiquitin proteasome, could improve renal injury by regulating several signaling pathways, such as NF-κB, TGF-β, Nrf2-oxidative stress, and MAPK. In this review, we summarize how ubiquitination and sumoylation may contribute to the pathology of DN, which may be a potential treatment strategy of DN.
Collapse
|
25
|
High glucose induces sumoylation of Smad4 via SUMO2/3 in mesangial cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:782625. [PMID: 24971350 PMCID: PMC4058256 DOI: 10.1155/2014/782625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/01/2014] [Indexed: 11/29/2022]
Abstract
Recent studies have shown that sumoylation is a posttranslational modification involved in regulation of the transforming growth factor-β (TGF-β) signaling pathway, which plays a critical role in renal fibrosis in diabetic nephropathy (DN). However, the role of sumoylation in the regulation of TGF-β signaling in DN is still unclear. In the present study, we investigated the expression of SUMO (SUMO1 and SUMO2/3) and Smad4 and the interaction between SUMO and Smad4 in cultured rat mesangial cells induced by high glucose. We found that SUMO1 and SUMO2/3 expression was significantly increased in the high glucose groups compared to the normal group (P < 0.05). Smad4 and fibronectin (FN) levels were also increased in the high glucose groups in a dose-dependent manner. Coimmunoprecipitation and confocal laser scanning revealed that Smad4 interacted and colocalized with SUMO2/3, but not with SUMO1 in mesangial cells. Sumoylation (SUMO2/3) of Smad4 under high glucose condition was strongly enhanced compared to normal control (P < 0.05). These results suggest that high glucose may activate TGF-β/Smad signaling through sumoylation of Samd4 by SUMO2/3 in mesangial cells.
Collapse
|
26
|
Santos JM, Mishra M, Kowluru RA. Posttranslational modification of mitochondrial transcription factor A in impaired mitochondria biogenesis: implications in diabetic retinopathy and metabolic memory phenomenon. Exp Eye Res 2014; 121:168-77. [PMID: 24607487 DOI: 10.1016/j.exer.2014.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/17/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial transcription factor A (TFAM) is one of the key regulators of the transcription of mtDNA. In diabetes, despite increase in gene transcripts of TFAM, its protein levels in the mitochondria are decreased and mitochondria copy numbers become subnormal. The aim of this study is to investigate the mechanism(s) responsible for decreased mitochondrial TFAM in diabetes. Using retinal endothelial cells, we have investigated the effect of overexpression of cytosolic chaperone, Hsp70, and TFAM on glucose-induced decrease in mitochondrial TFAM levels, and the transcription of mtDNA-encoded genes, NADH dehydrogenase subunit 6 (ND6) and cytochrome b (Cytb). To investigate the role of posttranslational modifications in subnormal mitochondrial TFAM, ubiquitination of TFAM was assessed, and the results were confirmed in the retina from streptozotocin-induced diabetic rats. While overexpression of Hsp70 failed to prevent glucose-induced decrease in mitochondrial TFAM and transcripts of ND6 and Cytb, overexpression of TFAM ameliorated decrease in its mitochondrial protein levels and transcriptional activity. TFAM was ubiquitinated by high glucose, and PYR-41, an inhibitor of ubiquitination, prevented TFAM ubiquitination and restored the transcriptional activity. Similarly, TFAM was ubiquitinated in the retina from diabetic rats, and it continued to be modified after reinstitution of normal glycemia. Our results clearly imply that the ubiquitination of TFAM impedes its transport to the mitochondria resulting in subnormal mtDNA transcription and mitochondria dysfunction, and inhibition of ubiquitination restores mitochondrial homeostasis. Reversal of hyperglycemia does not provide any benefit to TFAM ubiquitination. Thus, strategies targeting posttranslational modification could provide an avenue to preserve mitochondrial homeostasis, and inhibit the development/progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Julia M Santos
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA
| | - Manish Mishra
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA.
| |
Collapse
|
27
|
Gao C, Aqie K, Zhu J, Chen G, Xu L, Jiang L, Xu Y. MG132 ameliorates kidney lesions by inhibiting the degradation of Smad7 in streptozotocin-induced diabetic nephropathy. J Diabetes Res 2014; 2014:918396. [PMID: 24511554 PMCID: PMC3913347 DOI: 10.1155/2014/918396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/19/2013] [Accepted: 11/17/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Smad7 is the main negative regulatory protein in the transforming growth factor-β (TGF-β) downstream signaling pathway, which plays an important role in diabetic nephropathy (DN) and may be related to the ubiquitin proteasome pathway (UPP). AIM We investigated the role of UPP in regulating TGF-β/SMAD signaling and explored the therapeutic effect of the ubiquitin proteasome inhibitor MG132 on DN. METHODS Wistar rats were randomly divided into a diabetes group and a normal control group. Rats in the diabetes group were injected intraperitoneally with streptozotocin. Diabetic rats were then randomly divided into a diabetic nephropathy group (DN group), an MG132 high concentration (MH) group, and an MG132 low concentration (ML) group. After 8 weeks of treatment, 24-hour urinary microalbumin (UAlb), urinary protein/urinary creatinine (Up/Ucr) values, ALT, AST, Bcr, kidney damage, TGF-β, Smad7, fibronectin (FN), and Smurf2 were detected. RESULTS The body mass and Smad7 protein expression decreased in DN group, but kidney weight, kidney weight index, UAlb, Up/Ucr, FN and Smurf2 mRNA expression, and TGF-β protein expression increased. However, these changes diminished following treatment with MG132, and a more pronounced effect was evident in MH group compared to ML group. CONCLUSION MG132 alleviates kidney damage by inhibiting Smad7 ubiquitin degradation and TGF-β activation in DN.
Collapse
Affiliation(s)
- Chenlin Gao
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Keri Aqie
- Department of Endocrinology, First People's Hospital of Liangshan, Xichang, Sichuan 615000, China
| | - Jianhua Zhu
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Guo Chen
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Ling Xu
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Lan Jiang
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Yong Xu
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
- *Yong Xu:
| |
Collapse
|
28
|
Brennan E, McEvoy C, Sadlier D, Godson C, Martin F. The genetics of diabetic nephropathy. Genes (Basel) 2013; 4:596-619. [PMID: 24705265 PMCID: PMC3927570 DOI: 10.3390/genes4040596] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/08/2013] [Accepted: 10/30/2013] [Indexed: 12/18/2022] Open
Abstract
Up to 40% of patients with type 1 and type 2 diabetes will develop diabetic nephropathy (DN), resulting in chronic kidney disease and potential organ failure. There is evidence for a heritable genetic susceptibility to DN, but despite intensive research efforts the causative genes remain elusive. Recently, genome-wide association studies have discovered several novel genetic variants associated with DN. The identification of such variants may potentially allow for early identification of at risk patients. Here we review the current understanding of the key molecular mechanisms and genetic architecture of DN, and discuss the merits of employing an integrative approach to incorporate datasets from multiple sources (genetics, transcriptomics, epigenetic, proteomic) in order to fully elucidate the genetic elements contributing to this serious complication of diabetes.
Collapse
Affiliation(s)
- Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | - Caitríona McEvoy
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | | | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | - Finian Martin
- Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|