1
|
Kindernay L, Ferenczyová K, Farkašová V, Duľová U, Strapec J, Barteková M. Beneficial Effects of Polyphenol-Rich Food Oils in Cardiovascular Health and Disease. Rev Cardiovasc Med 2023; 24:190. [PMID: 39077008 PMCID: PMC11266476 DOI: 10.31083/j.rcm2407190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 07/31/2024] Open
Abstract
A variety of vegetable and fruit derived food oils are considered beneficial for human health due to their content of functional components including their positive effects in cardiovascular system. In addition to the favorable ratio of unsaturated versus saturated fatty acids, some of these oils include also other health beneficial compounds such as vitamins, minerals, pigments, enzymes and phenolic compounds. Particularly polyphenols have been documented to exert numerous positive effects in cardiovascular system including their anti-hypertensive, anti-atherogenic as well as cardio- and vasculo- protective effects in subjects suffering from various cardiovascular and cardiometabolic diseases, likely via their antioxidant, anti-inflammatory, anti-coagulant, anti-proliferative and anti-diabetic properties. However, it has not been proven so far whether the positive cardiovascular effects of polyphenol-rich food oils are, and to what measure, attributed to their phenolic content. Thus, the current review aims to summarize the main cardiovascular effects of major polyphenol-rich food oils including olive, flaxseed, soybean, sesame and coconut oils, and to uncover the role of their phenolic compounds in these effects.
Collapse
Affiliation(s)
- Lucia Kindernay
- Institute for Heart Research, Centre of Experimental Medicine, Slovak
Academy of Sciences, 84104 Bratislava, Slovakia
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak
Academy of Sciences, 84104 Bratislava, Slovakia
| | - Veronika Farkašová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak
Academy of Sciences, 84104 Bratislava, Slovakia
| | - Ulrika Duľová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak
Academy of Sciences, 84104 Bratislava, Slovakia
| | - Jakub Strapec
- Institute for Heart Research, Centre of Experimental Medicine, Slovak
Academy of Sciences, 84104 Bratislava, Slovakia
| | - Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak
Academy of Sciences, 84104 Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University in
Bratislava, 81372 Bratislava, Slovakia
| |
Collapse
|
2
|
Divya PM, Roopa BS, Manusha C, Balannara P. A concise review on oil extraction methods, nutritional and therapeutic role of coconut products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:441-452. [PMID: 36712217 PMCID: PMC9873890 DOI: 10.1007/s13197-022-05352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 02/01/2023]
Abstract
The coconut palm belongs to the Arecaceae family, which is distinct from other fruits, known for its versatility. Fresh coconut products are valuable for many food preparations owing to their nutritional and flavour properties. For example, tender coconut yields coconut water, a refreshing nutritious drink that provides good nutrients including electrolytes and other interesting compounds. The mature coconut meat which is rich in fat and protein, aids in coconut milk extraction and is a major component in the wet and dry process of oil extraction. Coconut milk has market potential owing to its increasing applications in food and beverage industries. Coconut is also known for its by-product namely coconut flour, which is rich in protein and dietary fiber, could be used in the preparation of functional foods. The different methods involved in the oil extraction process which helps in more efficient oil recovery were discussed briefly. The nutritional health-promoting functional role of coconut water and virgin coconut oil is highlighted in review paper.
Collapse
Affiliation(s)
- P. M. Divya
- Department of Traditional Food and Sensory Science, CSIR—Central Food Technological Research Institute, Mysuru, 570 020 Karnataka India
| | - B. S. Roopa
- Department of Traditional Food and Sensory Science, CSIR—Central Food Technological Research Institute, Mysuru, 570 020 Karnataka India
| | - C. Manusha
- Department of Traditional Food and Sensory Science, CSIR—Central Food Technological Research Institute, Mysuru, 570 020 Karnataka India
| | - Prema Balannara
- Department of Traditional Food and Sensory Science, CSIR—Central Food Technological Research Institute, Mysuru, 570 020 Karnataka India
| |
Collapse
|
3
|
Favorable Effects of Virgin Coconut Oil on Neuronal Damage and Mortality after a Stroke Incidence in the Stroke-Prone Spontaneously Hypertensive Rat. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111857. [PMID: 36430992 PMCID: PMC9694050 DOI: 10.3390/life12111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Stroke is consistently one of the top ten causes of morbidity and mortality globally, whose outcomes are quite variable, necessitating case-specific management. Prophylactic diets before the onset of stroke have been implicated to work. In this research, the effects of virgin coconut oil (VCO) on stroke were evaluated using a stroke-prone spontaneously hypertensive rat (SHRSP) model. Eight-week-old SHRSPs were subjected to the repeated oral administration (5 mL/kg/day) of either 1% Tween 80 (group A) or VCO (group B). An early stroke onset was observed due to hypertension that was aggravation by the administration of 1% NaCl in water ad libitum. The following data were collected: the days until stroke occurred, the survival rate until the animal died, and blood pressure (BP) every two weeks using the tail-cuff method. After necropsy, the organs were harvested, and the brain was processed for a routine histopathological analysis. VCO delayed the incidence of it and prolonged their survival. Compared to group A, group B showed a significantly lowered BP by 20 mmHg at four weeks after the start of VCO treatment. Lastly, the brain histopathology showed that the structurally damaged areas were smaller in group B than they were in group A. The VCO could have protective effects on the brain before and even after stroke incidence.
Collapse
|
4
|
Pavithra V, Janhavi P, Natasha J, Neelam R, Mrityunjaya M, Selvi MK, Ravindra PV. A blend of cod liver oil and virgin coconut oil improves the endurance performance in mice. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-01001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
|
6
|
Ahmad Nazri KA, Haji Mohd Saad Q, Mohd Fauzi N, Buang F, Jantan I, Jubri Z. Gynura procumbens ethanol extract improves vascular dysfunction by suppressing inflammation in postmenopausal rats fed a high-fat diet. PHARMACEUTICAL BIOLOGY 2021; 59:1203-1215. [PMID: 34493166 PMCID: PMC8428271 DOI: 10.1080/13880209.2021.1970199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/29/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Gynura procumbens (Lour.) Merr. (Asteraceae) has been reported to have various pharmacological activities including anti-inflammatory effects. OBJECTIVE This study sought to determine whether Gynura procumbens (GP) could improve vascular reactivity by suppressing inflammation in postmenopausal rats fed with five-times heated palm oil (5HPO) diet. MATERIALS AND METHODS Forty-eight female Sprague-Dawley rats were randomly divided into sham [non-ovariectomized; grouped as control, GP extracts (250 and 500 mg/kg), atorvastatin (ATV, 10 mg/kg)] and postmenopausal (PM) groups [ovariectomized rats fed with 5HPO; grouped as PM, GP extracts (250 and 500 mg/kg) and ATV (10 mg/kg)]. Each group (n = 6) was either supplemented with GP extract or ATV orally once daily for 6 months. RESULTS In comparison with the untreated PM group, 250 and 500 mg/kg GP supplementation to PM groups reduced the systolic blood pressure (103 ± 2.7, 86 ± 2.4 vs. 156 ± 7.83 mmHg, p < 0.05), intima-media thickness (101.28 ± 3.4, 93.91 ± 2.93 vs. 143.78 ± 3.31 µM), vasoconstriction percentage induced by phenylephrine (102.5%, 88.3%, vs. 51.8%), sICAM-1 (0.49, 0.26 vs. 0.56 pg/mL) and sVCAM-1 (0.39, 0.25 vs. 0.45 pg/mL). GP extract supplementation increased vasorelaxation percentage induced by acetylcholine (78.4% vs. 47.3%) and sodium nitroprusside (84.2% vs. 53.7%), increased changes in plasma nitric oxide level (1.25%, 1.31% vs. 1.9%), and suppressed the elevation of TNF-α (0.39 vs. 1.02 pg/mL), IL-6 (0.43 vs. 0.77 pg/mL) and CRP (0.29 vs. 0.69 ng/mL) in the PM groups. CONCLUSIONS GP extract might improve vascular dysfunction by suppressing the inflammatory response, consequently preventing blood pressure elevation.
Collapse
Affiliation(s)
- Khuzaidatul Azidah Ahmad Nazri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Qodriyah Haji Mohd Saad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fhataheya Buang
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Malaysia
| | - Zakiah Jubri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Ulfiana Utari A, Djabir YY, Palinggi BP. A combination of virgin coconut oil and extra virgin olive oil elicits superior protection against doxorubicin cardiotoxicity in rats. Turk J Pharm Sci 2021; 19:138-144. [DOI: 10.4274/tjps.galenos.2021.37998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Nikooei P, Hosseinzadeh-Attar MJ, Asghari S, Norouzy A, Yaseri M, Vasheghani-Farahani A. Effects of virgin coconut oil consumption on metabolic syndrome components and asymmetric dimethylarginine: A randomized controlled clinical trial. Nutr Metab Cardiovasc Dis 2021; 31:939-949. [PMID: 33549429 DOI: 10.1016/j.numecd.2020.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS There is some promising evidence regarding the beneficial effect of coconut oil on cardiometabolic risk factors. This study aimed to assess the effects of virgin coconut oil (VCO) consumption on metabolic syndrome (MetS) components, as well as, asymmetric dimethylarginine (ADMA) in adults with MetS. METHODS AND RESULTS In this randomized controlled trial, 48 subjects, aged 20-50 years, with MetS were allocated into two groups; the intervention group was given 30 ml of VCO per day to substitute the same amounts of fat in their usual diet for four weeks. The control group was advised to follow their usual diet. VCO consumption significantly reduced serum levels of triglyceride (TG) (P = 0.001), very low-density lipoprotein (VLDL) (P = 0.001), and fasting blood sugar (FBS) (P = 0.015) compared to the control group. The levels of high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol (TC) were significantly increased in the VCO group when compared to the control group (P = 0.001). Circulatory ADMA also increased in the VCO group compared to the control group (P = 0.003). No significant differences were observed in the LDL-C/HDL-C ratio, anthropometric parameters, and blood pressure measurements between the two groups at the end of the study (P > 0.05). CONCLUSION VCO consumption increased the values of HDL-C while reduced TG and FBS levels. Blood pressure and waist circumference did not change. However, levels of TC, LDL-C, and ADMA elevated by VCO consumption. Caution is warranted until the results of further studies become available to explain the long-term effects of VCO consumption. REGISTRATION NUMBER IRCT20131125015536N11.
Collapse
Affiliation(s)
- Parinaz Nikooei
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad J Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Cardiac Primary Prevention Research Center (CPPRC), Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Norouzy
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center (CPPRC), Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Clinical Cardiac Electrophysiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Coconut Oil Supplementation Does Not Affect Blood Pressure Variability and Oxidative Stress: A Placebo-Controlled Clinical Study in Stage-1 Hypertensive Patients. Nutrients 2021; 13:nu13030798. [PMID: 33670999 PMCID: PMC7997205 DOI: 10.3390/nu13030798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Exploring an alternative to improve the clinical management of hypertension, we tested the hypothesis that food supplementation with coconut oil (EVCO), alone or combined with aerobic exercise training, could exert an antihypertensive effect (primary outcome) in patients with stage 1 hypertension. Forty-five hypertensive volunteers of both genders participated in a placebo-controlled clinical trial. The volunteers were submitted to 24-hour ambulatory blood pressure monitoring, analysis of blood pressure variability (BPV), measurement of serum malondialdehyde (MDA) and nutritional assessment. Results indicate that EVCO consumption had no adverse effects. The supplementation did not increase the caloric intake compared with placebo, and the dietary constituents were similar between groups, except for the saturated fats, especially lauric acid. The analysis of blood pressure indicated absence of antihypertensive effect of EVCO alone or combined with physical training. Furthermore, no effects on blood pressure variability and oxidative stress were observed in the supplemented hypertensive patients. Thus, despite the results observed in pre-clinical studies, the current clinical study did not provide evidence to support the use of coconut oil as an adjuvant in the management of hypertension in humans.
Collapse
|
10
|
A Comparative Study of Virgin Coconut Oil, Coconut Oil and Palm Oil in Terms of Their Active Ingredients. Processes (Basel) 2020. [DOI: 10.3390/pr8040402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This research aims to study the unique factors of virgin coconut oil (VCO) compared with coconut oil (i.e., coconut oil processed through heating the coconut milk and palm oil sold on the market). Its novelty is that it (VCO) contains lactic acid bacteria and bacteriocin. Lauric acid content was analyzed by the Chromatographic Gas method. Isolation of lactic acid bacteria (LAB) was conducted by the dilution method using MRSA + 0.5% CaCO3 media. Iodium number, peroxide, and %FFA were analyzed using a general method, and isolation bacteriocin by the deposition method using ammonium sulfate. In addition, macromolecular identification was conducted by 16S rRNA. VCO was distinguished by a higher content of lauric acid (C12:0) 41%–54.5% as compared with 0% coconut and 0, 1% palm oil, respectively. The VCO also contains LAB, namely Lactobacillus plantarum and Lactobacillus paracasei, and can inhibit the growth of pathogenic bacteria, such as Pseudomonas aeruginosa, Klebsiella, Staphylococcus aureus, S. epidermidis, Proteus, Escherichia coli, Listeria monocytogenes, Bacillus cereus, Salmonella typhosa and bacteriocin. Comparison with VCO is based on having a high content of lauric acid, 54%, and LAB content. The difference between VCO and coconut oil and palm oil is fatty acids. In VCO there are lauric acid and stearic acid, namely lauric acid VCO (A) 54.06%, VCO (B) 53.9% and VCO (C) 53.7%. The content of stearic acid VCO (A) is 12.03%, VCO (B) 12.01% and VCO (C) 11.9%. Coconut oil contains a little lauric acid, which is 2.81%, stearic acid 2.65% and palmitic acid 2.31%. Palm oil can be said to have very little lauric acid, namely in palm oil 1, 0.45%, and even in palm oil 2, 0%; in turn, palmitic acid palm oil 1 has 2.88% and palm oil 2 palmitic acid has 24.42%.
Collapse
|
11
|
Chain length of dietary fatty acids determines gastrointestinal motility and visceromotor function in mice in a fatty acid binding protein 4-dependent manner. Eur J Nutr 2019; 59:2481-2496. [PMID: 31562532 PMCID: PMC7413912 DOI: 10.1007/s00394-019-02094-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
Purpose We hypothesize that different types of dietary fatty acids (FAs) affect gastrointestinal (GI) motility and visceromotor function and that this effect can be regulated by the fatty acid binding protein 4 (FABP4). Methods Mice were fed for 60 days with standard diet (STD), STD with 7% (by weight) coconut oil, rich in medium-chain FAs (MCFAs) (COCO), or with 7% evening primrose oil, rich in long-chain FAs (LCFAs) (EPO). In each group, half of the mice received FABP4 inhibitor, BMS309403 (1 mg/kg; i.p.) twice a week. Body weight (BW) and food intake were measured; well-established tests were performed to characterize the changes in GI motility and visceral pain. White adipose tissue and colonic samples were collected for cell culturing and molecular studies. Results COCO significantly increased GI transit, but not colonic motility. COCO and EPO delayed the onset of diarrhea, but none affected the effect of loperamide. EPO reduced BW and increased the visceromotor response (VMR) to colorectal distension (CRD). COCO and EPO reduced differentiation of preadipocytes. Treatment with BMS309403: (1) reversed the effects induced by COCO in physiological conditions and in mouse models of diarrhea; (2) prevented the effects of EPO on BW, VMR to CRD and castor oil-induced diarrhea; (3) affected proliferation of preadipocytes; (4) changed the expression of Fabp4 in colonic and adipocyte samples from COCO and EPO. Conclusion Modifying dietary intake of MCFAs and LCFAs may be used to control GI motility or visceral pain and thus modulate the symptoms of functional GI disorders. The effect is dependent on the expression of FABP4. Electronic supplementary material The online version of this article (10.1007/s00394-019-02094-2) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Ahmad Nazri KA, Fauzi NM, Buang F, Mohd Saad QH, Husain K, Jantan I, Jubri Z. Gynura procumbens Standardised Extract Reduces Cholesterol Levels and Modulates Oxidative Status in Postmenopausal Rats Fed with Cholesterol Diet Enriched with Repeatedly Heated Palm Oil. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:7246756. [PMID: 31662779 PMCID: PMC6778942 DOI: 10.1155/2019/7246756] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Gynura procumbens (Lour.) Merr. (GP) has been reported in previous studies to possess antihyperlipidaemic, antioxidative, and cardioprotective properties. This study was aimed to determine the effect of standardised 80% ethanol extract of GP on lipid profiles and oxidative status of hypercholesterolemic rats. Postmenopausal (PM) Sprague-Dawley rats were ovariectomised and fed with 2% cholesterol diet fortified with five times heated palm oil to develop hyperlipidaemia status. Two doses of the extract (250 and 500 mg/kg) and atorvastatin (10 mg/kg) were administered once daily via oral gavage for 24 weeks. Systolic blood pressure (SBP) was increased during the first month in the postmenopausal group and decreased with GP supplementation. Lipid droplets accumulation was shown at the tunica media (TM) area of the aorta in the postmenopausal group and reduced with GP supplementation. Total cholesterol (TC), total triglycerides (TG), low-density lipoprotein (LDL), and malondialdehyde (MDA) levels increased (p < 0.05) at 3 and 6 months in the postmenopausal group and were reduced with GP supplementation. GP also increased high-density lipoprotein (HDL) level in the postmenopausal group. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were reduced in the postmenopausal group compared to control in the sham group but increased (p < 0.05) with GP supplementation. The results showed that the higher dose of GP (500 mg/kg) gave better effect. GP has the ability to reduce oxidative stress and prevent membrane cell damage through antioxidant enzyme activity modification and lipid profile changes in postmenopausal rats related to atherosclerosis.
Collapse
Affiliation(s)
- Khuzaidatul Azidah Ahmad Nazri
- Department of Biochemistry, Faculty of Medicine, The National University of Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre, Faculty of Pharmacy, The National University of Malaysia Campus Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Fhataheya Buang
- Drug and Herbal Research Centre, Faculty of Pharmacy, The National University of Malaysia Campus Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Qodriyah Haji Mohd Saad
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, The National University of Malaysia Campus Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- School of Pharmacy, Taylor's University, Lakeside Campus, 47500 Subang Jaya, Selangor, Malaysia
| | - Zakiah Jubri
- Department of Biochemistry, Faculty of Medicine, The National University of Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Mosińska P, Martín-Ruiz M, González A, López-Miranda V, Herradón E, Uranga JA, Vera G, Sánchez-Yáñez A, Martín-Fontelles MI, Fichna J, Abalo R. Changes in the diet composition of fatty acids and fiber affect the lower gastrointestinal motility but have no impact on cardiovascular parameters: In vivo and in vitro studies. Neurogastroenterol Motil 2019; 31:e13651. [PMID: 31145538 DOI: 10.1111/nmo.13651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/30/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Food and diet are central issues for proper functioning of the cardiovascular (CV) system and gastrointestinal (GI) tract. We hypothesize that different types of dietary FAs affect CV parameters as well as GI motor function and visceral sensitivity. METHODS Male Wistar rats were fed with control diet (CTRL), diet supplemented with 7% soybean oil (SOY), SOY + 3.5% virgin coconut oil (COCO), and SOY + 3.5% evening primrose oil (EP) for 4 weeks. The content of insoluble fiber in CTRL was higher than in SOY, COCO, or EP. Body weight gain and food/water intake were measured. At day 28, biometric, biochemical, CV parameters, GI motor function (X-ray and colon bead expulsion test), and visceral sensitivity were evaluated. Changes in propulsive colonic activity were determined in vitro. The colon and adipose tissue were histologically studied; the number of mast cells (MCs) in the colon was calculated. RESULTS SOY, COCO, and EP had increased body weight gain but decreased food intake vs CTRL. Water consumption, biometric, biochemical, and CV parameters were comparable between groups. SOY increased the sensitivity to colonic distention. All groups maintained regular propulsive neurogenic contractions; EP delayed colonic motility (P < 0.01). SOY, COCO, and EP displayed decreased size of the cecum, lower number and size of fecal pellets, and higher infiltration of MCs to the colon (P < 0.001). CONCLUSIONS AND INFERENCES Dietary FAs supplementation and lower intake of insoluble fiber can induce changes in the motility of the lower GI tract, in vivo and in vitro, but CV function and visceral sensitivity are not generally affected.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio González
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Visitación López-Miranda
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Esperanza Herradón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José A Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Gema Vera
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Adrián Sánchez-Yáñez
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Mª Isabel Martín-Fontelles
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Raquel Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| |
Collapse
|
14
|
Robinson SA, O'Brien MW, Grandy SA, Heinze-Milne S, Kimmerly DS. Short-term supplement of virgin coconut oil improves endothelial-dependent dilation but not exercise-mediated hyperemia in young adults. Nutr Res 2019; 67:17-26. [DOI: 10.1016/j.nutres.2019.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022]
|
15
|
Lima RDS, Block JM. Coconut oil: what do we really know about it so far? FOOD QUALITY AND SAFETY 2019. [DOI: 10.1093/fqsafe/fyz004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Renan da Silva Lima
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jane Mara Block
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
16
|
Health impacts of different edible oils prepared from coconut (Cocos nucifera): A comprehensive review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Siti HN, Kamisah Y, Mohamed S, Jaarin K. Effects of citrus leaf extract on aortic vascular reactivity in hypertensive rats fed repeatedly heated vegetable oil. Appl Physiol Nutr Metab 2018; 44:373-380. [PMID: 30216735 DOI: 10.1139/apnm-2018-0175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The prolonged intake of diet containing repeatedly heated vegetable oil can cause hypertension in the long run.
In this study, the effects of citrus leaf extract (CLE) supplementation on vascular reactivity, plasma nitrite, and aortic structure in hypertensive rats were investigated by the consumption of repeatedly heated vegetable oil [corrected]. Male Sprague Dawley rats (n = 56) were divided into 7 groups corresponding to the respective diets. For 16 weeks, 1 group was given standard rat chow (control) while other groups were given diets containing 15% w/w of palm oil, fresh palm oil (FPO), palm oil heated 5 times (5HPO), and palm oil heated 10 times (10HPO), with or without the incorporation of 0.15% w/w CLE (FPO+CLE, 5HPO+CLE, or 10HPO+CLE). Plasma nitrite levels were measured before and at 16 weeks of treatment. After 16 weeks, the rats were sacrificed and aortae were harvested for measuring vascular reactivity and for microscopic study. CLE supplementation had significantly reduced the loss of plasma nitrite and attenuated the vasoconstriction response to phenylephrine in the 5HPO group but not in the 10HPO group. However, CLE had no significant effect on the vasorelaxation response to acetylcholine and sodium nitroprusside. The elastic lamellae of tunica media in 5HPO, 10HPO, and 10HPO+CLE groups appeared disorganised and disrupted. Obtained findings suggested that CLE was able to enhance nitric oxide bioavailability that might dampen the vasoconstriction effect of phenylephrine.
Collapse
Affiliation(s)
- Hawa Nordin Siti
- a Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras Kuala Lumpur, Malaysia.,b Department of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Yusof Kamisah
- a Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras Kuala Lumpur, Malaysia
| | - Suhaila Mohamed
- c Institute of Bioscience, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Kamsiah Jaarin
- a Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras Kuala Lumpur, Malaysia.,d Faculty of Medicine, National Defence University of Malaysia (UPNM), Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Alghamdi BSA. Possible prophylactic anti-excitotoxic and anti-oxidant effects of virgin coconut oil on aluminium chloride-induced Alzheimer’s in rat models. J Integr Neurosci 2018; 17:593-607. [DOI: 10.3233/jin-180089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Badrah Saeed Ali Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Ganesan K, Sukalingam K, Xu B. Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases- A critical review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Ibrahim AH, Li H, Al-Rawi SS, Majid ASA, Al-Habib OAM, Xia X, Majid AMSA, Ji D. Angiogenic and wound healing potency of fermented virgin coconut oil: in vitro and in vivo studies. Am J Transl Res 2017; 9:4936-4944. [PMID: 29218091 PMCID: PMC5714777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE The process of wound healing involves activation of keratinocytes, fibroblasts, endothelial cells, etc. Angiogenesis is crucial during the process of wound healing. Virgin coconut oil is widely utilized in South Asia for various purposes including food, medicinal and industrial applications. This study aimed to evaluate the potency of fermented virgin coconut oil (FVCO) in angiogenesis and wound healing via both in vitro and in vivo assays. METHODS Human umbilical vein endothelial (HUVEC), fibroblast (CCD-18) and retinal ganglion (RGC-5) cells were cultured in medium containing different concentrations of FVCO. The proliferation, migration and morphological changes of cells were determined. The angiogenic effect of FVCO was evaluated by rat aortic assay. The therapeutic effect of FVCO on wound healing was further assessed in a wound excision model in Sprague Dawley rats. The expression of phospho-VEGFR2 (vascular endothelial growth factor receptor 2) in HUVECs was detected by Western blot. RESULTS FVCO (6 and 12 µg/mL) significantly improved the proliferation of HUVEC, CCD-18 and RGC-5 cells (P < 0.05 or 0.01). FVCO (25 µg/mL) markedly increased the migration ability of CCD-18 and RGC-5 cells (P < 0.05). FVCO did not affect cell morphology as indicated by fluorescein diacetate (FDA), rhodamine 123 and Hoechst staining. FVCO (25, 50 and 100 µg/mL) significantly stimulated the ex vivo blood vessel formation as compared with negative control (P < 0.05). Rats in FVCO group had significantly smaller wound size, higher wound healing percentage, and shorter wound closure time when compared with control group since day 8 (P < 0.05), suggesting that oral FVCO administration notably promoted the wound healing process. FVCO treatment (6 and 12 µg/mL) significantly enhanced the phospho-VEGFR2 expression in HUVECs (P = 0.006 and 0.000, respectively). CONCLUSION Our study confirms a high angiogenic and wound healing potency of FVCO that might be mediated by the regulation of VEGF signing pathway.
Collapse
Affiliation(s)
- Ahmad H Ibrahim
- Depatment of Biology, Faculty of Sciences, University of ZakhoKurdistan Region, Iraq
| | - Haibo Li
- Department of Ophthalmology, Xiangya Hospital, Central South UniversityChangsha 410000, Hunan Province, China
| | - Sawsan S Al-Rawi
- John Curtin School of Medical Research, College of Medicine, Australian National UniversityAustralian
| | | | - Omar AM Al-Habib
- Depatment of Biology, Faculty of Sciences, University of ZakhoKurdistan Region, Iraq
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South UniversityChangsha 410000, Hunan Province, China
| | - Amin MS Abdul Majid
- John Curtin School of Medical Research, College of Medicine, Australian National UniversityAustralian
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South UniversityChangsha 410000, Hunan Province, China
- The First People’s Hospital of ChangdeChangde 415000, Hunan Province, China
| |
Collapse
|
21
|
Kamalaldin NA, Sulaiman SA, Yusop MR, Yahaya B. Does Inhalation of Virgin Coconut Oil Accelerate Reversal of Airway Remodelling in an Allergic Model of Asthma? Int J Inflam 2017; 2017:8741851. [PMID: 28660089 PMCID: PMC5474257 DOI: 10.1155/2017/8741851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/30/2017] [Indexed: 11/18/2022] Open
Abstract
Many studies have been done to evaluate the effect of various natural products in controlling asthma symptoms. Virgin coconut oil (VCO) is known to contain active compounds that have beneficial effects on human health and diseases. The objective of this study was to evaluate the effect of VCO inhalation on airway remodelling in a rabbit model of allergic asthma. The effects of VCO inhalation on infiltration of airway inflammatory cells, airway structures, goblet cell hyperplasia, and cell proliferation following ovalbumin induction were evaluated. Allergic asthma was induced by a combination of ovalbumin and alum injection and/or followed by ovalbumin inhalation. The effect of VCO inhalation was then evaluated via the rescue or the preventive route. Percentage of inflammatory cells infiltration, thickness of epithelium and mucosa regions, and the numbers of goblet and proliferative cells were reduced in the rescue group but not in preventive group. Analysis using a gas chromatography-mass spectrometry found that lauric acid and capric acid were among the most abundant fatty acids present in the sample. Significant improvement was observed in rescue route in alleviating the asthma symptoms, which indicates the VCO was able to relieve asthma-related symptoms more than preventing the onset of asthma.
Collapse
Affiliation(s)
- N. A. Kamalaldin
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - S. A. Sulaiman
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - M. R. Yusop
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
- School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - B. Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| |
Collapse
|
22
|
Siti HN, Kamisah Y, Nur Iliyani MI, Mohamed S, Jaarin K. Citrus leaf extract reduces blood pressure and vascular damage in repeatedly heated palm oil diet-Induced hypertensive rats. Biomed Pharmacother 2017; 87:451-460. [DOI: 10.1016/j.biopha.2016.12.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022] Open
|
23
|
Alves NFB, de Queiroz TM, de Almeida Travassos R, Magnani M, de Andrade Braga V. Acute Treatment with Lauric Acid Reduces Blood Pressure and Oxidative Stress in Spontaneously Hypertensive Rats. Basic Clin Pharmacol Toxicol 2017; 120:348-353. [DOI: 10.1111/bcpt.12700] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/02/2016] [Indexed: 02/02/2023]
Affiliation(s)
| | | | | | - Marciane Magnani
- Technology Center; Federal University of Paraíba; João Pessoa PB Brazil
| | | |
Collapse
|
24
|
Kamisah Y, Ang SM, Othman F, Nurul-Iman BS, Qodriyah HMS. Renoprotective effect of virgin coconut oil in heated palm oil diet-induced hypertensive rats. Appl Physiol Nutr Metab 2016; 41:1033-1038. [DOI: 10.1139/apnm-2016-0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Virgin coconut oil, rich in antioxidants, was shown to attenuate hypertension. This study aimed to investigate the effects of virgin coconut oil on blood pressure and related parameters in kidneys in rats fed with 5-times-heated palm oil (5HPO). Thirty-two male Sprague–Dawley rats were divided into 4 groups. Two groups were fed 5HPO (15%) diet and the second group was also given virgin coconut oil (1.42 mL/kg, oral) daily for 16 weeks. The other 2 groups were given basal diet without (control) and with virgin coconut oil. Systolic blood pressure was measured pre- and post-treatment. After 16 weeks, the rats were sacrificed and kidneys were harvested. Dietary 5HPO increased blood pressure, renal thiobarbituric acid reactive substance (TBARS), and nitric oxide contents, but decreased heme oxygenase activity. Virgin coconut oil prevented increase in 5HPO-induced blood pressure and renal nitric oxide content as well as the decrease in renal heme oxygenase activity. The virgin coconut oil also reduced the elevation of renal TBARS induced by the heated oil. However, neither dietary 5HPO nor virgin coconut oil affected renal histomorphometry. In conclusion, virgin coconut oil has a potential to reduce the development of hypertension and renal injury induced by dietary heated oil, possibly via its antioxidant protective effects on the kidneys.
Collapse
Affiliation(s)
- Yusof Kamisah
- Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shu-Min Ang
- Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Faizah Othman
- Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
25
|
|
26
|
Jaarin K, Foong WD, Yeoh MH, Kamarul ZYN, Qodriyah HMS, Azman A, Zuhair JSF, Juliana AH, Kamisah Y. Mechanisms of the antihypertensive effects of Nigella sativa oil in L-NAME-induced hypertensive rats. Clinics (Sao Paulo) 2015; 70:751-7. [PMID: 26602523 PMCID: PMC4642492 DOI: 10.6061/clinics/2015(11)07] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/09/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES This study was conducted to determine whether the blood pressure-lowering effect of Nigella sativa might be mediated by its effects on nitric oxide, angiotensin-converting enzyme, heme oxygenase and oxidative stress markers. METHODS Twenty-four adult male Sprague-Dawley rats were divided equally into 4 groups. One group served as the control (group 1), whereas the other three groups (groups 2-4) were administered L-NAME (25 mg/kg, intraperitoneally). Groups 3 and 4 were given oral nicardipine daily at a dose of 3 mg/kg and Nigella sativa oil at a dose of 2.5 mg/kg for 8 weeks, respectively, concomitantly with L-NAME administration. RESULTS Nigella sativa oil prevented the increase in systolic blood pressure in the L-NAME-treated rats. The blood pressure reduction was associated with a reduction in cardiac lipid peroxidation product, NADPH oxidase, angiotensin-converting enzyme activity and plasma nitric oxide, as well as with an increase in heme oxygenase-1 activity in the heart. The effects of Nigella sativa on blood pressure, lipid peroxidation product, nicotinamide adenine dinucleotide phosphate oxidase and angiotensin-converting enzyme were similar to those of nicardipine. In contrast, L-NAME had opposite effects on lipid peroxidation, angiotensin-converting enzyme and NO. CONCLUSION The antihypertensive effect of Nigella sativa oil appears to be mediated by a reduction in cardiac oxidative stress and angiotensin-converting enzyme activity, an increase in cardiac heme oxygenase-1 activity and a prevention of plasma nitric oxide loss. Thus, Nigella sativa oil might be beneficial for controlling hypertension.
Collapse
Affiliation(s)
- Kamsiah Jaarin
- Universiti Kebangsaan Malaysia, Faculty of Medicine, UKMMC, Department of Pharmacology, Cheras/Kuala Lumpur, Malaysia
- Corresponding author: E-mail:
| | - Wai Dic Foong
- Universiti Kebangsaan Malaysia, Faculty of Medicine, UKMMC, Department of Pharmacology, Cheras/Kuala Lumpur, Malaysia
| | - Min Hui Yeoh
- Universiti Kebangsaan Malaysia, Faculty of Medicine, UKMMC, Department of Pharmacology, Cheras/Kuala Lumpur, Malaysia
| | - Zaman Yusoff Nik Kamarul
- Universiti Kebangsaan Malaysia, Faculty of Medicine, UKMMC, Department of Pharmacology, Cheras/Kuala Lumpur, Malaysia
| | - Haji Mohd Saad Qodriyah
- Universiti Kebangsaan Malaysia, Faculty of Medicine, UKMMC, Department of Pharmacology, Cheras/Kuala Lumpur, Malaysia
| | - Abdullah Azman
- Universiti Kebangsaan Malaysia, Faculty of Medicine, UKMMC, Department of Pharmacology, Cheras/Kuala Lumpur, Malaysia
| | - Japar Sidik Fadhlullah Zuhair
- Universiti Kebangsaan Malaysia, Faculty of Medicine, UKMMC, Department of Pharmacology, Cheras/Kuala Lumpur, Malaysia
| | - Abdul Hamid Juliana
- Universiti Kebangsaan Malaysia, Faculty of Medicine, UKMMC, Department of Pharmacology, Cheras/Kuala Lumpur, Malaysia
| | - Yusof Kamisah
- Universiti Kebangsaan Malaysia, Faculty of Medicine, UKMMC, Department of Pharmacology, Cheras/Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Alves NFB, Porpino SKP, Monteiro MMO, Gomes ERM, Braga VA. Coconut oil supplementation and physical exercise improves baroreflex sensitivity and oxidative stress in hypertensive rats. Appl Physiol Nutr Metab 2015; 40:393-400. [PMID: 25659569 DOI: 10.1139/apnm-2014-0351] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hypothesis that oral supplementation with virgin coconut oil (Cocos nucifera L.) and exercise training would improve impaired baroreflex sensitivity (BRS) and reduce oxidative stress in spontaneously hypertensive rats (SHR) was tested. Adult male SHR and Wistar Kyoto rats (WKY) were divided into 5 groups: WKY + saline (n = 8); SHR + saline (n = 8); SHR + coconut oil (2 mL·day(-1), n = 8); SHR + trained (n = 8); and SHR + trained + coconut oil (n = 8). Mean arterial pressure (MAP) was recorded and BRS was tested using phenylephrine (8 μg/kg, intravenous) and sodium nitroprusside (25 μg·kg(-1), intravenous). Oxidative stress was measured using dihydroethidium in heart and aorta. SHR + saline, SHR + coconut oil, and SHR + trained group showed higher MAP compared with WKY + saline (175 ± 6, 148 ± 6, 147 ± 7 vs. 113 ± 2 mm Hg; p < 0.05). SHR + coconut oil, SHR + trained group, and SHR + trained + coconut oil groups presented lower MAP compared with SHR + saline group (148 ± 6, 147 ± 7, 134 ± 8 vs. 175 ± 6 mm Hg; p < 0.05). Coconut oil combined with exercise training improved BRS in SHR compared with SHR + saline group (-2.47 ± 0.3 vs. -1.39 ± 0.09 beats·min(-1)·mm Hg(-1); p < 0.05). SHR + saline group showed higher superoxide levels when compared with WKY + saline (774 ± 31 vs. 634 ± 19 arbitrary units (AU), respectively; p < 0.05). SHR + trained + coconut oil group presented reduced oxidative stress compared with SHR + saline in heart (622 ± 16 vs. 774 ± 31 AU, p < 0.05). In aorta, coconut oil reduced oxidative stress in SHR compared with SHR + saline group (454 ± 33 vs. 689 ± 29 AU, p < 0.05). Oral supplementation with coconut oil combined with exercise training improved impaired BRS and reduced oxidative stress in SHR.
Collapse
Affiliation(s)
- Naiane F B Alves
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | | | | | | | | |
Collapse
|
28
|
Reprint of “Heated vegetable oils and cardiovascular disease risk factors”. Vascul Pharmacol 2014; 62:38-46. [DOI: 10.1016/j.vph.2014.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/08/2014] [Accepted: 02/15/2014] [Indexed: 01/31/2023]
|
29
|
Ng CY, Leong XF, Masbah N, Adam SK, Kamisah Y, Jaarin K. Heated vegetable oils and cardiovascular disease risk factors. Vascul Pharmacol 2014; 61:1-9. [PMID: 24632108 DOI: 10.1016/j.vph.2014.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/08/2014] [Accepted: 02/15/2014] [Indexed: 11/19/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading major causes of morbidity and mortality worldwide. It may result from the interactions between multiple genetic and environmental factors including sedentary lifestyle and dietary habits. The quality of dietary oils and fats has been widely recognised to be inextricably linked to the pathogenesis of CVD. Vegetable oil is one of the essential dietary components in daily food consumption. However, the benefits of vegetable oil can be deteriorated by repeated heating that leads to lipid oxidation. The practice of using repeatedly heated cooking oil is not uncommon as it will reduce the cost of food preparation. Thermal oxidation yields new functional groups which may be potentially hazardous to cardiovascular health. Prolonged consumption of the repeatedly heated oil has been shown to increase blood pressure and total cholesterol, cause vascular inflammation as well as vascular changes which predispose to atherosclerosis. The harmful effect of heated oils is attributed to products generated from lipid oxidation during heating process. In view of the potential hazard of oxidation products, therefore this review article will provide an insight and awareness to the general public on the consumption of repeatedly heated oils which is detrimental to health.
Collapse
Affiliation(s)
- Chun-Yi Ng
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Xin-Fang Leong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Department of Clinical Oral Biology, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norliana Masbah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Khadijah Adam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kamsiah Jaarin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|